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Abstract

Observed dynamics near bounding upper surfaces in the atmosphere and ocean

are interpreted in terms of quasi-geostrophic theory. The quasi-geostrophic equa-

tions consist of advection of linearized potential vorticity coupled with advection

of temperature at the upper and lower bounding surfaces. We show that the stan-

dard vertical finite difference formulation of 3D quasi-geostrophic flow accurately

represents the flow only down to a critical horizontal scale that decreases with

vertical grid spacing. To overcome this constraint, we derive a surface-modal for-

mulation which accurately and efficiently captures both the surface dynamics due

to temperature anomalies on the upper and lower boundaries, and the interior

dynamics due to potential vorticity anomalies, without the need for high vertical

resolution.

In the atmosphere, the horizontal wavenumber spectra of wind and temperature

near the tropopause have a steep -3 slope at synoptic scales and a shallow -5/3

slope at mesoscales, with a smooth transition between the two regimes from 800km

to 200km. We demonstrate that when the surface temperature anomalies are

resolved, quasi-geostrophic flow driven by baroclinic instability exhibits such a

transition near the tropopause. The horizontal scale of transition between -3 and

-5/3 slopes depends on the relative magnitudes of the mean surface temperature

gradient and the mean potential vorticity gradient.

In the ocean, sea surface height anomalies measured by satellite altimetry ex-

iv



hibit shallower spectral slopes than quasi-geostrophic theory predicts, and faster

than expected westward phase propagation of sea surface height in the midlat-

itudes. We argue that, in some regions, the shallow spectral slopes are due to

surface quasi-geostrophic dynamics, and that the westward phase propagation in

the midlatitudes is indicative of a transition from a linear Rossby wave regime in

the tropics to a nonlinear turbulent regime in the midlatitudes.
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Chapter 1

Introduction

The theoretical foundations of much of geophysical fluid dynamics (GFD) were

laid in the mid-20th century, yet even today there are many real world observa-

tions which have proven difficult to explain using the classic GFD theories. The

shape of the observed energy spectra in the atmosphere and ocean, as well as ob-

servations of westward phase propagation in the ocean are examples that will be

discussed here. In each of these examples the classical theories explain only part of

what is observed. We are still lacking a clear explanation of how turbulent eddies

redistribute energy across spatial scales, and how waves interact with turbulence.

In the atmosphere the well known Nastrom and Gage (1985) energy spectrum,

computed from data collected by commercial aircraft flying near the tropopause,

obeys the classic geostrophic turbulence prediction of Charney (1971) for quasi-

two dimensional (2D) flows at synoptic scales (& 1000km). However the spectrum

deviates from Charney’s prediction in the mesoscales, with the departure from

theory occurring at a larger scale than expected (≈ 800km). Therefore either

Charney’s theory of geostrophic turbulence is incomplete or ageostrophic dynamics
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are more important than previously thought. Here we investigate the extent to

which geostrophic theory can be supplemented with surface geostrophic dynamics

to recover the observed spectrum.

The ocean is more difficult to observe than the atmosphere because it is less

accessible and the characteristic scales are significantly smaller and slower. Obser-

vations of sea surface height (SSH) have been available since the the 1980’s, but it

has been difficult to get an consistent record of SSH energy spectrum. While the

atmospheric spectrum of Nastrom and Gage (1985) has been validated in indepen-

dent studies using independent measurements (Lindborg, 1999), the shape of the

oceanic SSH spectrum appears to vary between studies (see Stammer and Böning,

1992; Stammer, 1997; Le Traon, 1993; Le Traon et al., 2008). The reason is likely

a problem of limited spatial resolution. In the atmospheric midlatitudes the de-

formation scale is of the order of 1000-2000km and noise in aircraft measurements

begins to dominate at around 2km so there is about 3 decades of bandwidth from

which to measure spectral slopes. However in the oceanic midlatitudes the defor-

mation scale is of the 100-200km and noise in satellite observations is apparent

at scales as large as 100km, so the spectral bandwidth is limited. Nevertheless,

observations by Le Traon et al. (2008) and numerical studies by Klein et al. (2008)

and Lapeyre (2008) argue that near the ocean’s surface the kinetic energy (KE)

spectra has a shallow spectral slope (-5/3) near and below the deformation scale.

Here we evaluate the hypothesis that surface quasi-geostrophic (SQG) dynamics

dominate quasi-geostrophic (QG) dynamics at the mesoscales near the surface

using a simple model that contains both.

Another observation that is only partly explained by classical theory is the

westward propagation of SSH anomalies. Chelton and Schlax (1996) observed that
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at low latitudes SSH anomalies typically propagate at the phase speed predicted

for long, first baroclinic Rossby waves. However at higher latitudes the observed

phase propagation is about twice what the classic theory predicts. The implication

is that these higher latitude anomalies are either nonlinear eddies, as proposed by

Chelton et al. (2007), or they are linear Rossby waves under the influence of mean

flow and topography, which was proposed in a series of papers by Killworth and

Blundell (2003, 2005); Maharaj et al. (2007). Here the linear proposal is tested

using new surface observations and a new ocean atlas (Forget, 2008).

The rest of this chapter gives some basic background to central GFD topics

that later chapters will build upon, such as baroclinic instability and geostrophic

scaling, followed by an overview of the other chapters. Chapter 2 on our model for-

mulation and simplified models contains material from Tulloch and Smith (2006)

and Tulloch and Smith (2008a). Chapter 3 on the atmospheric energy spectrum

is comprised mainly from material in Tulloch and Smith (2008b). Chapter 5 on

the westward propagation of SSH anomalies is from Tulloch et al. (2008).

1.1 Baroclinic instability

The atmosphere and ocean are primarily energized by sunlight and tides. Tidal

forcing produces fast internal waves that must be dissipated through mixing.

While tides are the second largest energy source, and probably play an impor-

tant role in the general circulation, we neglect them here. Heating by the sun

creates a massive reserve of potential energy in both the atmosphere and ocean.

Lorenz (1955) noted that only a small amount (less than one percent in the at-

mosphere) of this potential energy, that which is not due to vertical stratification,
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Figure 1.1: Mean state giving rise to baroclinic instability. Isotherms (dashed
lines) indicate that temperature increases upwards and decreases polewards (ŷ
direction), in thermal wind balance with a zonal velocity (x̂ direction) increasing
upwards. Substituting parcel A with B will result in a net loss of potential energy
since parcel A is warmer than parcel B. This figure was drawn based on Figure 1
of Hart (1979).

is available to be converted into kinetic energy. He further argued that the total

available potential energy (APE) is generally about ten times larger than the total

kinetic energy in the atmosphere, and that the conversion between the two is the

main driver of the general circulation. Similarly, Gill et al. (1974) argued that the

APE is of order one thousand times larger than the kinetic energy in the ocean.

Baroclinic instability, illustrated in Figure 1.1, is the dominant mechanism by

which mean APE is converted into eddy APE and then eddy kinetic energy. The

eddy KE then drives the general circulation in the atmosphere, i.e., mean kinetic

energy (Lorenz, 1955). However, less is known about the baroclinic life cycle of

oceanic eddies, and the extent to which they drive the general circulation is an open
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problem (see e.g., Wunsch and Ferrari, 2004). The equator-to-pole temperature

gradient results in slanted isotherms (dashed lines) in the atmosphere (or isopy-

cnals in the ocean) that is steady in time. Hydrostatic and geostrophic balance

then implies that this slanting is balanced by a zonal velocity shear (solid arrows).

This sheared state is unstable to perturbations of the form shown, whereby if a

parcel A in a warm region and a parcel B in a cool region are substituted, the

center of mass decreases, which results in a net loss of potential energy. This loss

of potential energy is balanced by unstable wave growth, which leads to the gen-

eration of eddies. The eddies flux heat meridionally and tend to reduce the slope

of the isotherms.

Charney (1947) and Eady (1949) were the first to develop models of baroclinic

instability in the atmosphere. The “Eady model” is the more analytically tractable

of the two, consisting of an f -plane atmosphere (β = 0) with uniform stratifica-

tion and velocity shear, bounded between rigid surfaces separated by a depth H .

Eady’s model develops a large scale instability that requires interaction between

disturbances at the upper and lower boundaries. The “Charney model” allows for

a mean potential vorticity (PV) gradient in the interior of the fluid via differential

rotation (β 6= 0) and no upper boundary is required. The instability that develops

is between boundary disturbances and the interior PV gradient, so it can be both

large or small scale. Two further models of baroclinic instability will be considered

here: those due to Phillips (1951) and Green (1960). The “Phillips model” is a

two layer model that is a hybrid of the Eady and Charney models, but it allows

for another type of baroclinic instability which occurs within the fluid and is due

to sign changes in the PV gradient. The “Green model” is a generalization of the

Phillips model to the multi-layer case which, in addition to the instabilities of the
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aforementioned models, admits weakly unstable modes of large horizontal scale

called “Green modes”.

Baroclinic instability will play an integral part in much of this thesis. Many

of the models discussed contain a large scale, time independent, baroclinically

unstable “mean” velocity profile as the sole forcing. The equations considered here

will all be quasi-geostrophic (see below), so the mean forcing can be thought of as

obeying the appropriate equations of a larger spatial scale and slower time scale

set of equations, such as the planetary geostrophic equations (Pedlosky, 1984).

1.2 Quasi-geostrophic scaling and equations

We take as our starting point the incompressible, hydrostatic, Boussinesq equa-

tions on a β-plane in the absence of external forcing or dissipation

∂tu + u · ∇u + f ẑ × u = −∇Φ, (1.1a)

∂tb+ u · ∇b+N2w = 0, (1.1b)

∇ · u + ∂zw = 0, (1.1c)

b = ∂zΦ, (1.1d)

where ∇ = x̂∂x + ŷ∂y, u = ux̂ + vŷ is the horizontal velocity, w is vertical

velocity, f is the Coriolis frequency, Φ is the geopotential, b is the buoyancy, and

N2 is the stratification, which is also known as the buoyancy frequency (or Brunt-

Väisälä frequency). Equations (1.1a) and (1.1b) are statements of conservation of

horizontal momentum and thermodynamic tracer, Equation (1.1c) is a kinematic

continuity condition and (1.1d) is hydrostatic balance. Note that these equations

6



better approximate the ocean than the atmosphere because in the atmosphere the

density scale height is of the same order as the dynamical scale height H, whereas

in the ocean the density scale height is two orders of magnitude larger (Spiegel

and Veronis, 1960).

Geostrophic scaling implies Φ ∼ fUL, where L is the horizontal length scale, U

is the horizontal velocity scale. In addition hydrostatic balance implies b ∼ fUL/H

where H is the height scale1. Quasi-geostrophic scaling then makes the following

further assumptions about the flow:

1. an advective time scale t ∼ L/U ,

2. small Rossby number: Ro = U/(fL) ≪ 1,

3. the horizontal scale is on the order of the deformation scale Ld = NH/f ,

so RoL2/L2
d = O(Ro), which when combined with hydrostatic balance im-

plies that variations in stratification are small compared to the background

stratification,

4. the β-plane approximation βL/f ∼ O(Ro), where β is the meridional gra-

dient of the Coriolis frequency,

see Vallis (2006) or Pedlosky (1987) for details, or Pedlosky (1984); Vallis (1996);

Muraki et al. (1999) for mathematically rigorous derivations using asymptotic

expansions in Rossby number. The QG approximation was first conceived by

Charney (1948) and it made numerical weather prediction possible because it ef-

fectively filters out fast, “unbalanced” wave motions. Since QG dynamics are soley

controlled by the potential vorticity and higher Rossby order terms are discarded

1Script letters such as H, U and L denote scales, while regular font letters such as f , N denote
physical parameters.
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(Ro → 0) they are often called “balanced”, or the “slow manifold”. However

Boussinesq flows that are initially balanced have been shown to remain dominated

by balanced motion for Rossby numbers up to O(1) when N/f ≫ 1 (McKiver and

Dritschel, 2008). Similarly, Vanneste and Yavneh (2004) argued that spontaneous

generation of inertia-gravity waves by a balanced Boussinesq flow is exponentially

small when at small Rossby number Ro≪ 1, so QG is an accurate approximation.

The equation for advection of quasi-geostrophic potential vorticity (QGPV) is

obtained by cross differentiating the horizontal momentum equations, to eliminate

the geopotential, then inserting the thermodynamic equation and equating O(Ro)

terms

∂tq + J(ψ, q) + β∂xψ = 0, (1.2)

where J(A,B) = ∂xA∂yB − ∂yA∂xB is the two dimensional Jacobian operator.

The geostrophic streamfunction ψ(x, y, z, t) is defined such that u = ∇⊥ψ ≡

−∂yψx̂ + ∂xψŷ, and the QGPV2 is defined as

q = ∇2ψ + Γψ, where Γ ≡ ∂z(f
2/N2)∂z (1.3)

is the vortex stretching operator.

We introduce into the QG equations a larger scale, steady, baroclinically un-

stable mean flow

U = U(z)x̂ + V (z)ŷ = ẑ ×∇Ψ, W = 0,

2QGPV is also known as pseudo-potential vorticity because it is is an approximation to the
Ertel potential vorticity (Ertel, 1942; Ertel and Rossby, 1949), which is conserved by the full
Boussinesq equations (see Hoskins et al., 1985).
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which, in an asymptotic sense, can be considered slowly varying solutions to the

planetary geostrophic equations (Pedlosky, 1984). Such a mean flow gives rise to

a mean QGPV gradient

∇Q = ΓV x̂ + (β − ΓU)ŷ. (1.4)

This forcing will cause unabated energy growth if it is not damped, which is un-

desirable since we want to compute steady state flow statistics. Hence we also

include an energy dissipation mechanism that will remove energy from the sys-

tem without significantly changing its dynamics. The simplest such mechanism is

bottom Ekman friction, which results in linear vorticity drag3. Ekman friction is

rationalized by assuming there is an Ekman layer at the bottom of the fluid, which

for a flat bottom gives an Ekman pumping proportional to the relative vorticity

w(zB) = δEk∇2ψ(zB).

Further assuming a rigid upper lid, so that w = 0 in Equation (1.1b), the

QGPV equation and upper and lower boundary conditions (with mean baroclinic

wind and Ekman drag) are

∂tq + J(ψ, q) + U · ∇q + u · ∇Q = 0, zB < z < zT , (1.5a)

∂tθ + J(ψ, θ) + U · ∇θ + u · ∇Θ = 0, z = zT , (1.5b)

∂tθ + J(ψ, θ) + U · ∇θ + u · ∇Θ = −r∇2ψ, z = zB, (1.5c)

3More physical dissipations exist, such as quadratic drag, which is less sensitive model pa-
rameters (Grianik et al., 2004; Arbic and Scott, 2008). However, the effects of linear drag are
better understood than quadratic drag (see e.g., Thompson and Young, 2006; Smith and Vallis,
2002).
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where θ is the buoyancy rescaled by the local Coriolis frequency θ ≡ b/f , ∇Θ

is the mean thermodynamic gradient which is in thermal wind balance with the

mean velocity

∇Θ = ∂zV x̂ − ∂zU ŷ, (1.6)

and zT and zB denote the top and bottom of the fluid4.

