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The horizontal spectra of atmospheric wind and temperature at the
tropopause have a steep �3 slope at synoptic scales, but transition
to �5�3 at wavelengths of the order of 500–1,000 km [Nastrom,
G. D. & Gage, K. S. (1985) J. Atmos. Sci. 42, 950–960]. Here we
demonstrate that a model that assumes zero potential vorticity
and constant stratification N over a finite-depth H in the tropo-
sphere exhibits the same type of spectra. In this model, tempera-
ture perturbations generated at the planetary scale excite a direct
cascade of energy with a slope of �3 at large scales, �5�3 at small
scales, and a transition near horizontal wavenumber kt � f�NH,
where f is the Coriolis parameter. Ballpark atmospheric estimates
for N, f, and H give a transition wavenumber near that observed,
and numerical simulations of the previously undescribed model
verify the expected behavior. Despite its simplicity, the model is
consistent with a number of perplexing features in the observa-
tions and demonstrates that a complete theory for mesoscale
dynamics must take temperature advection at boundaries into
account.

geophysical turbulence � meteorology � atmospheric dynamics

In the 1970s, the National Aeronautics and Space Administra-
tion (NASA) instrumented commercial Boeing 747 airliners to

collect atmospheric data during their regular flights (1) in an
endeavor called the Global Atmospheric Sampling Program
(GASP). The resulting data set consists of thousands of flight
tracks, a few hundred of which are �10,000 km long, collected
over a 4-year period. Most flights occurred in the midlatitudes
and tropics but span the full range of seasons. Because airliners
travel at altitudes between 9 and 14 km, the data largely reflect
the upper troposphere and lower stratosphere, near the tropo-
pause. Atmospheric wavenumber spectra of horizontal wind and
temperature computed from the GASP data set by Nastrom and
Gage (ref. 1; hereafter NG85) show a distinct transition from a
steep spectral slope of �3 at synoptic scales (�1,000–3,000 km)
to a shallower slope of �5�3 at mesoscales (�10–500 km), with
a fairly distinct transition centered at a horizontal wavelength of
�600 km. Understanding the source and structure of this
spectrum has posed a puzzle in atmospheric science for the past
20 years.

The spectrum is intriguing because it agrees so well at large
scales with Charney’s (3) theory of geostrophic turbulence but
deviates from that prediction where it shallows. Moreover, the
fact that the small-scale slope is �5�3 invites multiple explana-
tions, because that is the theoretical slope both for the forward
cascade of energy in isotropic, three-dimensional (3D) turbu-
lence, and for the inverse cascade of two-dimensional (2D)
turbulence, as well as other systems. At the large scale, Charney
argued (3), rotation and stratification conspire to make the
atmosphere quasi-2D. Stirring by baroclinic instability (or any
planetary mechanism) will induce a forward cascade of potential
enstrophy, reflected in a �3 kinetic energy spectrum below the
stirring scale. Moreover, the theory predicts equipartition be-
tween kinetic and available potential turbulent energy, and so
the temperature variance spectrum should have the same slope

as kinetic energy, just as observed. The forward enstrophy
cascade in this theory should proceed down to scales at which
rotation becomes less important, where unbalanced motions and
instabilities might efficiently lead to dissipation. In the atmo-
sphere, a reasonable estimate puts this scale an order of mag-
nitude smaller than the observed transition scale.

Previous Explanations
Explanations in the literature for the mesoscale spectrum fall
into three general categories as follows: (i) an inverse cascade
of small-scale energy, produced perhaps by convection (4–6);
(ii) production of gravity waves by divergent f lows (7–11); or
(iii) a direct cascade of energy from the large 0scales (12–15).
More recent observations and analysis present new facts that
must be accommodated by theory. Regarding type (i) theories,
Cho and Lindborg (16) analyzed horizontal velocity data from
a series of thousands of fights in the late 1990s at altitudes
between 9 and 12 km. From this analysis, they inferred a
forward cascade of energy for scales of the order of 100 km and
smaller. Regarding the hypotheses of type (ii), data collected
on scales between 1 and 100 km over the Pacific Ocean (the
Pacific Exploratory Mission; see ref. 17) indicate that me-
soscale energy away from the equator is dominated by vortical
modes rather than divergent ones (18). It is pointed out that
observations over land may reveal more gravity wave energy at
these scales than over the ocean, but even so, a complete
theory cannot then rely solely on gravity waves to produce the
mesoscale spectrum. In sum, the current state of observational
evidence leaves only theories of type (iii) as plausible universal
explanations of the NG85 data.