These thermal boundary conditions result in Neumann boundary conditions

for the elliptic boundary value problem for the streamfunction

q = ∇2ψ + Γψ, and θ|z=zB,zT
= ∂zψ|z=zB,zT

. (1.7)

To solve these equations in time, the QGPV and θ on the upper and lower bound-

aries are initialized, then the following steps are repeated:

• invert Equation (1.7) to get ψ from q, θ(zT ) and θ(zB),

• calculate right hand side terms in Equation (1.5) (Jacobian, gradient advec-

tion, forcing and dissipation) from ψ,

• step q, θ(zT ) and θ(zB) forward in time,

and because we assume simple horizontally periodic geometry the inversion can be

done efficiently and accurately in the Fourier domain. Computing derivatives in

the Fourier domain are trivial but computing the quadratic right hand side terms

requires Fourier inversions and de-aliasing filters (Orszag, 1971). We also include

a small scale filter in numerical simulations because Ekman friction is not scale

selective (see Section A.1 of the Appendix for details of the small scale filter).

4The top and bottom of the fluid are defined here as z = zT and z = zB in the general
context. In Chapter 3 the top and bottom are z = H and z = 0 respectively for the atmosphere.
In Chapters 4 and 5 the top and bottom are z = 0 and z = −H in the ocean.
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1.2.1 Quasi-geostrophic turbulence

Charney (1971) noted that when the boundary conditions (1.5b) and (1.5c) are

neglected, the QG Equation (1.2) and the QGPV (1.3) are a three dimensional

isomorphism of two dimensional (2D) turbulence. QGPV has the same functional

form as vorticity ζ = ∇2ψ but with the addition of a vertical second derivative,

and it is also horizontally advected, so all of the scaling laws that Kraichnan (1967)

developed for 2D turbulence apply equally well in QG (away from boundaries).

Specifically, QG conserves energy

dE

dt
=

d

dt

∫

E(K)dK = −
∫

ψ∂tqdV = 0,

and enstrophy

dZ

dt
=

d

dt

∫

Z(K)dK =

∫

q∂tqdV = 0,

where K = |K| is isotropic horizontal wavenumber5, E(K) is the spectral energy

density and Z(K) is the spectral enstrophy density6. Given a forcing scale Kf

near the deformation scale L−1
d , dimensional arguments (q̂ ∝ K2ψ̂) imply that the

net energy transfer must be towards large scales (small K) when spectral transfers

occur. The shape of the spectrum in the inverse cascade is

E(K) = Cǫ2/3K−5/3

5We will work in the Fourier and real space domains interchangeably, with the Fourier trans-
form being applied in the horizontal directions. The streamfunction ψ is related to Fourier
transform by ψ(x, y, z, t) =

∑

K
eiK·xψ̂(K, z, t), where K = (k, ℓ) the horizontal wavenumber

vector.
6The specification of proper horizontal boundary conditions (such as periodic, no flow, or

finite energy in an infinite domain) is required for conservation of energy and enstrophy to hold.
We assume a doubly periodic domain in all of our calculations.
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in the inertial range, where C is an O(1) Kolmogorov constant and ǫ [m2s−3] is the

cascade rate. Similarly, because dimensional arguments imply

E(K) = C′η2/3K−3,

in the inertial range of the forward enstrophy cascade7, where η [s−3] is the cascade

rate. Charney’s (1971) geostrophic theory of turbulence also predicts a partition

between the kinetic energy spectrum

KE(K) =
1

2
K2ψ̂2

and available potential energy spectrum

A(K) =
1

2

f 2

N2
θ̂2

which is proportional to the Burger number KE/APE ∼ L2
d/L2 when z ∼ H ,

such as in the inverse cascade. In the forward cascade Charney’s (1971) theory

predicts equipartition between the KE and APE when z ∼ (f/N)L.

Charney (1971) realized that assuming the dynamics are “sufficiently far from

walls” is a limitation near the tropopause and the ground. He postulated that

frontal discontinuities at walls could produce a K−2 spectral slope, which could

eventually give way to a K−5/3 3D turbulent energy cascade. He further argued

that both of these regimes could be superimposed on the K−3 slope, tentatively

giving a total spectrum of the form AK−3 +BK−2 +CK−5/3, where A, B, and C

7For reference, Kraichnan (1971) computed C = 6.69 and C′ = 2.626. In a three dimensional
forward energy cascade he computed C = 1.40. Kraichnan also added logarithmic corrections to
the spectrum in the enstrophy cascade, but we neglect them here since they are minor and they
vanish at small scales.

12



are constant coefficients (Charney, 1973).

1.2.2 Surface quasi-geostrophic dynamics

Complementary to Charney’s geostrophic turbulence theory, Blumen (1978) pro-

posed a turbulence model which neglected QGPV anomalies in the interior but

included temperature anomalies on the upper and lower boundaries. Charney’s

model advects only equation (1.5a), while Blumen’s model advects only equations

(1.5b) and (1.5c). Blumen’s model is often called “surface quasi-geostrophic”

(SQG) because the dynamics are solely controlled by the surface conditions. The

invariants in SQG are the volume integrated energy

dES
dt

=
d

dt

∫

ES(K)dK =

∫

f 2

N2
ψ∂tθdA = 0,

(note that the surface integral of ψ∂tθ replaced the volume integral of −ψ∂tq by

integration by parts) and the surface APE

dT

dt
=

d

dt

∫

T (K)dK =

∫

f 2

N2
θ∂tθdA = 0.

When there are spectral energy transfers the volume integrated energy must have

a net upscale transfer, while the surface APE must have a net downscale transfer.

Given a forward inertial range with cascade rate ǫT [m2s−3], dimensional arguments

imply a forward energy spectrum

T (K) = C′
T ǫ

2/3
T K−5/3.
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On the other hand an inverse cascade rate γT [m3s−3] gives an inverse energy

spectrum

T (K) = CTγ2/3
T K−1,

where T (K) is the surface APE

T (K) =
1

2

f 2

N2
θ̂2

∣

∣

∣

∣

z=0

.

The forward energy cascade in SQG is quite different from the quasi-2D inverse

energy cascade in QG turbulence. It has been the subject of rigorous math analysis

(see e.g., Constantin et al., 1994) since it is a physically motivated test problem

for the regularity of the Navier-Stokes equations. See Held et al. (1995) for a

review of SQG dynamics on the surface of a semi-infinite fluid.

Together Charney’s QG and Blumen’s SQG flows form a complete balanced

turbulence. The Blumen dynamics are often not seen in numerical simulations

either because of insufficient vertical resolution in a layered model, or because the

boundary conditions are neglected in modal models which decompose the vertical

structure into “neutral” modes. This vertical resolution issue of will be discussed

further in Chapter 2.

1.3 Overview of the chapters

The goal of Chapter 2 is to introduce our surface-modal model (SMQG) formula-

tion and compare it with traditional layered and modal models. The equivalence

between Bretherton’s (1966) handling of boundary conditions via QGPV-sheets

and our streamfunction decomposition formulation is shown explicitly. Then con-
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vergence is shown for both Eady-Green type linear instability and the nonlinear

evolution of the Eady problem. Finally, two simplified models are described in

order to illustrate the SQG energy spectrum and the interaction between surface

energy and interior energy.

In Chapter 3 the SMQG formulation is truncated and applied as a model for

the atmospheric energy spectrum. After discussing the atmospheric observations

and previous explanations the simple two mode-two surface (TMTS) model with

uniform stratification is shown to reproduce the actual spectrum surprisingly well.

The TMTS spectrum reproduces the observed transition from a steep -3 slope to a

shallow -5/3 slope at the surface, and the horizontal scale of transition is predicted

via a theory that depends on the relative magnitudes of the surface and interior

QGPV and temperature gradients.

In Chapter 4 the SMQG formulation is applied to the non-uniformly stratified

oceanic problem in an attempt to interpret SSH observations in terms of QG and

SQG turbulence. There is a debate in the scientific community as to what mode of

variability the SSH signal represents. Typically, because of the ocean’s stratifica-

tion, it is assumed that the mesoscale surface signal most represents dynamics in

the first baroclinic mode (Wunsch, 1997; Stammer, 1997). However recent studies

that diagnosed a general circulation model (GCM) of the North Atlantic con-

cluded that SQG dominates the first baroclinic mode in some locations (Lapeyre

and Klein, 2006; Lapeyre, 2008). First, the scaling theory for the transition be-

tween interior and surface dominated dynamics from Chapter 3 is generalized to

nonuniform stratification, and verified via simulations with exponential stratifi-

cation in the SMQG model. Then the scaling theory is applied to a new global

ocean atlas from Forget (2008) to determine which locations are likely dominated
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by SQG dynamics at the surface. An example simulation for a location in the

ACC is also presented as a verification of the scaling. Global baroclinic instability

maps are also computed for comparison with the transition scale map.

Continuing on the theme of sea surface dynamics, Chapter 5 interprets satellite

altimetric observations in terms of Rossby waves and geostrophic turbulence. By

applying linear QG theory to observations of coherent westward phase propagation

we determine whether the propagation is due to linear Rossby waves or nonlinear

turbulence. Numerous studies indicate that observations are consistent with linear

waves (see e.g., Chelton and Schlax, 1996; Killworth and Blundell, 2005), while

other studies argue that observations are consistent with turbulence (Chelton et al.,

2007). By comparing observed phase speeds with predicted phase speeds, as well

as surface drifter speeds, we argue that altimeters see wave propagation in the

tropics and turbulence in the midlatitudes.
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Chapter 2

Model formulation and

simplifications

In this chapter the surface-modal QG (SMQG) is formulated and compared with a

typical layered formulation. Then two simplified models are analyzed with a view

towards understanding how surface QG dynamics can alter the energy spectra

near the surface.

2.1 Layered formulation

QG is often solved using a layered formulation, which considers the fluid as a set of

immiscible, uniform density layers. Pedlosky (1987) shows that a layered formula-

tion is equivalent to a “level” model, which is a finite-difference approximation to

the QGPV Equation (1.5a) for a continuously stratified fluid. Figure 2.1 illustrates

the discretization at layer n of such a model. The discretized streamfunction ψn is

defined at height zn, the mid-depth of layer n, which has thickness δn. With this

17



∆n−1

∆n

ψn

ψ
n−1

zn

zn−1

ψ
n+1

δn

zn+1 X

X

X

Figure 2.1: The grid used to represent vertical structure. ∆n is the spacing between
ψn and ψn+1, while δn is the distance between half spaces: δn = (∆n−1 + ∆n)/2.

discretization the QGPV in layer n is given by

qn = ∇2ψn +
f 2ρ0

g























1
δ1

(

ψ2−ψ1

ρ̄2−ρ̄1

)

, n = 1

1
δn

(

ψn−1−ψn

ρ̄n−ρ̄n−1
− ψn−ψn+1

ρ̄n+1−ρ̄n

)

, n = 2 .. N − 1

1
δN

(

ψN−1−ψN

ρ̄N−ρ̄N−1

)

, n = N

(2.1)

where ρ̄n is the background density profile at zn, ρ0 is the average density and N

is the total number of layers1. Similarly, the thermodynamic variable at height zn

is given by

θn =
ψn−1 − ψn+1

∆n−1 + ∆n
,

where ∆n is the spacing between zn and zn+1. Streamfunction inversions using

this discretization will have errors of order O(δz2) in the interior and O(δz) near

the boundary. When SQG dynamics prevail near the boundary vertical derivatives

scale with to horizontal gradients as ∂z = (N/f)|∇| at length scales smaller than

the deformation radius (since θ ∼ Kψ in SQG), so a vertical scale δz is equivalent

1The number of layers N should not be confused with the buoyancy frequency N2 = − g
ρ0

dρ̄
dz
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to a horizontal length scale of Nδz/f . Therefore the vertical finite differencing

operator effectively includes an approximation that is accurate to O(Nδz/f) so

temperature dynamics at smaller horizontal scales (K > (N/f)δz) are not cap-

tured. This vertical resolution issue will be discussed more in Section 2.3, where

we conclude that such a finite difference approach is valid near the deformation

scale but requires high vertical resolution to properly represent horizontal scales

smaller than the deformation scale.

2.2 Surface-modal formulation

The same accuracy advantages gained by representing horizontal motions spec-

trally can be gained by projecting the vertical structure onto appropriate stratifi-

cation modes. When the surface dynamics are ignored (by explicitly or implicitly

assuming ψz = 0 at the top and bottom): the problem is separable in the verti-

cal, and the solutions to the vertical structure problem (the neutral modes) form

a normal basis onto which the motion can be projected (Flierl, 1978; Hua and

Haidvogel, 1986). The goal here is to construct a general framework (for arbitrary

stratification) to include the surface dynamics and still retain spectral accuracy

in the vertical. We want to ensure that the method preserves horizontal signals

due to the surface dynamics down to the horizontally resolved scales, without the

necessity of very high vertical resolution.

2.2.1 Streamfunction decomposition

The linearity of the relation between streamfunction and potential vorticity in QG

allows for the decomposition of Equation (1.5) using a set of streamfunctions that
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separately solve problems with θ(zT ) = θ(zB) = 0 for the interior flow, and q = 0

for the surface flow. We let

ψ = ψI + ψT + ψB (2.2)

where these functions solve

∇2ψI + ΓψI = q, ψIz |z=zT
= 0, ψIz |z=zB

= 0 (2.3a)

∇2ψT + ΓψT = 0, ψTz |z=zT
= θT , ψTz |z=zB

= 0 (2.3b)

∇2ψB + ΓψB = 0, ψBz |z=zT
= 0, ψBz |z=zB

= θB. (2.3c)

Where q, θT and θB appear in Equation (1.5), they can be replaced using the

above expressions, but where ψ appears explicitly (in the tendency and advection

terms), all three components must be summed. Various models addressed in the

literature are obtained from this set in certain limits. For example, typical modal

representations amount to setting θT = θB = 0, surface quasi-geostrophy (SQG—

see Held et al., 1995) sets q = θB = 0 and zB → ∞, and Blumen’s (1978) two

surface-layer model sets q = 0. Similar decompositions have been used in the past;

for example Davies and Bishop (1994) applied such a decomposition to Edge waves

with interior PV distributions, and Lapeyre and Klein (2006) used it as framework

through which to interpret oceanic surface signals.

Equivalence between streamfunction decomposition and PV-sheets

Our streamfunction decomposition is equivalent to the PV-sheet method of Brether-

ton (1966), Heifetz et al. (2004) and others, which replaces the inhomogeneous
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boundary conditions in (1.7) with homogeneous ones by augmenting the potential

vorticity with delta-sheets at each surface. This equivalence can be shown us-

ing the following Green’s function method. Working in the spectral domain, and

defining a linear operator L ≡ [∂zs∂z −K2], where s = f 2/N2 (and suppressing

the dependence on time), allows Equation (1.7) to be expressed as

Lψ̂ = q̂, ψ̂z(zT ) = θ̂T , ψ̂z(zB) = θ̂B.

Its associated Green’s function g(z, ξ) therefore satisfies

Lg(z, ξ) = δ(z − ξ), gz(zB, ξ) = gz(zT , ξ) = 0.