Tung and Orlando (ref. 12; hereafter TO03) propose a
model that, at first glance, explains the observations. The basis
of their argument is that the standard model of geostrophic
turbulence proposed by Charney (3) is incomplete, because in
any finite-width inertial range, there will always be some
leakage of energy to small scales (19, 20). In their theory, the
subdominant k�5/3 cascade reveals itself at the wavenumbers
where the direct cascading energy spectra exceed that of the
enstrophy cascade, namely for wavenumbers k � (���)1/2,
where � is the downscale energy f lux and � is the enstrophy
f lux. TO03 support their theory with a small number of
simulations using a standard numerical two-layer quasi-
geostrophic forced by baroclinic instability. One of the present
authors, however, noted that because the forward energy
cascade rate � depends on the dissipation scale, the transition
scale of TO03 will always coincide with the effective Kolmog-
orov scale of the dissipation mechanism and so changes with
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filter strength and grid resolution (21). A similar spectrum to
that found by TO03 can be obtained by underdissipating the
forward enstrophy cascade, causing a buildup of enstrophy at
the grid scale. For the theory of TO03 to be correct, then, the
atmosphere must possess a mechanism that selectively dissi-
pates the forward cascade at some fixed O(1 km) scale,
independent of energy f lux.

The compelling part of the TO03 argument is that the
proposed mechanism relies on a forward cascade of vortical
energy. An improved theory should also possess that character-
istic. Lindborg (13, 14) demonstrated that a forward �5�3 slope
energy cascade can arise in highly stratified 3D turbulence when
rotation is sufficiently weak, although no explicit connection to
the synoptic scale is included in this theory. Kitamura and
Matsuda (15) do find that such a mechanism seems to arise in a
very high-resolution nonhydrostatic Boussinesq model and fol-
lows on the tails of a steep synoptic-scale spectrum. But in this
case, much as seen by Koshyk, Hamilton, and coworkers (11, 22),
the energy in the mesoscale spectrum is due to divergent
motions. The latter fact is not consistent with the observations
of Cho et al. (18).

Idealized Tropopause Dynamics
The GASP observations were collected primarily near the
tropopause, the boundary between the well mixed, low-potential
vorticity troposphere and the more stratified, high-potential
vorticity stratosphere (23, 24). Juckes (23) points out that when
temperature anomalies of the tropopause and ground are in
phase, the flow has a structure associated with barotropic flow,
and also suggests that tropopause anomalies likely dominate
tropospheric potential vorticity anomalies. [This viewpoint is
closely related to the Eady model (25) of baroclinic instability,
in which the tropopause interacts with a similar layer in the lower
troposphere to produce baroclinic instability.] Juckes (23) esti-
mates from observations that neglecting tropospheric potential
vorticity anomalies will result in an error on the order of 20%.
The model he proposes takes into account that the Ertel
potential vorticity of the troposphere is nearly constant, and so
the balanced dynamics arise primarily from the advection of
tropopause temperature.

An idealization of this situation in which the depth of the
interior fluid is assumed semiinfinite and the stratification
assumed constant is termed ‘‘surface quasigeostrophy’’ (SQG).
This model was first proposed by Blumen (ref. 26; but see also
refs. 27–29) as a counterpoint to Charney’s theory, which
explicitly assumes that boundary effects are negligible. By con-
trast, in SQG boundary advection determines the flow. The SQG
equations are as follows:

�t� � J��, �� � 0, z � 0, [1a]

� � �z�, [1b]

q � ��xx � �yy � �z�
�2�z�� � 0, z 	 0, [1c]