The streamfunction, which is obtained by integrating by parts
∫ zT

zB

g(z, ξ)Lψ̂(ξ)dξ,

is given by2

ψ̂(z) =

∫ zT

zB

g(z, ξ)q̂(ξ) dξ + sg(z, zB)θ̂B − sg(z, zT )θ̂T . (2.4)

Bretherton (1966) defined a modified PV

q̃ = q̂ + sδ(z − zB)θ̂B − sδ(z − zT )θ̂T ,

2For uniform stratification on z ∈ [0, H ], the homogeneous problem for ψ̂ can be solved
separately on the domains 0 ≤ z ≤ ξ and ξ ≤ z ≤ H (and using that g is continuous and satisfies
a jump condition), one finds

g(µ, z, ξ) =







−N2H
f2µ cosh

(

µ ξ−H
H

)

cosh
(

µ z
H

)

cschµ, z ∈ (0, ξ)

−N2H
f2µ cosh

(

µ z−H
H

)

cosh
(

µ ξ
H

)

cschµ, z ∈ (ξ,H),

is the Green’s function for the dynamic streamfunction ψ̂, where µ = KNH/f .
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so that, with the modified PV, the streamfunction ψ̂ solves

Lψ̂ = q̃, ψ̂z(zT ) = ψ̂z(zB) = 0, (2.5)

where q̃ is sometimes referred to as the standardizing function (see Butkovskii,

1982) for the boundary value problem (1.7). But the solution to (2.5) is equivalent

to (2.4), since

∫ zT

zB

g(z, ξ)q̃ dξ =

∫ zT

zB

g(z, ξ)q̂(ξ) dξ + sg(z, zB)θ̂B − sg(z, zT )θ̂T .

The integral in Equation (2.4) is ψ̂I in our streamfunction decomposition for-

mulation in Equation (2.4). Similarly, the boundary terms in (2.4) are ψ̂B and ψ̂T

in (2.4). The advantage of using the streamfunction decomposition (2.2) is that,

among all three methods, this one allows the most straightforward, unambiguous

numerical implementation, and avoids the need for high-resolution finite-difference

methods to capture surface effects.

2.2.2 Modal representation

We represent horizontal motions spectrally and project the vertical structure onto

appropriate stratification modes,

ψ =
∑

K

eiK·x

[

ψ̂T (K, t)φT (K, z) +
∑

m

ψ̂m(K, t)φm(z) + ψ̂B(K, t)φB(K, z)

]

,

(2.6)

where ψ̂T (K, t), ψ̂B(K, t) and ψ̂m(K, t) Fourier transformed variables with the

vertical dependence separated out and φT (K, z), φB(K, z) and φm(z) are the verti-
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cal modes, which are defined below3. The decomposition in Equation (2.3) allows

for the vertical modes be computed separately and independent of time.

Interior modes

The interior modes are identical to those used in a standard modal representation

of QG, as in Flierl (1978)and Hua and Haidvogel (1986). Specifically, φm(z) solve

Γφm = −λ2
mφm, ∂zφm|z=zT

= 0, ∂zφm|z=zB
= 0, (2.7)

where the λm are the eigenvalues and φm are the (orthonormal) eigenfunctions.

Surface modes

The surface modes are not independent of horizontal position, but in the horizontal

Fourier projection, they are separable. We can separate the dependence on θ̂T,B

and time in the spectral form of the surface problems (2.3b) and (2.3c) by assuming

ψ̂T,B(K, z, t) = θ̂T,B(K, t)φ̄T,B(K, z), where φ̄T,B(K, z) are solutions to

(

−K2 + Γ
)

φ̄T = 0,
dφ̄T

dz

∣

∣

∣

∣

z=zT

= 1,
dφ̄T

dz

∣

∣

∣

∣

z=zB

= 0 (2.8)

and
(

−K2 + Γ
)

φ̄B = 0,
dφ̄B

dz

∣

∣

∣

∣

z=zT

= 0,
dφ̄B

dz

∣

∣

∣

∣

z=zB

= 1, (2.9)

3Note that we will use the same notation for height separated variables as for variables with
height dependence but the z dependence will be suppressed, e.g., ψ̂T (K, z, t) is the top surface

streamfunction with height dependence and ψ̂T (K, t) is the top surface streamfunction without
height dependence.
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respectively. The un-barred functions φT,B (the modes) in (2.6) are then

φT =
φ̄T (K, z)

φ̄T (K, zT )
and φB =

φ̄B(K, z)

φ̄B(K, zB)
.

The surface streamfunction components in Equation (2.6) are evaluated at the po-

sitions of the upper and lower boundaries, ψ̂T (K, t) = ψ̂T (K, zT , t) and ψ̂B(K, t) =

ψ̂B(K, zB, t), as are θ̂T and θ̂B, and so the inversion between them is most easily

expressed in terms of the φ̄ functions

ψ̂T (K, t) = φ̄T (K, zT )θ̂T (K, t), ψ̂B(K, t) = φ̄B(K, zB)θ̂B(K, t).

The vertical structure of the problem is now expressed in terms of the functions

φT (K, z), φm(z) and φB(K, z), with Fourier coefficients ψ̂T , ψ̂m, and ψ̂B, and

the full streamfunction is reconstructed as in (2.6). As an example, in the Eady

problem discussed in Section 2.3.2, the correspondence to the general functions

derived here is

φ̄T =
H cosh [µ(z − zB)/H ]

µ sinhµ
and φ̄B =

H cosh [µ(z − zT )/H ]

µ sinhµ
,

where H = zT −zB and µ = KNH/f is the magnitude of the horizontal wavenum-

ber scaled by the deformation length.

The projected mean velocity

The mean velocity U(z) must also be projected onto interior and surface compo-

nents U(z) = UT (z)+U I(z)+UB(z). To simplify the notation we combine the top

and bottom mean velocities into a single surface velocity US(z) = UT (z)+UB(z).
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Since the shear of the surface component must be constant ΓUS = constant, it

solves the following elliptic problem

ΓUS =
f 2

H

[∇⊥Θ(z)

N2(z)

]∣

∣

∣

∣

zT

zB

,
dUS

dz
(zT ) = ∇⊥ΘT ,

dUS

dz
(zB) = ∇⊥ΘB,

where ∇⊥ = (−∂y, ∂x). Therefore the mean surface velocity is

US(z) =
1

H

∫ z

N2(z′)

[

(z′ − zB)
∇⊥ΘT

N2(zT )
− (z′ − zT )

∇⊥ΘB

N2(zB)

]

dz′.

The interior component of the mean velocity contains no surface gradients so it

projects onto the interior modes, so the total mean velocity is

U(z) = US(z) +
∑

m

φm(z)Um. (2.10)

The projected QG equations

The SMQG advection equations are obtained by multiplying (1.5a) by φn/H and

integrating vertically (i.e., projecting onto mode n) to get

∂tq̂n +
∑

m

[

Ĵ(〈ψ̂〉mn, q̂m) + iK ·
(

〈ψ̂〉mnλ2
mUm + 〈U〉mnq̂m

)]

+ i
(

kβ − K · ΓUS
)

〈ψ̂〉n = 0, (2.11)

where ΓUS = constant, Ĵ is shorthand notation for the double summation over

horizontal wavenumbers involving the Jacobian terms and the projection operators
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are defined as

〈·〉n =
1

H

∫ zT

zB

· φn dz, 〈·〉mn =
1

H

∫ zT

zB

· φnφm dz.

For example

〈ψ̂〉mn = 〈φT 〉mnψ̂T + 〈φB〉mnψ̂B +
∑

ℓ

〈φℓ〉mnψ̂ℓ,

〈U〉mn = 〈US〉mn +
∑

ℓ

〈φℓ〉mnÛℓ.

The advection equations at each of the surfaces are obtained by evaluating (1.5b)

at z = zT and (1.5c) at z = zB

∂tθ̂
T + Ĵ(ψ̂|z=zT

, θ̂T + ΘT ) + iU(zT ) · Kθ̂T = 0, (2.12a)

∂tθ̂
B + Ĵ(ψ̂|z=zB

, θ̂B + ΘB) + iU(zB) · K θ̂B = rK2ψ̂|z=zB
, (2.12b)

Note that evaluations of the streamfunction and mean zonal velocities in (2.12)

are the full streamfunction as written in (2.6).

Model algorithm

The full equations of motion can be evolved in time by first solving Equations

(2.7), (2.8) and (2.9) for the vertical structure, initializing q̂, θ̂T and θ̂B, and then

repeating the following four steps:

• invert q̂ to get ψ̂I , θ̂T to get ψ̂T , and θ̂B to get ψ̂B,

• construct ψ̂ using Equation (2.2)

• calculate right hand side terms (i.e., the Jacobians, forcing and dissipation),
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• step q̂, θ̂T , and θ̂B in time.

2.3 Convergence of layered QG and the surface-

modal formulation

A standard finite difference QG model with only two vertical levels is isomorphic to

the Phillips model (Pedlosky, 1987). Yet when the vertical resolution is increased,

keeping stratification and shear constant, the finite difference model should ap-

proach a representation of the Eady model. Here we explicitly show that this is

the case, up to a horizontal wavenumber that depends on the vertical resolution of

the model. Since temperature θ in the QG approximation is the vertical derivative

of the streamfunction δψ/δz, where δz is the vertical grid spacing, and vertical and

horizontal scales are linked by the Prandtl ratio N/f , horizontal scales are only

accurately represented at wavenumbers sufficiently smaller than kδz = f/(N δz).

Surface effects, dominated by temperature advection, are therefore absent from low

vertical resolution QG simulations, and in general, only partially represented down

to scales of order ℓz = Nδz/f . An analogous argument was made by Solomon and

Lindzen (2000), who demonstrated the necessity of sufficient resolution to model

the barotropic instability of a point jet (see also Lindzen and Fox-Rabinovitz, 1989;

Fox-Rabinovitz and Lindzen, 1993).

2.3.1 Linear instability convergence

First we consider Eady-Green type instabilities (Green, 1960) which have the fol-

lowing configuration: β-plane, uniform stratification and (zonal) shear, and the

fluid is bounded by rigid surfaces separated by a depth H . The mean interior
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QGPV gradient is ∂yQ = β and the mean temperature gradient is independent of

depth ∂yΘ(zT ) = ∂yΘ(zB). Therefore the linearization of Equation (1.5) reduces

to

∂tq + U∂xq + vβ = 0, zB < z < zT ,

∂tθ + U∂xθ + v∂yΘ = 0, z = zB, zT ,

which upon substituting a wave solution of the form e−i(kx−ωt) becomes

ωq̂ = k[U(z)q̂ + βψ̂], zB < z < zT , (2.14a)

ωθ̂ = k[U(z)θ̂ + ∂yΘψ̂], z = zB, zT , (2.14b)

where U(z) = [z − (zT + zB)/2] · ∂yΘ. In the layered formulation the vortex

stretching operator is discretized as in Equation (2.1) which creates an N + 2

linear eigenvalue problem, with the growth rate given by ωi = max[Im(ω)] at each

value of the zonal wavenumber k and PV gradient β (∂yΘ = 1 is held constant,

and fL/NH = 1). See Appendix A.2 for the equivalent linearization using the

surface-modal formulation. Figure 2.2 shows the growth rates (ωi) for the layered

formulation on the (k, β)-plane as the number of layers in the discretization is

increased, N = 2, 10, 30, 50. With just 2 layers, only the Phillips instability is

present at deformation scales, and large values of β inhibit it. As the number

of layers is increased, the deformation scale Eady instability at β = 0 becomes

better resolved and weak “Green” (long-wave) instabilities fill out the small k,

large β regions. Strong Charney instabilities develop at small scales near z = zB

and z = zT . As N increases the peak Charney growth rate converges to the line
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Figure 2.2: Contours of growth rate ωi in a typical layered formulation for the
Eady-Green type instability. Growth rate is plotted against nondimensional zonal
wavenumber k and nondimensional planetary vorticity gradient β for N = 2, 10, 30
and 50 layers. The thick contour is ωi = 0.05, and the contour intervals are 0.05.

29



k = ±0.83β for k ≫ 1 (Green, 1960).

Figure 2.3 shows the growth rates for a linearization of a typical modal formu-

lation (Flierl, 1978), for N = 2, 10, 30, 50 interior modes, neglecting the surface

modes in Equation (A.9c). Although the modal solution without surface modes

converges to the layered instability, it does so slowly. For any given number of

layers and modes N the instabilities differ at the largest resolved k and β values.

Also note that short wave cutoff of the Eady instability (where β = 0) emerges

very slowly as the number of modes is increased because numerical instabilities

arise between the vertical modes.

The Eady-Green instability for the SMQG formulation (with both interior and

both surface modes) is plotted in Figure 2.4 with N = 2, 10, 30, 50 interior modes.

Including surface modes gives explicit Green and Charney modes for nonzero β

regardless of the number of interior modes, which means dynamics near the sur-

faces can be explicitly resolved with only a few vertical modes. A more detailed

analysis of surface-modal instabilities with N = 2 is given in Chapter 3.

2.3.2 Nonlinear Eady turbulence

Next we show, using an Eady configuration, that the nonlinear dynamics in the

layered formulation converge to the dynamics of a model controlled solely by sur-

face dynamics. The Eady configuration takes β = 0, uniform stratification and

shear, and the fluid is bounded by rigid surfaces separated by a depth H . The

mean interior QGPV gradient is ∂yQ = 0 and the mean surface temperature gra-

dients are equal ∂yΘ(zT ) = ∂yΘ(zB), thus q = 0 and the motion is determined by

temperature advection on the boundaries. The remaining equations from (2.12)
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Figure 2.3: Contours of growth rate ωi in a typical modal formulation for the
Eady-Green type instability. Growth rate is plotted against nondimensional zonal
wavenumber k and nondimensional planetary vorticity gradient β forNz = 2, 10, 30
and 50 layers. The thick contour is ωi = 0.05, and the contour intervals are 0.05.
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Figure 2.4: Contours of growth rate ωi in the SMQG formulation for the Eady-
Green type instability. Growth rate is plotted against nondimensional zonal
wavenumber k and nondimensional planetary vorticity gradient β forNz = 2, 10, 30
and 50 layers. The thick contour is ωi = 0.05, and the contour intervals are 0.05.
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are (in Fourier space)

∂tθ̂ + Ĵ(ψ̂, θ̂) + ik(Uθ̂ + ψ̂∂yΘ) = 0, at z = zT , zB

and the temperature-streamfunction inversion relation is given by

ψ̂(K, z, t) =
H

µ sinhµ

[

cosh

(

µ
z − zB
H

)

θ̂T (K, t) − cosh

(

µ
z − zT
H

)

θ̂B(K, t)

]

,

where µ = KNH/f . We refer to this model as the “Blumen model” (Blumen,

1978).

One can understand the turbulent dynamics of the Eady model by considering

the advection equations at each surface in the limits of large and small scales

separately. At the upper boundary the streamfunction is

ψ̂(K, zT , t) =
H

µ

[

θ̂T (K, t)

tanhµ
− θ̂B(K, t)

sinh µ

]

,

so at large scales (µ ≪ 1), both sinhµ and tanhµ are approximately µ, which

means that ψ̂(K, zT , t) ≃ (H/µ2)
[

θ̂T (K, t) − θ̂B(K, t)
]

≡ (H/µ2)∆θ̂. A similar

relation arises at the bottom boundary, giving ψ̂(K, zB, t) ≃ ψ̂(K, zT , t). Sub-

tracting the upper and lower advection equations, one has

∂t∆θ̂ + Ĵ(ψ̂,∆θ̂) + ikU∆θ̂ ≃ 0

so the equation for the temperature difference between the two surfaces is isomor-

phic to 2D vorticity flow since −∆θ̂ = −µ2ψ̂/H, i.e., −(f/N)2∆θ̂/H = −K2ψ̂, in

this limit. On the other hand, at small scales (µ ≫ 1), sinh µ→ ∞ and tanhµ ∼ 1,
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so that ψ̂(K, zT , t) ≃ (H/µ)θ̂T (K, t) (similarly at the bottom), and each surface

obeys SQG dynamics independently of the other surface.

In between these scale limits, where µ ∼ 1, baroclinic instability pumps energy

into the eddying flow. Thus the small-scale limit is governed by the direct cascade,

while the large-scale limit is controlled by the inverse cascade. Surface potential

and kinetic energies in the inverse cascade of baroclinic turbulence and in the

SQG direct cascade are all expected to obey a -5/3 slope, thus in non-linear Eady

turbulence there should be no spectral break in the surface kinetic energy spectra,

and a -5/3 surface spectrum should dominate all scales. But there should be a

horizontal scale dependence on the interior flow. At large scales, temperature

signals at each surface “see” the other surface, yielding a quasi-barotropic flow,

so the interior spectrum should also approach a -5/3 slope. At small scales, the

temperature signals are trapped near their respective surfaces, and so the interior

spectrum should decay with depth and horizontal wavenumber.

We run a series of simulations, using two discretizations with the Eady mean

state: (I) using the layered formulation with full vertical resolution and the finite

difference operator given in equation (2.1), and (II) the “Blumen model”, which

advects only the upper and lower temperature fields. The calculations are per-

formed in a spectral domain, with wavenumber 1 just filling the domain. The

nonlinear terms are calculated using a de-aliased fast Fourier transform. Forward

cascades are dissipated using the exponential cutoff filter described in Appendix

A.1. The horizontal resolution of the simulations is Kmax = 255, or 5122 in grid

space. To preserve the dynamics and spectral slopes, the slow inverse cascades are

not dissipated.

Figure 2.5 shows the results of the simulations using the layered QG formu-
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Figure 2.5: Kinetic energy density versus wavenumber magnitude K in the top
layer of a series of Eady-forced QG simulations (with N = 4, 8, 16, 32, 64 layers,
β = 0, Uz = 1 and (nondimensional) deformation wavenumber Kd = fL/NH = 5.
Since there is no large-scale dissipation, the spectra shown are normalized by
baroclinic generation rate and then averaged in time between t = 4.5 and t = 5
for each simulation. The inset shows measured roll-off wavenumbers (where the
spectral slope is K−7/3) versus the prediction Kδz = f/(Nδz). The best fit line
K−7/3 = 0.34Kδz + 8.

lation. The kinetic energy density K2|ψ̂|2 is plotted versus K at the top level

z1 for simulations with increasing vertical resolution: N = 4, 8, 16, 32 and 64

levels. All of the simulations have the same nondimensional deformation scale

Kd = fL/NH = 5 and seed energy E(t = 0) = 10−3) centered around wavenum-

ber magnitude K0 = 10. The energy grows due to Eady baroclinic instability,

leading to a dual cascade. The peak linear growth rate is near 1.6Kd ≈ 8 and

there is no baroclinic growth at wavenumbers above 2.4Kd ≈ 12. Since there is
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no large scale drag to halt the cascade and equilibrate the motion, we show a

partial time average (t = 4.5 to t = 5 in nondimensional time) of the KE den-

sity, normalized by ǫ2/3, where ǫ = Uf 2/HN2(vθ|z=zT
− vθz=zB

) is the baroclinic

energy generation rate, in order to compare the different vertical resolutions. For

the two layer case (not shown), the spectra approach -3 slopes at large wavenum-

bers. However, as the vertical resolution of the vertically discretized simulations

increases, the spectra approach a -5/3 slope up to a wavenumber that increases

with vertical resolution.

Plotted in the inset of Figure 2.5 are “roll-off” wavenumbers Krolloff (defined

to be where the spectral slope of the KE spectrum drops to K−7/3) against

Kδz = f/(Nδz) for each δz = H/N . The dependence of Krolloff on Kδz is

roughly linear with a best fit slope of 0.34 (indicated by the dashed line), which

means that in order to resolve a wavenumber Kmax, a vertical grid scale spacing

δz ≤ 0.34f/(NKmax) is required.

The kinetic energy spectra at depths throughout the flow for both the 64-level

simulation (dashed lines) and the Blumen model simulation (solid lines) are shown

in Figure 2.6. The Blumen simulation is normalized and averaged in the same way

as the vertically discrete interior QG solution, and only three of its levels are plot-

ted. The 64 level simulation is clearly a good representation of the nonlinear Eady

model at this horizontal resolution; at higher horizontal resolutions, however, the

spectrum will fail to resolve smaller horizontal scales unless its vertical resolution

is increased.

The implied resolution requirements are similar to those suggested by Barnier

et al. (1991), who argued that it is necessary to horizontally resolve the smallest

baroclinic deformation scale. By contrast, here the vertical resolution must be suf-
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Figure 2.6: Comparison of kinetic energy density in the Blumen model versus the
standard QG formulation with 64 layers. The dashed gray lines are KE density at
the mid-depths of layers z1, z2, z4, z8, z16 and z32 in the layered QG model, while
the solid black lines are KE density at z = 0, z = z1 and z = z32 in the Blumen
model.

ficiently fine in order for those horizontally included scales to accurately represent

the surface temperature dynamics.

2.4 Simplified models

Now we will consider two simplified models in order to understand the interaction

between the surface and interior dynamics. The first model is a finite depth

SQG (fSQG) model with passive interior and bottom dynamics, which shows the

transition from 2D dynamics at large scales to (infinite depth) SQG-like dynamics

at small scales. The second is a model with an SQG surface mode θ̂T and a
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barotropic interior mode q̂0, which shows how interior and surface spectra coexist

with each other.

2.4.1 Finite depth SQG

The simplest surface QG model is obtained when one takes q = 0 in (1.5a) and

θB = 0 in (1.5c), as considered by Tulloch and Smith (2006) and Muraki and

Snyder (2007). In order to isolate the depth limited uniform PV flow, one must

also assume that β, ∇Θ, and Um conspire to make ∇Q = 0 to prevent instabilities

from energizing q and θB. The simplest approach is to set them all to zero and

independently force θT by a function F . Then the equation of motion is

∂tθ̂
T + Ĵ(ψ̂T , θ̂T ) = F −D, (2.15)

where the streamfunction ψ̂T is

ψ̂T (K, t) =
H

µ tanhµ
θ̂T , (2.16)

and D represents some form of drag. At large scales (µ ≪ 1) the temperature

is related to the streamfunction like θ̂T ≃ H−1µ2 ψ̂T , while at small scales, or

µ ≫ 1, the inversion is approximately θ̂T ≃ H−1µ ψ̂T . Thus the relation between

the streamfunction and the advected temperature transitions from a QG/2D-like

inversion at large scales, to an SQG-like inversion at small scales, with the transi-

tion occurring at the wavenumber µ = 1 (i.e., at the deformation wavenumber).

A snapshot of the flow is plotted in Figure 2.7, which shows that the large scales

resemble a two dimensional flow, conserving filamentary vorticity, while at the
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small scales there is significant roll-up of secondary vortices.

Figure 2.7: Snapshot of a piece of a fSQG temperature field with color axis varying
from -1 (blue) to +1 (red).

Barotropic instability

The large scale filamentary and small scale roll-up features in Figure 2.7 can be

understood by comparing the barotropic instability of a 2D vorticity filament with

an fSQG temperature filament. Following (Held et al., 1995), we note that the

Charney-Stern-Pedlosky criterion (Pedlosky, 1987) requires a sign change in in ∂yθ

in order for instability to develop. The simplest such configuration that is unstable
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is a Gaussian filament

ΘT = B0 e−(y/L)2 . (2.17)

To compute the instability of this filament we linearize Equation (2.15) about the

mean state ΘT , then insert a zonal wave solution of the form ei(kx−ωt):

−ωθ̂T + kU(y)θ̂ + kψ̂∂yΘ
T = 0,

which, when the y-dependence is discretized with a centered finite differences,

becomes a generalized eigenvalue problem for the growth rate.

Figure 2.8 shows the barotropic growth rates for various fluid depths H given

the initial state in Equation (2.17) (with f/N = 1). The zonal wavenumber k is

scaled by the length scale L and the growth rate scales with B0L−1. The growth

rate for a Gaussian filament of vorticity ζ in 2D flow,

ζ = Z0 e−(y/L)2 ,

where Z0 is the magnitude of the vorticity, is also plotted in Figure 2.8 (solid black

line). The key point, as noted by Held et al. (1995), is that the 2D growth rate

scales with Z0 and not with L, so while filaments are created in 2D turbulence, they

conserve vorticity and are dominated by large scale shears and strain. Conversely,

SQG filaments conserve temperature, but the vorticity and unstable growth rate

increase as the filament is stretched, scaling as B0L−1. In fSQG the growth rate

scales like SQG when µ > 1 and like 2D (divided by H) when µ < 1, so the growth

rates for H ≥ 1 in Figure 2.8 are non-dimensionalized by B0L−1 and the growth

rate for H = 0.1 is non-dimensionalized by B0H
−1. The fSQG instability spans

40



0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

Wavenumber k

G
ro

w
th

 r
at

e

Growth rates for Gaussian filament

 

 

H=0     (2D)
H=0.1
H=1
H=1.41
H=2
H=∞ (SQG)

Figure 2.8: Growth rates for a Gaussian temperature filament for fluid depths
H = 0 (two dimensional), finite H (fSQG), and H = ∞ (SQG). The wavenumber
is nondimensionalized by L−1, growth rates are non-dimensionalized by B0L−1 for
SQG and fSQG (when H ≥ 1), by Z0 for 2D, and by B0H−1 for H = 0.1.

the region between 2D and SQG, with the H = 0.1 growth rate indistinguishable

from 2D.

Energy spectrum

The forward cascades of Equation (2.15) results in spectral slopes that can be

predicted as follows. We define spectral densities of the streamfunction at the

surface P(K), total volume integrated energy ES(K) and available potential energy
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at the surface T (K) as

∫

P(K) dK =
1

2
(ψ̂T )2

S

,

∫

ES(K) dK =
1

2

f 2

N2
ψ̂T θ̂T

S

,

∫

T (K) dK =
1

2

f 2

N2
(θ̂T )2

S

,

where overlines indicate integrals over the surface. The densities are related by

ES(K) =
f 2

N2
H−1µ tanhµ P(K),

T (K) =
f 2

N2

(

H−1µ tanhµ
)2 P(K)

The rate of energy dissipation in the inertial range due to the forward potential

energy cascade is approximately

ǫT ≃ T (K)K τ−1(K) = constant,

where τ(K) is the turbulent timescale which is related to the streamfunction spec-

trum by τ(K) ≃ [K5P(K)]−1/2. Therefore the kinetic energy spectrum is

K2P(K) = CT ǫ
2/3
T

[

tanhµ
]−4/3

K−5/3 ≃
{

CT ǫ
2/3
T K

4/3
t K−3, µ ≪ 1

CT ǫ
2/3
T K−5/3, µ ≫ 1,

(2.19)

the potential energy spectrum is

T (K) = CT ǫ
2/3
T

[

tanhµ
]2/3

K−5/3 ≃
{

CT ǫ
2/3
T K

−2/3
t K−1, µ≪ 1

CT ǫ
2/3
T K−5/3, µ≫ 1,
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Figure 2.9: fSQG kinetic energy spectra at z = 0 with Kt = 50, computed at
different horizontal resolutions. The thin solid line shows a calculation of regular
two-dimensional turbulence for reference, and the thin dashed line is the theoretical
spectrum (2.19), with constant chosen to match the large scale spectra.

and the volume integrated energy spectrum is

ES(K) = CT ǫ
2/3
T

f

N

[

tanhµ
]−1/3

K−8/3 ≃
{

CT ǫ
2/3
T K

4/3
t HK−3, µ ≪ 1

CT ǫ
2/3
T KtHK−8/3, µ ≫ 1.

Figure 2.9 shows the kinetic energy spectra of a series of simulations with

increasing resolution (2562 to 20482) for nondimensional transition wavenumber

Kt = fL/NH = 50, where the length scale L represents the size of the domain.

The forcing F injects energy at K = 4 while linear drag D ∼ θ̂ dissipates large

scale energy, and a cutoff filter acts to dissipate enstrophy at the highest wavenum-

bers. The thin solid line is the corresponding KE spectrum for 2D turbulence and
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Figure 2.10: fSQG kinetic energy spectra KE(K) at z = 0 with Kt = 25, 50, 100,
and 200 at 20482 resolution. The thin solid line is the spectrum from a simulation
of standard two-dimensional turbulence, shown for reference. The inset plot shows
the measured transition wavenumber compared to the input value Kt. See text
for details.

the thin dashed line shows the predicted spectrum in (2.19). Figure 2.10 shows

the kinetic energy spectra for a series of simulations with increasing Kt, with

the forcing normalized for each so that Kt

∫

ψ̂TF(K)dK = 1. The inset shows

measured transition wavenumbers, defined as the wavenumber where the slope

becomes shallower than K−7/3 (a somewhat arbitrary choice) versus Kt.

The fSQG spectra decay with height away from the surface where θ̂T is defined.

Retaining the height dependence in Equation (2.19),

KE(K, z) = K2P(K)
[

φT (K, z)
]2

allows one to compute the theoretical spectral slope as a function of height and
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Figure 2.11: Theoretical spectral slopes expected of the fSQG kinetic energy spec-
trum KE(k) at heights z = 0, −H/128, −H/64, −H/32, −H/16, −H/8, −H/4,
and −H/2 with Kt = 1.

wavenumber magnitude4

d

d logK
log[KE(K, z)] = − 5

3
+

4

3
µ [tanhµ− cothµ]

+ 2µ
[( z

H
+ 1
)

tanhµ
( z

H
+ 1
)

− tanhµ
]

,

which is plotted against wavenumber K for various heights below the surface in

Figure 2.11. The deformation scale is at K = 1 (note we have taken z ∈ [−H, 0]

here). All heights except the mid-depth experience some spectral shallowing before

eventually decaying at large wavenumbers. The -2 slope is included because fron-

4Note that
d

d logK
log[KE(K, z)] =

K

KE
d

dK
KE ,

and that KE(K, z) ∼ K−1/3[φ̄T (K, 0)]4/3[φT (K, z)]2.
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togenesis is thought to produce spectra with -2 slopes, and the difference between

-5/3 and -2 is often indistinguishable in observational data.

In summary, depth limited uniform PV flow predicts a transition scale between

K−3 and K−5/3 spectral slopes at wavenumber Kt = fL/NH , which being near

the Rossby deformation scale, is larger than the observed atmospheric transition

(Nastrom and Gage, 1985).

2.4.2 Independently forced surface and interior dynamics

The uniform potential vorticity model in the previous section can be supplemented

with interior vorticity dynamics which results in a superposition of theK−3 forward

enstrophy cascade of the interior modes and the K−5/3 forward energy cascade of

the surface mode. Setting θB = 0 in (1.5c) but retaining nonzero, barotropic

QGPV in (1.5a), q = q0, gives

∂tθ̂
T + Ĵ(ψ̂|z=zT

, θ̂T ) = Fθ −Dθ, z = zT

∂tq̂0 + Ĵ(〈ψ̂〉, q̂0) = Fq −Dq, zB < z < zT

where

ψ̂|z=zT
= ψ̂T + ψ̂0, 〈ψ̂〉 =

tanhµ

µ
ψ̂T + ψ̂0,

ψ̂T is given by (2.16) and q̂0 = −K2ψ̂0. In this truncation the inversion treats

q as if it is just relative vorticity. Figure 2.12 shows the spectral densities of

kinetic energy at the boundary in a series of simulations as the magnitude of

Fq is varied while other parameters are held constant (Kd = fL/NH = 25).