�3 0 as z 3 
 � , [1d]

where � is the horizontal streamfunction, J( , ) is the horizontal
Jacobian, and � � N�f is Prandtl’s ratio (in general N is a
function of z, but here we will take it to be a constant). Fourier
decomposition in the horizontal plane at z � 0 leads to the
separable solution

�̂�k, z� � ��k��1e�kz�̂�k, 0� , [2]

where k � �k� is the modulus of the horizontal wave-vector k, and
the hatted variables are spectral amplitudes. The flow is thus
governed by the 2D dynamics at the boundary, where

�̂�k, 0� � ��k��1�̂�k, 0� ,

yet the resulting flow is 3D.
The turbulent dynamics of SQG differ from those of quasi-

geostrophic turbulence because the conserved invariants of the
system are distinct. In quasigeostrophic dynamics, the conserved
invariants are the total energy E � ���q�2	 and the potential
enstrophy Z � �q2	�2, where �	 represents a volume average. In
SQG the invariants are the temperature variance T � �2�2 and
the total energy ES � ���2, where the overbar implies an area
average at z � 0.†

Defining spectral densities such that ES � 
�S(k)dk and T �

�(k)dk, the SQG invariants are related as � � �k�S. In the
inverse cascade of total SQG energy, the densities have
spectra �S � k�2 and � � k�1, whereas in the forward cascade
of temperature variance one has �S � k�8/3 and � � k�5/3

(26, 28).

The Model
The fundamental model we propose here is a variant of SQG that
highlights the transition between quasi-2D barotropic flow and
baroclinic 3D flow. From the solution connecting � and � (Eq.
2), one sees that as the horizontal scale gets larger (or k gets
smaller), the penetration depth of the temperature anomalies
increases proportionally, with aspect ratio given by the Prandtl
ratio, � � N�f. At large enough scale, the penetration will reach
deep into the troposphere and interact with the interior flow, if
it ceases to be homogenized at some depth, or the lower
boundary as an upper limit. The simplest possible extension of
SQG that takes this effect into account is the restriction of the
domain in Eq. 1 to a finite depth, specifically, replacing Eq. 1d
with the condition � � 0 at z � �H. In this case, the replacement
of solution 2 is

�̂�k, z� � � cosh���z � H�k

�k sinh��Hk� � �̂�k, 0� , [3]

which at the upper surface becomes

�̂�k, 0� � ��k tanh��Hk��1�̂�k, 0� . [4]

The remarkable property of this finite-depth SQG (fSQG)
model results from the properties of the hyperbolic tangent in
the inversion. At large scales, or k �� (�H)�1, the temperature
is related to the streamfunction like �̂(k, 0) � �2Hk2�̂(k, 0),
whereas at small scales, or k �� (�H)�1, the inversion is
approximately �̂(k, 0) � �k�̂(k, 0). Thus, the relation at the
surface of streamfunction to advected quantity (temperature)
transitions from a quasigeostrophy�2D-like inversion at large
scales, to an SQG-like inversion at small scales, with the tran-
sition occurring at the wavenumber

kt � ��H��1 �
f

NH
. [5]

Note that this predicted transition scale is only equal to the
deformation scale when H is taken as the full depth of the
troposphere, which we take as an upper bound. This topic will
be considered further in Discussion.

†The invariant ES is proportional to the total energy of the flow; multiplying the potential
vorticity q by �� and integrating over volume, one has that

�����2 � � 
 2�2	 � � 
 2Ha

 1���z�0 
 ��q	,

which is just twice the total energy E (here Ha is some averaging depth). Thus, if q � 0, the
total energy is E � (1�2)��2Ha

�1�� � ��2Ha
�1ES.
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The spectral slopes can be predicted as follows. Defining the
spectral density of the streamfunction by the relation �2�2 �

�(k)dk, the conserved invariants have the form

�s�k� � �k tanh�k�k t���k� , [6a]

��k� � ��k tanh�k�k t�
2��k� . [6b]