In particular, Fθ is fixed at 0.04 and Dθ and Dq are fixed linear drags on each

advected variable. The effect of larger interior forcing is to increase the total energy
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Figure 2.12: Kinetic energy densities at z = 0 for surface thermal forcing rate
set to 0.04 and interior vorticity forcing rate set to 0.04 (dotted), 0.2 (dash-dot),
0.6 (dashed) and 1 (solid). Inset: Transition wavenumber estimates obtained by
measuring where KE(k) ∼ k−7/3.

and push the transition wavelength to smaller scale. This superposition of an

interior driven K−3 forward enstrophy cascade and a surface driven K−5/3 forward

energy cascade is illustrated in the schematic diagram in Figure 2.13. Surface

and interior instabilities may act independently, producing coexisting, superposed

forward cascades of surface energy and interior enstrophy. The interior enstrophy

cascade dominates at large scales, but yields to the sub-dominant shallow surface

energy cascade at wavenumber Kt. In the next chapter we will investigate the

factors which set Kt. We will see that including non-uniform potential vorticity

solves the problem seen in the fSQG model where the transition wavelength was

too large (if depth of the fluid is taken as H ∼ 10km, the height of the tropopause).
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Figure 2.13: Schematic diagram of the coexistence of a forwardK−3 interior driven
enstrophy cascade and a forward K−5/3 surface energy cascade, with the total KE
at the surface transitioning from a steep slope to a shallow slope at wavenumber
Kt.

2.5 Summary

We formulated the solution of the full QG equations in terms of vertical interior

and surface modes which solve the associated elliptic inversion problems (2.3).

Truncating the interior modes to a computationally manageable set yields an ef-

ficient and accurate representation of the full system at all depths.

Next we demonstrated that given Eady forcing and sufficient vertical resolution

then the solution given by the layered QG formulation with standard vertical

finite differencing for the vortex stretching term converges to the solution given

by the Blumen model which explicitly excludes PV driven dynamics. This result

is consistent with the Bretherton (1966) argument that a temperature layer is
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equivalent to a delta sheet of PV.

Finally we described two simplified models which illustrate interactions be-

tween surface dyanmics and interior dynamics. When forced at large scales, depth

limited uniform PV flow produces two dimensional dynamics at scales larger than

the deformation scale and surface dynamics at scales smaller than the deforma-

tion scale. This system is not subject to baroclinic instability by itself. Adding

a barotropic vorticity component to such a flow adds the possibility of truncated

Charney baroclinic instability between temperature gradients on the boundary

and the Coriolis gradient β. However this instability appears to only energize the

surface flow and not the interior flow. If both the barotropic flow and the surface

flow are energized at large scales then the enstrophy cascade of the barotropic flow

cascades forward at K−3 and the surface temperature cascades forward at K−5/3.

The kinetic energy spectrum at the surface is then the superposition of those two

spectra, resulting in a transition between K−3 and K−5/3 that depends on the

relative strength of the vorticity forcing to the surface temperature forcing.
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Chapter 3

Surface-modal model applied to

the atmosphere: the energy

spectrum near the tropopause

Here we specialize the SMQG framework to include just enough complexity to ad-

dress the observed atmospheric energy spectra, at the transition to sub-synoptic

scales. The simple model advects the barotropic and baroclinic interior flow, and

the upper and lower surface temperatures. In spectral space, the vertical struc-

tures for the four variables are separable from their time-dependent parts. Assum-

ing constant stratification N2, these modes can be easily computed analytically.

The resulting model is very similar to one developed by G. Flierl (2007, personal

communication), with some differences, but to our knowledge these are the only

examples of fully nonlinear, forward model implementations using the decompo-

sition approach. This two-mode, two-surface model (hereafter referred to as the

TMTS model) is effectively a hybrid of the Phillips and Eady models, and so can
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represent baroclinic instability generated from barotropic-baroclinic interactions

(as in the standard two-layer Phillips model), surface-surface interactions (as in

the Eady model), and from interactions between either surface and the interior (as

in the Charney model of baroclinic instability).

The TMTS model is designed to understand the observed atmospheric energy

spectrum at sub-synoptic scales; a corollary is that high vertical resolution is

not needed to understand the transition to a shallow spectrum, so long as surface

dynamics are explicitly represented. On the other hand, the model may be deficient

for applications that require a more realistic representation of the vertical structure

of eddy fluxes at the synoptic and planetary scale.

This Chapter is organized as follows. In Section 3.1 observations and previous

explanations of the atmospheric energy spectrum are discussed. In Section 3.2 the

TMTS model is derived based on the SMQG formulation discussed in Chapter 2

and solutions to the associated (truncated) linear instability problem are presented.

The results of a series of nonlinear simulations are presented in Section 3.3, and a

theory for the transition scale that is consistent with both simulated and observed

data is proposed. Successes and shortcomings of the theory are discussed in Section

3.4.

3.1 Nastrom-Gage/MOZAIC Observations

The horizontal kinetic energy and potential temperature variance spectra near the

tropopause, observed during the Global Atmospheric Sampling Program (GASP)

and documented in Nastrom and Gage (1985), exhibit a shallow plateau at the

largest wavelengths (10,000–3000 km), a steep K−3 spectral slope on synoptic
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scales (≈ 3000–1000 km), followed by a smooth transition (at a wavelength of

about 450 km) to a shallow K−5/3 spectral slope on the mesoscales (≈ 200–10

km). The large and synoptic scale parts of the spectra are consistent with stirring

by baroclinic instability near the Rossby deformation wavelength, feeding a for-

ward cascade of enstrophy with a K−3 slope, as predicted by Charney’s theory of

geostrophic turbulence (Charney, 1971). The mesoscale shallowing, however, does

not fit easily into this picture; the robustness of the synoptic scale slope and its

consistency with geostrophic turbulence theory make the mesoscale spectral slope

difficult to explain.

The key figure from Nastrom and Gage (1985) (their Figure 3) plots power

density spectra of the zonal wind (u2), meridional wind (v2) and the potential

temperature (θ2) as functions of horizontal wavenumber (meridional wind and

potential temperature are offset by 1 and 2 orders of magnitude, respectively).

Below wavelengths of about 5000 km, the zonal and meridional wind spectra are

nearly identical, implying isotropic kinetic energy (KE, equal to (u2+v2)/2) in the

synoptic scales and below. The potential temperature spectrum exhibits the same

spectral slopes and spectral break, but is about half the magnitude of the spectra of

the winds. The APE, equal to (g/2Nθ0)
2θ2, where g is gravity, N is the buoyancy

frequency and θ0 a reference potential temperature, is therefore very nearly in

equipartition with the kinetic energy1. In the K−3 range, equipartition between

KE and APE at each scale is also consistent with the predictions of geostrophic

turbulence2. High-resolution general circulation and weather forecasting models

1Using typical upper tropospheric values θ0 = 300 K, N = 10−2 s−1, and g = 9.8 ms−2, APE
∼ 2 θ2, and so the dimensional prefactor just accounts for the drop in magnitude of the potential
temperature relative to the winds.

2In quasi-geostrophic theory, KE/APE ∼ (Nhe/fℓe)
2, where ℓe and he are the (variable) hor-

izontal and vertical scales, respectively, of the eddying motion. Charney argued that, neglecting
the influence of boundaries or inhomogeneities in the stratification, the forward cascade of po-
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yield similar results, with equipartition in the −3 range, and a shallowing to −5/3

in the mesoscales (Hamilton et al., 2008; Takahashi et al., 2006; Skamarock, 2004;

Koshyk and Hamilton, 2001)

Recent observations from the MOZAIC program (Marenco et al., 1998) have

been shown to give identical kinetic energy spectra to the GASP data (Lindborg,

1999). The MOZAIC velocity (u2 and v2) and temperature (θ2) spectra are recom-

puted here and plotted in Figure 3.1 in the same format as Figure 3 of (Nastrom

and Gage, 1985). The meridional velocity and temperature spectra are shifted

to the right by one and two decades for clarity. The computed spectra u2, v2

and θ2 are plotted in red, green, and magenta respectively. The solid black line

is Lindborg’s best fit curve E(K) = d1K
−5/3 + d2K

−3, where d1 = 9.1 × 10−4

and d2 = 3 × 10−10, and is the same in each variable. The black dashed curves

correspond to best fit approximations, by visual inspection, assuming a spectrum

of the form E(K) = c1K
−5/3 + c2K

−2 + c3K
−3 as proposed by Charney (1973).

For u2, the approximating coefficients are c1 = 7 × 10−4, c2 = 1.4 × 10−5, and

c3 = 2.2 × 10−10. The ratios between c1 and c2 are such that the K−5/3 contribu-

tion begins to dominate the K−2 contribution at 800km. Similarly, the ratios of c2

to c3 indicate that K−3 dominates K−2 down to 400km. Therefore if there is any

K−2 contribution to u2 it is negligible. For v2, the coefficients are c1 = 8 × 10−4,

c2 = 1.2×10−5, and c3 = 3.5×10−10, which means that K−3 dominates K−2 down

to 200km and K−5/3 dominates K−2 at scales smaller than 1800km.

The temperature spectrum θ2 has a different shape, with coefficients c1 =

1.5 × 10−4, c2 = 1.8 × 10−5, and c3 = 0.5 × 10−10, indicating that neither K−3

tential enstrophy should be isotropic in the space (x, y,Nz/f). Thus, in the forward cascade,
each scale of eddy motion will maintain a constant aspect ratio ℓe/he ∼ N/f , independent of
scale, so KE/APE ∼ 1.
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Figure 3.1: The MOZAIC zonal and meridional velocity spectra (with units m3s−2)
and the potential temperature spectrum (with units ◦K2m rad−1). Solid black
lines are Lindborg’s best fit curve, dashed black lines are best fit lines (see text
for details).
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nor K−5/3 are a better fit than K−2 in the mesoscales. This apparent K−2 tem-

perature dependence may be an artifact of the data processing methods. Aircraft

flights occasionally make abrupt altitude or pressure changes which affects poten-

tial temperature much more than velocity. Nastrom and Gage (1985) computed

their large scale spectral ranges independently of their small scale spectral ranges,

and took care to smooth over adjacent flight segments, which was not done here.

All the spectra shown in Figure 3.1 were computed using 5000km flight segments3.

Rob Scott (2008, personal communication) has also computed the MOZAIC veloc-

ity spectra, but not the temperature spectra, and suggested that the temperature

spectra might be sensitive to changes in altitude within flights and between dif-

ferent flights. In any case, we will assume here that the temperature spectrum in

Nastrom and Gage (1985) is correct.

3.1.1 Previous explanations of observed spectrum

Numerous theories for the mesoscale spectrum have been suggested over the past

two decades (Lilly, 1989; Vallis et al., 1997; Dewan, 1979; VanZandt, 1982; Koshyk

et al., 1999; Tung and Orlando, 2003a; Lindborg, 2005; Kitamura and Matsuda,

2006). Tung and Orlando (2003a) summarize all these theories, and put forward

their own. Tulloch and Smith (2006) also revisit the proposed mechanisms for

the mesoscale shallowing, and propose a new one, based on the finite-depth SQG

(fSQG) model that captures many aspects of the observations. The model is mo-

tivated by the following observations: (i) the near-universality of the spectrum

in different parts of the world implies that synoptic scale baroclinic instability is

3The majority of flights were in the mid-latitudes, only flights longer than 5000km were
considered and segments were only used if the maximum pressure was less than 300mb.
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likely the forcing of both the K−3 and K−5/3 ranges of the spectrum (Tung and

Orlando, 2003a), (ii) the K−5/3 part of the spectrum is due to a forward energy

cascade (Cho and Lindborg, 2001; Tung and Orlando, 2003b), and (iii) both the

K−3 and K−5/3 parts of the spectrum belong to the same inertial range with the

transition determined by relative magnitudes of the energy and enstrophy fluxes

(Tung and Orlando, 2003a). The physical mechanism proposed is that advec-

tion of temperature perturbations at the tropopause leads to a forward cascade

of temperature variance, resulting in K−5/3 kinetic and potential energy spectra

at mesoscales, as predicted by surface quasi-geostrophic theory (SQG, Blumen,

1978; Held et al., 1995). This is rationalized by the analysis of Juckes (1994),

who showed that tropopause temperature anomalies account for about 80% of the

tropospheric eddy field. The novel aspect of Tulloch and Smith (2006) was the

demonstration that by limiting surface quasi-geostrophic flow to a finite depth, a

natural transition scale emerges, and when the flow is forced at large scale, the

kinetic energy spectrum is −3 at scales larger than this transition and K−5/3 below

it. The transition length scale (∼ NH/f) is the scale above which the surface sig-

nals can ‘feel’ the lower boundary. The large-scale limit is that of barotropic flow,

and so follows the predictions of two-dimensional turbulence, while the small-scale

limit, where the vertical extent of temperature signals is much less than H , is that

of surface quasi-geostrophic flow.

The fSQG model is compelling because it leads to a forward cascade of vortical

energy, consistent with observations (Cho and Lindborg, 2001; Cho et al., 1999),

and the cascade can be generated by large-scale forcing such as baroclinic insta-

bility, ubiquitous throughout the midlatitudes, thereby accounting for the univer-

sality of the spectra (Nastrom and Gage, 1985). Taken as complete, however, the
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model has the following deficiencies: (i) it fails to explain the available potential

energy spectrum at synoptic scales (finite-depth surface quasi-geostrophic flow has

no significant potential energy at large scales); (ii) it predicts a transition scale

that is larger than that observed; and (iii) it predicts an evanescent spectrum at

small scales when moving down into the troposphere (mid-level spectral observa-

tions in the troposphere are rare, but there is no evidence for evanescent decay of

energy). These deficiencies, it is shown here, are removed when interior potential

vorticity anomalies are included in the flow.

3.2 Baroclinic model

To generate a numerical model that will aid understanding of the atmospheric

energy spectrum, the following simplifying assumptions are made: (i) horizontal

boundary conditions are taken to be periodic, consistent with the assumption of

horizontal homogeneity in the synoptic scales and below; (ii) the vertical structure

of the interior flow can be represented with the gravest two standard vertical

modes (barotropic and baroclinic); (iii) the stratification N2 is constant in the

troposphere and infinite above, so that the tropopause itself is a rigid lid (this

assumption can be relaxed to a finite stratification jump following Juckes, 1994);

and (iv) the mean velocity is zonal, horizontally constant and projects onto the

baroclinic and surface modes (with no barotropic component).
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3.2.1 Truncated equations

Modal representation

Assumption (i) allows a Fourier representation in the horizontal, so the full stream-

function can be written as in Equation (2.6). Assumption (ii) allows for the expan-

sion of the interior part in modes ψ̂I(K, z, t) = ψ̂bt(K, t) + ψ̂bc(K, t)φ(z) where

φ(z) is the first baroclinic mode, i.e. the gravest, non-constant eigenfunction so-

lution to4

Γφ = −λ2φ,
dφ

dz
(0, H) = 0. (3.1)

It is straightforward, but cumbersome, to use more vertical modes in the interior.

With assumption (iii), the mode is

φ(z) =
√

2 cos
(πz

H

)

, λ =
πf

NH
. (3.2)

Note for future reference that 〈φ〉 = 〈φ3〉 = 0 and 〈φ2〉 = 1, where 〈·〉 =

H−1
∫ H

0
· dz is shorthand for a vertical average.

Recall that in the spectral domain, the surface inversion problems (2.8) and

(2.9) have a time independent vertical structure, and so

ψ̂T (K, z, t) = ψ̂T (K, t)φT (K, z)

and

ψ̂B(K, z, t) = ψ̂B(K, t)φB(K, z).

Unlike the interior modes, the surface modes depend on the magnitude of the

4The subscripted mode numbers in (2.6) have been dropped here to simplify the notation
since there is only one non-constant vertical mode. Also, we have set zB = 0 and zT = H .

58



wavevector, K. Note also that φT (H) = 1 and φB(0) = 1, so that ψ̂T (K, H, t) =

ψ̂T (K, t) and ψ̂B(K, 0, t) = ψ̂B(K, t). Since N2 is constant, the solutions are

easily computed; they are

φT (z) = cosh
(

µ
z

H

)

sech µ,

φT (z) = cosh

(

µ
z −H

H

)

sech µ,

recall that µ = KNH/f .

Given the surface modes, the top and bottom temperature fields are related to

the streamfunction by

θ̂T (K, t) =
µ

H
tanhµ ψ̂T (K, t), (3.4a)

θ̂B(K, t) = − µ

H
tanhµ ψ̂B(K, t). (3.4b)

Expanding the potential vorticity in interior modes

q̂(K, z, t) = q̂bt(K, t) + q̂bc(K, t)φ(z)

yields

q̂bt(K, t) = −K2 ψ̂bt(K, t) (3.5a)

q̂bc(K, t) = −K2µ
2 + π2

µ2
ψ̂bc(K, t). (3.5b)

Given the potential vorticity and surface temperature fields, (3.4) and (3.5) can be

inverted to give the four streamfunction components, and the full streamfunction

is summed as in (2.6). The prognostic equations for the barotropic and baroclinic
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potential vorticity components in (3.5) are derived by expanding the streamfunc-

tion and potential vorticity in (1.5a) using (2.6) and (3.5), then projecting onto the

barotropic mode by integrating in the vertical, and onto the baroclinic mode by

integrating φ times the expression. Each surface temperature equation is obtained

by evaluating the full advecting streamfunction (2.6) at the vertical level of the

surface of interest.

Mean field projections

The last step is to project the mean velocity onto the truncated vertical represen-

tation. The mean zonal velocity must in general satisfy (1.4) in the interior and

(1.6) at the upper and lower boundaries (but we set V = 0), and to be consis-

tent with the dynamic variables q and θ we decompose the mean zonal velocity

into interior and surface components U(z) = U I(z) + US(z). The relationships

among the mean fields, however, are somewhat different than that between the

eddy fields, due to the fact U is independent of x and y (i.e. mean relative vorticity

is neglected, consistent with the assumption of local homogeneity). Assumption

(iv) gives us that U I = Ubcφ(z), where φ(z) is given by (3.2). Derivatives of U I

evaluated at 0 and H vanish and therefore US must satisfy the boundary condi-

tions, given arbitrary mean temperature gradients ΘT
y and ΘB

y (where subscript y

denotes the meridional derivative). We thus demand that the surface component

solves

ΓUS = A,
dUS

dz
(H) = −ΘT

y ,
dUS

dz
(0) = −ΘB

y .

In analogy with the decomposition of the eddy components in (2.2), (2.8) and

(2.9), one might expect to demand that ΓUS = 0. However, this can only be

satisfied if ΘT
y = ΘB

y (therefore it would also be impossible to separate US into
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UT + UB). Instead, here we demand that the right hand side, A, be a constant,

and that the vertical mean of the surface velocity vanish, 〈US〉 = 0. The result is

that

A =

(

f 2

HN2

)

∆Θy, ∆Θy ≡ ΘT
y − ΘB

y ,

which vanishes only when upper and lower temperature gradients are equal, and

US(z) = −ΘB
y

(

z − H

2

)

+ ∆Θy

(

z2

2H
− H

6

)

. (3.6)

The full mean velocity is therefore U(z) = Ubcφ(z) + US(z). [A Green’s function

approach to the mean velocity problem is illustrated in Appendix A.3.]

That A 6= 0 means that the surface velocity field US induces an interior mean

PV gradient; the total mean potential vorticity gradient is therefore

Qy = β − ΓU = β + L−2
D

[

H∆Θy +
√

2π2Ubc cos
(πz

H

)]

, (3.7)

where LD = NH/f is the deformation scale and (3.2) was used (note that the first

baroclinic deformation wavenumber, defined in (3.2), is λ = π/LD).
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TMTS evolution equations

Putting all the prior results together, the full set of spectral prognostic equations

can now be written

∂tθ̂
T + Ĵ(ψ̂|z=H, θ̂T ) + ik

[

U(H)θ̂T + ΘT
y ψ̂|z=H

]

= 0, (3.8a)

∂tθ̂
B + Ĵ(ψ̂|z=0, θ̂

B) + ik
[

U(0)θ̂B + ΘB
y ψ̂|z=0

]

= rK2ψ̂|z=0, (3.8b)

∂tq̂
bt + Ĵ(〈ψ̂〉, q̂bt) + Ĵ(〈φψ̂〉, q̂bc)

+ ik
[

〈φU〉q̂bc + (β − ΓUS)〈ψ̂〉 + λ2Ubc〈φψ̂〉
]

= 0, (3.8c)

∂tq̂
bc + Ĵ(〈φψ̂〉, q̂bt) + Ĵ(〈φφψ̂〉, q̂bc)

+ ik
[

〈φU〉q̂bt + 〈φφU〉q̂bc + (β − ΓUS)〈φψ̂〉 + λ2Ubc〈φφψ̂〉
]

= 0

(3.8d)

where Ĵ is shorthand for the sum over wavenumbers of the Jacobian terms, and

the streamfunction evaluated at the upper and lower surfaces, respectively, is

ψ̂|z=H = ψ̂bt −
√

2ψ̂bc + ψ̂T + ψ̂Bsech µ

ψ̂|z=0 = ψ̂bt +
√

2ψ̂bc + ψ̂T sechµ+ ψ̂B.

The vertical integrals and projections of the total streamfunction and mean shear

onto the baroclinic mode (e.g. 〈φψ̂〉) are derived and stated in the Appendix A.4.

Equations (3.8) sacrifice the ability to represent high vertical modes of the

interior flow, but retain an accurate description of surface motions, even when

such motions have very small vertical penetration into the interior. The projection

onto a truncated set of interior modes, plus surface modes, allows for a compact

model that can be numerically integrated with much greater efficiency than a high-
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vertical resolution gridded model. The goal in developing this model is twofold: (1)

to derive a simple model that retains all basic types of baroclinic instability, and

(ii) to demonstrate that augmentation of the two-layer model with surface modes

is sufficient to explain the spectrum of energy in the atmospheric mesoscales.

3.2.2 Linear instabilities

Assuming horizontally constant, baroclinic zonal mean flow, the quasi-geostrophic

equations (1.5) are linearly unstable to small perturbations under at least one of

the following conditions (Charney and Stern, 1962; Pedlosky, 1964): (i) Qy = 0,

and ΘT
y and ΘB

y are both nonzero and have the same sign (as in the model of

Eady, 1949); (ii) Qy changes sign in the interior and the boundary gradients are

zero (as in the model of Phillips, 1951); or (iii) Qy 6= 0 and either the upper surface

gradient has the same sign, or the lower surface gradient has the opposite sign as

Qy (as in the model of Charney, 1947). The standard two-layer model of Phillips

admits only instabilities of the second type, yet has arguably been more widely

used than either the Charney or Eady model, due to it’s analytical tractability,

wide parameter range possibilities, inclusion of β and the ease with which it can be

numerically simulated. The TMTS model (3.8) derived in section 2 is intended to

retain those positive features of the two-layer model while additionally admitting

the two missing instability types (i and iii). Here we have the following goals:

to demonstrate that all of types (i-iii) are captured in the two-mode, two-surface

model; and to compute the linear instability of the flow that will be used to drive

the nonlinear turbulence simulations presented in Section 3.3.

To compute the baroclinic instability of the TMTS model, the nonlinear terms
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are neglected and a normal-mode wave solution is assumed:

(ψ̂T , ψ̂B, ψ̂bt, ψ̂bc) = Re ϕ exp[−iωt],

where ϕ = (ϕ̂T , ϕ̂B, ϕ̂bt, ϕ̂bc) and the meridional wavenumber ℓ is set to 0. Specifi-

cally, we solve the eigenvalue problem cϕ = Aϕ where A is a 4×4 matrix (given in

Appendix A.5) and c = ω/k. The growth rate ωi = kci of unstable modes depends

on β, the magnitude of the internal velocity shear Ubc, and on the boundary

temperature gradients ΘT,B
y . We nondimensionalize the parameter space of the

problem with horizontal length-scale LD, vertical length scale H and a velocity-

scale U0. Horizontal wavenumbers K are already expressed nondimensionally as

µ = KLd almost everywhere they appear. The nondimensional Coriolis gradi-

ent is β̃ ≡ βL2
d/U0 and the velocity parameters of the problem are Ubc/U0 and

(H/U0)Θ
T,B
y = −(H/U0)U

T,B
z .

Figures 3.2 and 3.3 show numerically-computed growth rates and amplitudes

of eigenfunctions of the linearized TMTS model as functions of µ and β̃. Figure

3.2a shows the growth rates given equal, nonzero boundary temperature gradients

(H/U0)Θ
T
y = (H/U0)Θ

B
y = −1, and zero interior shear, Ubc = 0. The Eady

problem corresponds to the line β̃ = 0, and along this line, max(ωi)Ld/U0 ≈ 0.31,

as expected. For β̃ 6= 0 boundary gradients interact with Qy = β in the interior

which results in Charney type instabilities at small scales and a truncated Green

(1960) mode at large scales (see also Lindzen, 1994, who considered the effects of

altering the mean state to retain 0 interior PV with β). Figure 3.2b shows the

amplitudes, as functions of height, that correspond to the fastest growing modes

at various locations in the (µ, β̃) plane, as indicated by symbols in Figure 3.2a.
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Figure 3.2: Growth rates versus nondimensional β and zonal wavenumber are plot-
ted for (a) an Eady like instability (when β = 0) with only mean surface gradients
and (c) a Phillips type instability with only mean interior gradients. Contour
values are vary linearly from 0.05 (thick line) to 0.4 at 0.05 intervals. Note that
growth rates have been nondimensionalized by U0/Ld. (b) Amplitudes of particu-
lar eigenfunctions for the Eady instability and for (d) the Phillips instability.
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Figure 3.3: Growth rates and eigenfunctions as in Fig. 3.2 but for mixed surface
and interior mean gradients. (a) Equal surface and interior mean gradients. (c)
Linear instabilities for the parameters used in the nonlinear simulations in sec-
tion 3.3.
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The plus symbol, for example, corresponds to the location of maximum growth in

the Eady problem (β̃ = 0), and has the expected symmetric amplitude, peaked at

the boundaries (coshµz/H − (U0/µc) sinhµz/H). The triangle is located in the

Green-mode region, and has a vertical structure that is comparable to Figure 6 of

Green (1960). The circle is in the bottom Charney-mode region and its vertical

structure is, likewise, comparable to that expected for the Charney problem (see,

e.g. Pedlosky, 1987, figure 7.8.5).

Figure 3.2c shows the growth rates for the pure interior shear problem, with

ΘT
y = ΘB

y = 0 and Ubc/U0 = −1/(
√

2π) and Figure 3.2d shows its vertical struc-

ture. This is the standard two-mode Phillips problem with max(ωi)Ld/|Ubc| =

(
√

2 − 1)π, and so the chosen value of Ubc/U0 gives max(ωi)Ld/U0 = 1 − 1/
√

2 =

0.29, which is close to the maximum growth rate for the Eady problem. As ex-

pected, there is no long-wave cutoff for β = 0; for large enough β̃, instability is

suppressed; and the amplitude is peaked at the boundaries, but is large throughout

the depth of the fluid. Figure 3.3a shows the growth rate for equally weighted sur-

face and interior forcing (H/U0)Θ
T
y = (H/U0)Θ

B
y = −1 and Ubc/U0 = −1/(

√
2π);

comparison to Figure 3.2a shows that the effect of the interior shear in this case

is primarily to suppress growth at small scales, for small values of β̃. The vertical

structure of the amplitudes for the three apparent peaks are similar to those in fig-

ures 3.2a-b, except that the amplitude corresponding corresponding to the β̃ = 0

instability is larger. Figure 3.3c shows the growth rate for a mean state with an

upper-surface temperature gradient (H/U0)Θ
T
y = −1/2, a vanishing lower-surface

temperature gradient, and an interior shear Ubc/U0 = −4/(
√

2π), four times larger

than the interior shear used in panel a. This mean state is used in the central non-

linear simulation discussed in the next section. Removing the bottom temperature
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gradient has suppressed the large-scale Green modes, and left only type-(iii) (Char-

ney) instabilities at small scales. The asymmetry at small scales occurs because

the upper-surface temperature gradient and the interior PV gradient must be of

the same sign (consider the PV gradient in Equation (3.7)).

3.3 Nonlinear simulations

Here we report on the results of a series of simulations made with the fully nonlinear

TMTS model (3.8), using parameters relevant to the midlatitude atmosphere. In

all cases, we set the dimensional parameters U0 = H = 1, and L = 2π, so that

wavenumber 1 fills the domain. In the primary series, the interior shear and

bottom temperature gradient are held constant at Ubc = −4/(
√

2π) and ΘB
y = 0,

respectively, but the upper-surface temperature gradient is varied from ΘT
y = −1/4

to −2. The model is pseudo-spectral, fully de-aliased, and is run at a maximum

resolution equivalent to 20482 grid-points (Kmax = 1027). The model deformation

wavenumber KD = 1/LD = 2, to allow a wide forward cascade. The Coriolis

gradient is set to β̃ = βL2
D/U0 = 1 and the Ekman drag is r/U0 ≈ 0.18 (the

drag is varied slightly with ΘT
y in to keep the energy injection rate nearly constant

among the runs). The baroclinic growth rates for the mean states in this series

of simulations are all nearly the same as shown in Figure 3.3c (which corresponds

to the case with ΘT
y = −1/2). A highly scale-selective exponential cutoff filter, as

described in Appendix A.1 absorbs the forward cascade (it is explicitly restricted

to act only on wavenumbers K > 2Kmax/3, but in fact only affects a much smaller

range of wavenumbers close to Kmax).

Figure 3.4 shows snapshots of the PV and temperature at the upper surface for
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the simulation with ΘT
y = −1/2. Panel (a) shows the entire PV field, (b) shows

the entire temperature field, while panels (c) and (d) show finer pictures of the

fields inside the dashed boxes of the upper panels. At large scales the PV and

temperature are anti-correlated and dominated by the PV, while at small scales

the surface dynamics are revealed: small-scale vortices (due to secondary roll-up

of filaments, Held et al., 1995) are wide-spread in the temperature field, and ap-

pear to actively stir the PV. The anti-correlation between PV and temperature is

consistent with Lapeyre and Klein (2006), who show that if the forcing of interior

PV and surface temperature are the same, then the anomalies will be strongly cor-

related or anti-correlated, depending on Qy and Θy, even if they are not advected

by exactly the same flow.