In the present context, we are interested in the influence
synoptic-scale stirring on the mesoscales, presumably due to
baroclinic instability, and so we restrict our attention to the
forward cascade regime, in which the conservation of temper-
ature variance determines the spectrum by means of the stan-
dard phenomenology (30, 31). The temperature variance spec-
trum (Eq. 6b) has the same dimensions as kinetic energy, and so
it is the flux of this boundary-f low energy that is constant in its
inertial range

� � k��k���1�k� � constant, [7]

where �(k) is the turbulent timescale at wavenumber k. Because
the turbulent timescale is the advective timescale, we can express
it in terms of the streamfunction spectrum, �(k) � [k5�(k)]�1/2.
Using this expression in Eq. 7 and eliminating �(k) with the help
of Eq. 6b reveals that

��k� � CT�2/3��tanh��Hk�2/3k�5/3, [8]

where CT is the appropriate Kolmogorov constant.
It is the temperature variance spectrum that determines all

other spectra in the direct cascade range, and so, for example, we
can derive �(k) through elimination of �(k) between Eqs. 6b
and 8, and similarly for �S(k). More to the point, the kinetic
energy spectrum is

k2��k� � ��tanh��Hk��2��k� , [9]

which thus takes on the small- and large-scale limits

k2��k� � �CT�2/3��2H��4/3k�3, k �� kt

CT�2/3��4/3k�5/3, k �� k t
. [10]

To summarize, the hypothesis is that synoptic-scale stirring
produces a balanced, forward cascade of temperature variance at
the tropopause (and perhaps at the ground as well). At large
scales, the flow is quasi-barotropic because the penetration
depth is large enough to interact with the interior flow (or the
lower boundary as an upper limit), and here the cascade exhibits
the same kinetic energy spectrum as in Charney’s theory (3) of
quasigeostrophic turbulence. As the cascade proceeds, the pen-
etration depth of temperature anomalies decreases. When the
vertical scale is small compared with the depth over which
the tropospheric interior potential vorticity is homogenized, the
cascade flattens to a �5�3 slope, recovering its essential SQG-
like nature. The accompanying temperature spectrum is consid-
ered in the discussion. The small-scale filter is adjusted for each
simulation so that it acts only near the highest resolved wave-
number, as explained above. Each spectrum was calculated by
averaging over time (for the portion of the simulation over which
the flow was in steady state) and azimuthal angle in the
horizontal plane.

Numerical Tests of the Predicted Spectra
Here we present the results of a series of simulations of the fSQG
model, forced by large-scale stirring and dissipated scale-
selectively at both the domain and grid scales. The system
modeled is just with added forcing and dissipation terms,
coupled with the �̂–�̂ inversion for the finite-depth model. The
calculation is performed in the spectral domain, corresponding

to a 2�-periodic physical domain, by using a de-aliased fast
Fourier transform method to calculate the nonlinear terms, by
means of the staggered grid method of Orszag (32). Stirring is
generated at kf � 4 by a random Markovian process that is highly
correlated in time (so that the decorrelation time is longer than
the eddy turnover time in the cascade). Large-scale dissipation
of the inverse cascade is accomplished with a strong linear drag
on temperature. The forward cascade of temperature variance is
dissipated by using a highly scale-selective exponential cutoff.
The filter is explicitly restricted to act only on k  2kmax�3 but
in fact affects a much smaller range of wavenumbers close to
kmax. The details of the filter are discussed in ref. 21. In all cases,
the filter is sufficiently strong that the high-wavenumber spec-
trum is minimally influenced by the filter but strong enough to
ensure that our effective Kolmogorov scale is resolved.

Fig. 1 shows a plot of the kinetic energy spectra k2�(k) for a
series of simulations performed at resolutions ranging from 2562

(kmax � 127) to 2,0482 (kmax � 1,023), all using � � 1 and H �
1�50, so that the input transition wavenumber is kt � 50. Also
shown for reference is the result of a simulation of standard 2D
Euler turbulence, forced and dissipated identically to the other
runs, performed at 2,0482 resolution, and the theoretical spec-
trum, with constant chosen to match the large-scale spectra. The
small-scale filter is adjusted for each simulation so that it acts
only near the highest-resolved wavenumber, as explained above.
Each spectrum was calculated by averaging over time (for the
portion of the simulation over which the flow was in steady state)
and azimuthal angle in the horizontal plane.