Figure 3.5 shows the total kinetic energy spectrum (for the same run with

ΘT
y = −1/2), after equilibration and averaged over many eddy turnover times,

at the top surface E(K, z = H) = K2|ψ̂(H)|2 as well as the components that

contribute to the total kinetic energy, plotted against horizontal wavenumber. The

dash-dot line is the barotropic kinetic energy K2|ψ̂bt|2, which is driven primarily

by the interior shear Ubc and has a steep K−3 slope as a result of enstrophy

cascading to small scales. The dashed line is the spectrum of the available potential

energy (APE) at the upper surface, which is equal to the kinetic energy of the

surface streamfunction K2|ψ̂t|2 because the small scales are dominated by SQG

dynamics at the surface (see, e.g., Gkioulekas and Tung, 2007a, for a derivation

of equipartition between KE and APE in SQG turbulence) and cascades forward

with a shallow K−5/3 slope, which is proven rigorously for SQG turbulence by

Gkioulekas and Tung (2007b). The solid line is the total kinetic energy spectrum

at the upper surface, which is apparently a superposition of the barotropic and
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(a) (b)

(c) (d)

Figure 3.4: Snapshots of PV and temperature at the top surface for the ΘT
y = −.5

case. At large scales (a) q(H) and (b) θT are anti-correlated and driven by the
PV dynamics. At small scales (c) q(H) is dominated by the dynamics of vortices
present in (d) θT .
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Figure 3.5: Energy densities as a function of horizontal wavenumber for the ΘT
y =

−.5 simulation. The kinetic energy density at the top surface (thick solid) exhibits
a transition from −3 where barotropic kinetic energy (dash-dot) dominates to −5/3
at k ≈ 100 as the variance of temperature (long dashed) begins to dominate the
forward cascade.

surface-induced spectra (with some influence from the baroclinic kinetic energy at

large scales), perhaps as expected from the PV and temperature fields in Figure

3.4. There is a transition from K−3 interior-dominated dynamics to K−5/3 surface-

dominated dynamics at a wavenumber dependent on the relative energy levels in

the surface and interior modes, which in turn depend on the relative strengths of

the surface and interior baroclinic forcing. We also note that, because the interior

dynamics in the numerical model are truncated at only the first baroclinic mode,

the interior APE is concentrated at z = H/2, and so the simulated APE lacks a

K−3 slope at large scales at or near the upper surface.
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3.3.1 Transition scale dependence on the surface and inte-

rior gradients

Figure 3.6 shows the upper-surface kinetic energy spectra for each of the series

of simulations in which ΘT
y is varied from −1/4 to −2. It is apparent that the
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Figure 3.6: Kinetic energy spectra at z = H with ΘT
y = −2,−1,−0.5, and −0.25,

Ubc = −4/(π
√

2) andH = 1 at 20482 resolution. Thin lines areK−5/3 andK−3 for
reference. The small scale spectra are approximately 11K−5/3, 5K−5/3, 1.5K−5/3,
and 0.45K−5/3.

transition scale between the steep large-scale spectrum and the shallow small-scale

spectrum is controlled by ΘT
y . The particular dependence of the transition scale

on the parameters of the problem can be understood as follows. The upper-level
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energy spectrum in the forward enstrophy cascade has the form

E(K) = CEη2/3K−3,

where the rate of enstrophy transfer at z = H is

η = −Qy(H) vq|z=H ≡ κqQy(H)2.

The overbar denotes a horizontal average, CE is a Kolmogorov constant, and we

have defined a PV diffusivity κq. The cascade of temperature variance at the upper

surface leads to an available potential energy spectrum of the form

A(K) = CAǫ2/3K−5/3

where the relevant energy flux is

ǫ = −f
2ΘT

y

N2
vθT |z=H ≡ κθ

(

fΘT
y

N

)2

.

Here we have defined a second diffusivity κθ for the temperature, and a second

Kolmogorov constant for the temperature cascade.

Assuming equal diffusivities κq ≃ κθ and Kolmogorov constants CE ≃ CA,

and solving for the wavenumber where the two cascades are equal, one finds the

upper-level transition wavenumber

Ktrans ≃
N

f

∣

∣

∣

∣

Qy(H)

ΘT
y

∣

∣

∣

∣

. (3.9)
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It is instructive to rewrite this expression as

Ktrans ≃
∣

∣

∣

∣

∣

L−1
C + L−1

D

Uz(0) − Uz(H) −
√

2π2Ubc/H

|Uz(H)|

∣

∣

∣

∣

∣

, (3.10)

where (1.4), (1.6) and (3.7) were used to replace the PV and temperature gradients

with shears and

LC =
f

N

|Uz(H)|
β

is the Charney length (see, e.g. Pedlosky, 1987). The second expression for Ktrans

now has a form similar to that of the transition wavenumber found by Tulloch and

Smith (2006), L−1
D = f/NH, except that here (pulling out a factor f/N) there are

two vertical scales, added in reciprocal: the Charney depth (hC = fLC/N) and a

second term corresponding to the fluid depth H times the relative ratio of surface

to total shears. In the limit of no interior or bottom shear, and assuming hC ≪ H ,

the vertical scale is just the Charney depth, and Ktrans ≃ L−1
C . In the limit of

β = 0, the transition scales with the inverse deformation scale, and if additionally

Uz(H) ≫ Ubc/H , then the vertical scale is H (Ktrans ≃ L−1
D ), as found in the

simpler model of Tulloch and Smith (2006).

The scaling prediction (3.10) is tested against the “measured” transition wavenum-

bers for all simulations performed (including a third series identical to the second

series, except the bottom temperature gradient is held fixed at ΘB
y = 5) in Fig-

ure 3.7 (see caption for details of the transition scale computation). The theory

apparently captures the variation of transition scale with surface shear quite well.

There is a bias towards under-predicting the measured transition wavenumber

when Ktrans is small, which is perhaps due to halting scale (or drag) effects in the

numerical model, which are not accounted for in the theory. We also check here
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Figure 3.7: The measured transition wavenumber for all simulations, defined as
where the slope is k−7/3, compared with the prediction from (3.10). We set L = 2π,
U0 = H = 1 for all runs. Asterisks: ΘT

y = ΘB
y = {−5,−3,−1,−.5}, Ubc = −1,

β̃ = 3, KD = 4 ; Pluses: same as asterisks but ΘT
y = −5 for each; Circles:

ΘT
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y = 0, Ubc = −4/(
√

2π), β̃ = 1, KD = 2 ; X’s:

ΘT
y = {−2,−1,−.5,−.25}, ΘB

y = 0, Ubc = −.7, β̃ = 3, KD = 2.
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that the results are independent of horizontal resolution. Figure 3.8 shows the re-

sulting surface energy spectra for a series of simulations in which all parameters are

held constant (ΘT
y = −0.5), but horizontal resolution is successively reduced. The
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Figure 3.8: Kinetic energy spectra at z = H with ΘT
y = −.5 and KD = fL/NH =

2, computed at different horizontal resolutions.

results confirm that the transition from K−3 to K−5/3 is independent of numerical

resolution, as well as small scale filtering.

We can check that the surface energy exhibits an inertial range cascade by

computing the energy flux directly, as a function of wavenumber. For the series of

simulations in which the upper-surface temperature gradient is varied, the surface

76



fluxes of available potential energy,

ǫ(K) =
f 2

N2

∫ K

0

θ̂T Ĵ(ψ̂, θ̂T ) dK ′,

are shown in Figure 3.9. The fluxes are constant, as suggested.
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Figure 3.9: Measured temperature variance fluxes for ΘT
y = −2,−1,−0.5, and

−0.25 are ǫ ≈ 2.6, 1, 0.23, and 0.045 respectively. Approximate values of Kol-
mogorov’s constant for these transfer fluxes are CT ≈ 5.8, 5, 4, 3.6 respectively,
which are obtained from measuring the magnitude of the K−5/3 part of the spec-
tra in Figure 3.6.

3.3.2 Atmospheric parameters

Using long term monthly mean data from NCEP reanalysis simulations, a mean

wind profile is computed by averaging data from 45◦N temporally and zonally. The

77



meridional potential temperature gradients from the 1000 mb and 200 mb data

(corresponding to H ≃ 9.7 km) are computed from zonal and temporal averages at

the same latitude, from which the mean upper and lower level shears are inferred

from thermal wind balance, and the profile US is then computed from the shears.

The interior first baroclinic mean zonal wind is then approximately the difference

between the NCEP data profile and the surface induced zonal wind. The resulting

surface shears are Uz(H) = 5.6 × 10−4 s−1 and Uz(0) = 2.1 × 10−3 s−1, and the

interior baroclinic velocity is Ubc = −2.6 m s−1, corresponding to an interior shear
√

2π2Ubc/H = 3.7 × 10−3 s−1. Using a typical stratification N = 10−2 s−1, one

finds LC = 360 km, LD = NH/f = 950 km, and so Eq. (3.10) gives Ktrans ≃ 1/77

km−1 (or transition wavelength ≃ 480km) as the transition wavenumber predicted

by our scaling theory, which is quite near the observed atmospheric transition

wavelength of about 450 km.

These values are used in a simulation, the results of which are shown in Figure

3.10. Panel (a) shows the spectra of kinetic energy at the upper surface, the

available potential energy, and the barotropic kinetic energy. The structure is

similar to the spectra in Figure 3.5. The bottom axis is the dimensional wavelength,

for comparison with the Nastrom-Gage spectrum presented in Figure 3.1. The

transition wavelength in the simulation is near 300 km, somewhat smaller than

that predicted above (and smaller than the observed transition wavelength), but

is consistent with the bias of under-predicting the transition wavenumber when

Ktrans is small, as shown in Figure 3.7 and discussed above. Note that we have

made coarse approximations in choosing our atmospheric parameters by averaging

zonally at a particular latitude and pressure level, so it is not surprising that

there is a discrepancy. The overall energy level of our simulation is higher than
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Figure 3.10: (a) The spectra using zonally and temporally averaged winds from
NCEP at 45◦N. Shown are the kinetic energy at the top surface (solid), the
barotropic kinetic energy (dash-dot), and the variance of potential temperature
at the top surface (dashed). (b) Kinetic energy spectra at different height values
for the same run.

the observed level, and the temperature variance is less. However, it should be

restated that this is an idealized, doubly-periodic model, designed to represent one

aspect of the turbulent structure of the synoptic- and meso-scales. The large-scale

forcing and dissipation are crudely represented, and the interior flow is truncated

to include only two vertical modes.

Cho and Lindborg (2001) found the spectral energy flux in the MOZAIC data

to be ǫ = 6×10−5 m2 s−3 just above the tropopause, while Dewan (1997) notes that

observed stratospheric energy fluxes range from 1× 10−6 to greater than 1× 10−4

m2 s−3. For comparison, we compute the flux from this atmospheric-parameter

run and find the spectral flux of available potential energy at the surface to be

ǫ = 8 × 10−5 m2 s−3 which is within the observed range.

Lastly, note that the surface energy is expected to decay away from the sur-

face, over a depth scale proportional to KN/f , for K > Ktrans. Below this scale

depth, the interior spectrum should be dominated by the K−3 slope interior dy-
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namics. Figure 3.10b shows plots of the spectra at various heights at and below

the upper surface. The structure is remarkably similar to that found by Hamilton

et al. (2008) (see also Takahashi et al., 2006) in very high-resolution global circula-

tion simulations, however it stands in contrast with the simulations of Skamarock

(2004)and Skamarock and Klemp (2008). The source of the discrepancies between

those sets of simulations are not clear at present.

3.4 Conclusions

We have demonstrated that a balanced model that properly represents surface

buoyancy dynamics will produce a robust forward cascade along its boundaries,

with a spectrum that exhibits a shallowing from K−3 to K−5/3 slope, consistent

with the observed atmospheric kinetic energy spectrum. The TMTS model consists

of four streamfunction modes: the barotropic and baroclinic interior modes due

to potential vorticity in the interior and top and bottom surface modes due to po-

tential temperature on the boundaries. The full streamfunction is a superposition

of these modes because the associated inversion problems are linear. Depending

on what baroclinic forcing is applied all three of the classical baroclinic instabil-

ity types (Charney, Eady, and Phillips) can be excited. The transition scale in

this model is set by the ratio between the horizontal temperature gradients at the

upper and lower boundaries and the internal shear since these are the drivers of

energy generation for the boundary and interior spectral cascades. Using midlati-

tude atmospheric parameters and mean gradients (at least as well as such can be

represented in this truncated model) produces a transition scale near the observed

scale.
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The forward energy cascade near the vertical boundaries has implications in

both the atmosphere and ocean. In the atmosphere, as we have shown here, the

surface modes may be responsible for the transition from steep to shallow slope in

the kinetic energy cascade. In the ocean where stratification and shear are surface

intensified, the surface modes likely have a more significant impact on the full flow.

The proposed model is still incomplete. In particular it produces insufficient

potential energy near the surface at large-scales — the GASP data shows potential

and kinetic energy with nearly identical spectra at large and small scales, whereas

the truncated model produces a weak APE spectrum at large scales. This is

likely the result of our severe truncation of vertical modes. Observations of the

atmospheric energy spectra at mid-tropospheric depths are sparse, but those that

do exist show a spectral slope of kinetic energy a little steeper than K−2 (Gao and

Meriwether, 1998). The model proposed here, by contrast, produces an interior

(mid-depth) spectrum with a slope with a minimum approaching K−3. The model

is also free of divergent modes, which may play a role in the energy spectrum at

some scale, although observations suggest that vorticity dominates divergence at

least down to 100km (Lindborg, 2007).

Simple extensions to the model could yield more accurate results. For example,

we assumed an infinite jump in stratification at the tropopause with no motion in

the stratosphere. A model with a finite stratification jump at the tropopause and

a free stratosphere could be derived following Juckes (1994).
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Chapter 4

Surface-modal model applied to

the ocean: transition scale and

baroclinic instability

In Chapter 3, the SMQG formulation was truncated and applied to the atmo-

spheric energy spectrum. Here the full SMQG formulation will be applied to

oceanic stratification in order to determine whether the ocean’s surface dynamics

are dominated by interior QG dynamics or surface QG dynamics.

The stratification in much of the world ocean consists of a shallow, unstratified

(or weakly stratified) surface mixed layer above a highly stratified thermocline,

which is above a deep, weakly stratified abyss. The dynamics of the mixed layer

occur on the sub-mesoscales, so they are therefore smaller than what is considered

here and beyond the scope of quasi-geostrophic models (see e.g., Fox-Kemper

et al., 2008, for a treatment of mixed layer dynamics). The presence of surface

intensified stratification in the ocean, i.e., the thermocline, has implications on
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the vertical structure of the flow that develops. In particular, Stammer (1997)

noted that spatial autocorrelation of SSH is proportional to the deformation ra-

dius. Also, Wunsch (1997) looked at the vertical partition of kinetic energy from

current meters and argued that the surface kinetic energy is dominated by the

first baroclinic mode. Analysis by Fu and Flierl (1980) and simulations of freely

evolving QG turbulence by Smith and Vallis (2001) also indicate that, when there

is surface intensified stratification, energy accumulates in the first baroclinic mode

as energy cascades upscale from high horizontal wavenumbers and high vertical

modes.

Based on the above findings, the ocean surface mesoscales are typically thought

to be dominated by the first baroclinic mode. Scott and Wang (2005) observed

an inverse cascade in the surface KE spectral flux, which had previously been

thought of as being indicative of barotropic turbulence. Scott and Arbic (2007)

later realized that, at larger scales than the deformation scale, as long as the

total spectral flux (KE+APE) in the first baroclinic mode is positive then the

KE spectral flux can be negative. However, such spectral flux directions are also

consistent with SQG fluxes (Capet et al., 2008). In addition studies using GCM

simulations (Klein et al., 2008), observations of SSH spectra (Le Traon et al., 2008),

and analysis (Lapeyre and Klein, 2006; Lapeyre, 2008) argue that the surface

mesoscales are dominated by the surface QG mode in many locations of the ocean.