At large scales, all fSQG spectra follow the 2D Euler spectra.
That said, all are steeper than a �3 slope near the forcing scale,
but this is not uncommon for the direct cascade range in 2D
turbulence. The consistency at large scales between the fSQG
and 2D Euler simulations indicates that deviations from �3 at
wavenumbers near the forcing scale reflect the forcing mecha-
nism and intrinsic dynamics of forced 2D turbulence with drag,
not the intrinsic dynamics of the fSQG model. The shallow slope
for all fSQG runs at k � kt approaches �5�3, as expected.
Crucially, the series of simulations represented in Fig. 1 shows
that the transition scale is independent of resolution and small-
scale dissipation.

To check that the transition scale that arises from the simu-
lation is truly proportional to the input transition wavenumber

Fig. 1. fSQG kinetic energy spectra at z � 0 with kt � 50, computed at
different horizontal resolutions. The thin solid line shows a calculation of
regular 2D turbulence for reference, and the thin dashed line is the theoretical
spectrum (Eq. 9), with constant chosen to match the large-scale spectra.
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kt, we performed a series of simulations at 2,0482 resolution, with
kt equal, respectively, to 25, 50, 100, and 200 (� � 1 for all
simulations, and H was varied). The energy generation rate was
normalized by (�2H)�1 for each simulation.‡ Fig. 2 shows the
kinetic energy spectra for each run, along with the spectra from
a simulation of standard 2D turbulence for comparison. One can
see that the resulting transition wavenumber increases with
increasing input kt. Fig. 2 Inset shows the measured estimates of
the transition wavenumber plotted against the input parameter,
kt (the measured transition wavenumber is defined as the
wavenumber where the spectral slope is k�15/6). The plot indi-
cates that the transition wavenumber is well approximated by
f�NH, as expected.

Discussion
The proposed model for the effects of tropopause temperature
anomalies on the atmospheric energy spectrum should be taken
as a heuristic tool, not as a complete theory. The model is
significant, however, because it demonstrates how turbulent
motions at the synoptic scale can produce a balanced, forward
cascade of temperature variance, resulting in an upper-
tropospheric spectrum with a break at a scale that is a function
of fundamental background parameters. The numerical simula-
tions presented here moreover demonstrate that such a transi-
tion indeed occurs in the fSQG model and that the transition is
robust, well predicted by the natural scale f�NH, and indepen-
dent of both model resolution and small-scale dissipation. There-
fore, one need invoke neither unbalanced dynamics nor an
inverse cascade to produce the spectra observed in the GASP
data.

The form of the predicted transition scale (Eq. 5) implies a
distinct geographical dependence. Although N is approximately
constant throughout the troposphere, f varies with latitude. Also,
depending on the interpretations of H, one could argue that the
deeper tropical troposphere should translate into a larger trop-
ical homogenization depth. Thus, where f increases, H likely
decreases, and so the transition scale should decrease with
increasing latitude. Figure 8 of ref. 1 (NG85), which plots the

spectra of wind and temperature as functions of latitude band,
indicates that this hypothesis is the situation.

The model suggested here can explain many features of the
observations, but taken on its own it has important limitations.
By using typical midlatitude tropospheric values of N � 10�2

s�1 and f � 10�4 s�1, the predicted transition scale between the
two slopes is Lt � NH�f � 100H. Therefore, a transition scale
on the order of hundreds of kilometers, as observed by NG85,
requires a vertical scale on the order of kilometers. This result
is consistent with the notion of the tropospheric depth as an
upper bound on H, with such a bound occurring in the limit
that potential vorticity is assumed constant throughout the
entire thickness of the troposphere. However, if we take H �
Htroposphere, then the transition wavenumber (Eq. 5) is equiv-
alent to the Rossby deformation wavenumber. If baroclinic
instability induces the cascade of temperature variance, one
then must have H � Htroposphere for a �3 cascade range to exist.
The most straightforward way to include baroclinic instability
in the present model is to replace the lower isothermal
boundary condition with a second active temperature layer
(33), but in this case it is not clear that the transition scale will
be different from in our one-layer finite-depth model. One
might also question the assumption of constant tropospheric
and infinite stratospheric stratification. Following Juckes (23),
it is straightforward to show that adding a stratospheric layer
changes the large-scale spectral slope but also does not alter
the expected transition scale.§

Another issue not yet addressed is the vertical structure of the
spectra. If the entire troposphere were truly dominated by the
dynamics of temperature advection at the tropopause, then at
scales smaller than the transition scale, one should see an
evanescently decaying signal as one moves down into the tro-
posphere. Tracer spectra should also, in this case, show quali-
tatively different behavior at depth than at the tropopause (2).
Gao and Meriwether (34) present an analysis of a limited set of
data taken at 6 km, and, not unexpectedly, there is energy at
mesoscale mid-depths. They did find that the spectrum of energy
is steeper (close to �2) than that of the GASP data, but there
is more amplitude than would be expected from purely tropo-
pause-trapped flow.

Finally, careful consideration of the predicted fSQG spectra
indicates a potential inconsistency between the present theory
and the NG85 potential energy spectrum ��2�(k). The potential
energy spectrum predicted at large scales by the fSQG model is
shallower than that predicted by the Charney theory (3), whereas
the data of NG85 indicate equipartition at all scales, consistent
with Charney’s theory. Using Eq. 9, the ratio of potential to
kinetic energy in fSQG is

��2��k�

k2��k�
� �tanh��Hk�2.

At k �� kt, potential energy thus has a slope of approximately
k�1 but is smaller than the kinetic energy by the ratio (k�kt)2,
whereas at k �� kt, fSQG predicts equipartition.

The three inadequacies of the present model noted in the
previous few paragraphs can be resolved with a simple extension.
If both surface and interior anomalies are active in generating
the flow, then interior dynamics should dominate the tempera-

‡A unit input of � scaled by (�2H)�1 will result in the same streamfunction as a unit input
of 2D vorticity, because (�2H)�1 is the factor in the �̂3 �̂ inversion at large scale, where the
energy is injected.

§Assuming a stratospheric buoyancy frequency Ns and a tropospheric buoyancy frequency
Nt, and retaining the isothermal condition at the ground, the connection between
streamfunction and potential temperature at the tropopause (Eq. 4) changes to

�̂�k, 0� �
1 
 r2

�k�tanh��Hk� � r
�̂�k, 0�,

where � � Nt�f is the tropospheric Prandtl ratio, and r � Nt�Ns.

Fig. 2. fSQG kinetic energy spectra k2�(k) at z � 0 with kt � 25, 50, 100, and
200 at 2,0482 resolution. The thin solid line is the spectrum from a simulation
of standard 2D turbulence, shown for reference. (Inset) The measured tran-
sition wavenumber compared with the input value kt. See text for details.
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ture spectrum at large scales, and so large-scale available po-
tential and kinetic energy will be in equipartition, as observed.
At scales smaller than the transition scale, fSQG predicts
equipartition between potential and kinetic energy but also
predicts that both will have spectra that are shallower and of
larger amplitude than those generated by the interior flow. Thus,
at small scales the energy generated by the surface-trapped
cascade will emerge to dominate the spectra of both kinetic and
potential energy [Held et al. (29) make a similar hypothesis in
their conclusion]. Moreover, the emergence of the �5�3 surface-
trapped cascade may occur at smaller scales than kt when the
large scales are dominated by the �3 interior dynamics, depend-
ing on the relative strength of the surface and interior forcing.

It may be the case that a continuously stratified quasigeostro-
phic model in which both lower and upper boundary tempera-

ture advection are explicitly taken into account (isothermal
boundaries are used in most numerical quasigeostrophic models)
would reveal a spectral signature quantitatively similar to that
observed by NG85. Nevertheless, the consistency of the predic-
tions for the observed mesoscale spectrum with or without
significant interior flow anomalies is a satisfying feature of the
simple model suggested here.
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