The simulations of Klein et al. (2008) show equal KE and APE spectra with shallow

K−5/3 spectral slopes at deformation scales near the surface and spectral fluxes

that are consistent with SQG dynamics (Capet et al., 2008). Lapeyre (2008)

decomposes the simulation of Klein et al. (2008) into surface and interior modes

using a method analogous to our surface-modal decomposition in Section 2.2 and
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finds that the SQG mode dominates the first baroclinic mode in most of the active

regions of the Atlantic.

In this chapter we seek to address the question of which modes dominate the

ocean’s surface. In Section 4.1 the interactions between surface and interior modes

in the SMQG model with surface intensified stratification are investigated using

freely decaying turbulence simulations. In Section 4.2, we verify our scaling for

the horizontal wavenumber of transition between interior dominated and surface

dominated dynamics, Equation (3.9), for nonuniform stratification. Finally, in

Section 4.3 the transition scaling is applied to the ocean atlas of Forget (2008) to

diagnose our transition scale Kt for the world ocean.

4.1 Freely decaying energy cycle

Smith and Vallis (2001) verified the work of Fu and Flierl (1980) which argued that,

for surface intensified stratification, energy in high baroclinic modes or horizontal

wavenumbers should transfer to the first baroclinic mode, and deformation scale

horizontal wavenumbers, before decaying to the barotropic mode. In this section

we seek to extend Section 5 of Smith and Vallis (2001), which only looked at

the energy cycle of interior QG modes, using the SMQG model to simulate the

interaction between surface and interior modes.

We will consider two initial energy configurations:

1. the surface mode energized at larger than deformation scales with negligible

interior energy in the third baroclinic mode (BC3),

2. the surface mode and BC3 similarly energized at the third deformation scale

λ3.
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In each case, the energized modes are initialized with a Gaussian ring of energy in

Fourier space, with radius K0 and random phase. The simulations each contain 4

interior modes, 2562 horizontal resolution, and the stratification has an exponential

form

N2(z) =
exp (z/δc)

δcF
, (4.1)

where z ∈ [−1, 0], δc = 1/20 and F = 15, which gives nondimensional deformation

wavenumbers λ1,2,3 = 22, 48, 75. The Coriolis gradient is β = 25 in both cases,

so that they may be compared with Simulation I (Figure 8) in Smith and Vallis

(2001).

Figure 4.1 shows time slices of the kinetic energy spectrum KE(K,M) con-

toured against horizontal wavenumber (abscissa) and vertical mode number (ordi-

nate), where M is the mode. The large scale initial energy is centered at around

nondimensional wavenumber K0 = 5 and the contours values are 4α × 10−5, for

α = {1, 2, 3, 4, 5, 6i} (in all plots). The format of the plot is analogous to Figures

7 and 8 from Smith and Vallis (2001) but with the addition of the surface modes.

Note that ‘B’ stands for the bottom surface mode (which contains no energy), ‘T’

stands for the top surface mode, and ‘BT’ is the interior barotropic mode. The

large scale top surface energy initially spreads mostly downscale, but some energy

is also transferred to the barotropic mode1. By t = 2.22, some energy is also

transferred into the first baroclinic mode, which then spreads to the deformation

scale (λ1 = 22)

Figure 4.2 shows snapshots analogous to Figure 4.1 but with the initial energy

at small horizontal scales, near λ3, and split between the surface mode and BC3.

1Note that while the spectral flux of KE, as defined below in Equation (4.2), is negative in
an SQG flow, there is a compensating energy transfer from APE into KE which drives the KE
downscale, see Capet et al. (2008) for details.
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Figure 4.1: Evolution of freely decaying kinetic energy spectrum KE(K,M) as a
function of horizontal wavenumber K (abscissa) and vertical mode M (ordinate)
when most of the initial energy is in the surface mode at large scales. The
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At time t ≈ 0.07 the forward enstrophy cascade of the interior modes sends a small

fraction of the energy in BC3 downscale, while the inverse energy cascade sends

some energy upscale within BC3 and the rest is transferred to BC1 (with a small

amount in BC2 and BT near the initial wavenumber). Most of the inverse cascade

then proceeds within BC1. Meanwhile, the surface mode appears to be largely

unaffected by the interior dynamics, the two finally merge at large scales in the

BT mode. Note that transfers between the surface mode and higher baroclinic

modes are difficult to diagnose in this simulation because there is little energy in

the higher baroclinic modes.

A proposed schematic of the surface-interior interaction is shown in Figure 4.3,

which is an adaptation of Figure 12 of Fu and Flierl (1980). Energy in interior

modes tends to flow from from high horizontal and vertical wavenumbers towards

low horizontal and vertical wavenumbers, with much of the inverse cascade at

small scales occurring in the first baroclinic mode. The dashed lines show the

surface-modal interactions. The surface modes primarily interact with the first

baroclinic mode near the deformation scale. At small scales the surface-modal

energy propagates downscale. On the other hand, at large scales, the surface

modes act like, and interact with, the barotropic mode. In Section 2.4.1, we saw

for uniform stratification, where λj = jπf/NH for j = {1, 2, . . .}, that the top

surface mode “sees the bottom” for K < Kt = f/NH, and acts like infinite depth

SQG for K > f/NH. In essence, the surface modes mimic the barotropic mode

for K < Kt, the first baroclinic mode for Kt < K < λ1, and the jth baroclinic

mode for λj−1 < K < λj for j = {2, 3, . . .}. This is because for wavenumbers near

λj, the jth baroclinic mode has an inversion relation that is approximately linear,
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Figure 4.2: Evolution of freely decaying kinetic energy spectrum KE(K,M) as a
function of horizontal wavenumber K (abscissa) and vertical mode M (ordinate)
when initial energy is split between the surface mode and BC3 at small scales near
λ3.
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Figure 4.3: Most likely energetic transfer paths for exponential stratification as a
function of interior and surface modes, and horizontal scale (adapted from Fu and
Flierl, 1980). Solid lines show the interior interactions and dashed lines show the
proposed surface and surface-interior interactions.

i.e.,

q̂j = −(K2 + λ2
j)ψ̂j ≈ −2λjKψ̂j for K ≈ λj,

so (ignoring interactions between modes) there is an SQG-like K1 dependence

between the advected scalar q̂j and the streamfunction ψ̂j . But at wavenumbers

above λj the the jth baroclinic mode is dominated by its vorticity, i.e.,

q̂j ≈ −K2 when K > λj,

so it acts like the barotropic mode with respect to energy cascades. Figure 4.4,

described in the next section, illustrates how the vertical structure of the surface

mode correlates with the vertical structure of the interior modes as a function of
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wavenumber.

4.2 Forced-dissipative simulation

Here we consider a nonlinear simulation with baroclinic forcing and (ocean-like)

exponential stratification in order to verify the transition wavenumber scaling in

Equation (3.9), for non-uniform stratification. We choose exponential stratification

of the form in Equation (4.1) for validation because it has analytical streamfunc-

tion inversion relations, so we can invert surface buoyancy exactly, without any

numerical degradation due to vertical resolution. The streamfunction inversion

relations contain Bessel functions, and are written explicitly in Appendix A.6.

The simulation has 2562 horizontal resolution, 4 interior modes, and parameters

δc = 0.1, F = 1, β = 1.5, drag r = 0.1.

Figure 4.4 shows the interior modes (left panel) and the upper surface mode

φT (K, z) at wavenumbers K = {λ1/10, λ1, λ2, λ3}, where λ1 = 4, λ2 = 9, and

λ3 = 14. Near the surface, the surface modes at these wavenumbers decay at a

similar rate as the baroclinic modes, but the surface modes monotonically decrease

to zero.

The baroclinic forcing for the simulation is a zonal flow with exponential decay

in the vertical U(z) = exp(z/δU ) − δU , where δU = 0.1. To evaluate the depen-

dence of the transition scale on the baroclinic forcing, we vary the temperature

gradient at the top from ΘT
y = −1 to ΘT

y = −6. Figure 4.5 shows the contribution

of US from Equation (2.10) to the total zonal velocity for each of these surface

temperature gradients. The surface gradient contributes about half of the total

zonal velocity when ΘT
y = −6. Note that in practice the SMQG model only sees
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Figure 4.4: (a) Interior modes for forced dissipative simulation with exponential
stratification (with F = 1 and δc = 0.1). (b) Surface mode φT (K, z) at wavenum-
bers K = λ1/10 (gray solid line), λ1 (dashed line), λ2 (dash-dotted line), and λ3

(black solid line).

the projection of U(z) onto the 4 interior modes and the surface modes, so the

total zonal velocity is not exactly constant in each of the simulations.

Before considering the dependence on ΘT
y we examine the energy spectra and

fluxes for the case with ΘT
y = −4. The modal components of the kinetic energy

spectra at the surface in the equilibrated flow are shown in Figure 4.6. In this

configuration the first baroclinic (gray solid line) and surface mode (black dashed)

dominate at the deformation scale, and the surface mode dominates the small

scales. The barotropic mode (gray dashed line) is diminished, likely because the

exponential stratification strongly inhibits vorticity at the bottom. This has the

effect of reducing the slope of the K−3 portion of the total KE spectrum (black

solid line).

Figure 4.7 shows the total KE and APE spectra at heights varying from the

surface to mid-depth. In both the KE and APE spectra, the transition to K−5/3 at

small scales is limited to depths near the surface, consistent with finite depth SQG
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with uniform stratification. The surface APE is shallow at all scales because there

are no interior contributions to the APE at the surface in SMQG. This explains

why the surface value of APE (thick black line) is less than the values just below

the surface.

Following the notation of Capet et al. (2008), the KE spectral flux at the

surface is defined as

Πu(K) = −
∫ ∞

K

〈

ℜ
[

û∗ · (û · ∇u)
]〉

dK ′, (4.2)
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and the APE spectral flux is defined as

Πθ(K) = −
∫ ∞

K

〈

ℜ
[

θ̂T
∗ · (û · ∇θT )

]〉

dK ′. (4.3)

where 〈·〉 denotes isotropic averaging and all velocities are evaluated at the surface.

Figure 4.8 shows the KE and APE spectral fluxes at various depths near the

surface. Both the inverse KE flux and direct APE flux are peaked near the first

baroclinic wavenumber λ1. Also, at large horizontal scales, the KE flux decays

away from the surface while the APE flux grows away from the surface. The

growth in APE flux away from the surface is likely due to interior APE. The

surface APE flux begins to dominate near K = 10, which is also where the surface
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APE dominates the spectrum in Figure 4.7(b).

4.2.1 Transition scale

In Section 3.3.1 we derived Equation (3.9) for the transition wavenumber given

competing forward enstrophy (due to Qy) and energy (due to ΘT
y ) cascades at the

surface when the stratification is uniform. Here we test this scaling with highly

non-uniform stratification, by refining Equation (3.9)

Ktrans =
N(zT )

f

∣

∣

∣

∣

Qy(H)

UT
z

∣

∣

∣

∣

, (4.4)

so that the surface stratification is taken into account.

Figure 4.9 shows the transition between K−3 scaling and K−5/3 scaling as the

temperature gradient is varied from ΘT
y = −1 to ΘT

y = −6, holding all other param-

eters constant. Although the exponential stratification suppresses the barotropic

mode, the transition wavenumber scales as predicted. There is a bias towards

larger than expected wavenumbers, however it does not appear to be wavenumber

dependent. Since the deformation scale is close to the domain scale, the bias is

probably related to domain or drag affects.

4.3 Applying the theory to ocean observations

Next we apply our transition wavenumber scaling to real ocean data. We use the

ocean atlas of Forget (2008) which is essentially a mapping of Argo drifter data

and satellite altimetric data using the MITgcm to interpolate onto a 1◦ × 1◦ grid.

While mixed layer dynamics are beyond the scope of the following QG calculations,
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Figure 4.10: (Left panel) Map of first internal deformation radius, (right panel) ver-
tical structure of the first baroclinic mode (right), Φ1(z), at the positions marked
with colored x’s (at latitudes 60.5◦S, 45.5◦S, 30.5◦S, 15.5◦S, 0.5◦S, 14.5◦N, 29.5◦N,
and 44.5◦N, and longitude 150◦W). The lines are color-coded with dashed lines
indicating the northern hemisphere and solid lines the southern hemisphere.

an upper boundary condition is required. We have opted to vertically average over

the top 50m when computing the mean gradients in Equation (1.6). The rest of

the mean ocean state is taken below zT = −50m, similar to Stammer (1997). See

Appendix A.7 for further details of the numerical discretization.

4.3.1 Linear calculations using an ocean atlas

Deformation scale

First, the density and stratification are computed using temperature and salinity.

From the stratification, the deformation wavenumbers λm and baroclinic interior

modes are computed by solving the Sturm-Liouville problem in Equation (2.7).

A global map of the first deformation radius (λ−1
1 ) is shown in Figure 4.10. The

vertical structure of the first baroclinic normal mode is plotted on the right for
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selected latitudes at 150◦W in the Pacific Ocean, color-coded by the color of the x’s

and using solid (dashed) lines in the southern (northern) hemisphere respectively.

The stratification tends to be more surface intensified at lower latitudes, where

Φ1(z = 0) tends toward values near 4, and less surface intensified at high latitudes,

where Φ1(z = 0) is between 2 and 3. Note that the colormap saturates near the

equator as deformation radii tend towards infinity. Figure 4.10 may be compared

with Figure 6 in Chelton et al. (1998) or Figure 1 in Smith (2007), which use

different datasets but obtain very similar radii2.

Observations of oceanic currents and QGPV gradients

Next the mean geostrophic currents and QGPV gradients are computed from the

density using thermal wind balance. Figure 4.11 shows an example of zonally aver-

aged (from 170◦W to 120◦W) mean geostrophic zonal velocity and the associated

meridional QGPV gradient Qy, with black contours marking zero. Note that the

QGPV gradient is nondimensionalized by the value of the planetary vorticity gra-

dient, β, at 30◦, and that colors are saturated in the Qy plot. The important point

to note is that ∇Q is clearly not well approximated by β. The salient features of

the Qy plot include: (1) the zero crossing at 1 km depth in the ACC, just below

the zonal jet which is responsible for significant baroclinically unstable growth and

a steering level at depth, as reported in Smith and Marshall (2008), (2) the near

surface zero crossings at low latitudes may contain baroclinic Charney instabili-

ties, (3) the western boundary currents near 40◦N (and the zero crossings below

them), and (4) the convectively unstable regions in high latitudes where bottom

water formation occurs.

2The deformation radius is approximately given by the vertical integral of the stratifica-
tion(Chelton et al., 1998) so it is not particularly sensitive to dataset noise.
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(a)

(b)

Figure 4.11: (Upper panel) Mean zonal velocity U , zonally averaged from 170◦W to
120◦W in the Pacific. (Lower panel) Meridional QGPV gradient zonally averaged
over the same region. The PV gradient is normalized by the value of the planetary
vorticity gradient, β, at 30 degrees. Note that the zero contour is indicated by
black contours and that the color axis is saturated.
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Baroclinic growth rates

To solve for the linear baroclinic growth rates, one first discards all quadratic ad-

vection terms, as in Equation (2.14a) but retaining meridional dependence and the

QGPV gradients induced by the flow. Then one may either use a layered (or level)

formulation as in Equation (2.1) (see also Appendix A.7 or Smith, 2007) which

discretizes the QGPV using centered finite differences, or use the linearization of

the surface-modal formulation in Appendix A.2. In both formulations a wave so-

lution is assumed for the streamfunction, which results in a generalized eigenvalue

problem, with the largest imaginary part of the eigenvalues being the growth rate.

In the layered formulation the eigenvectors are “shear modes” which depend on

z, while in the surface-modal formulation the eigenvectors give projections of the

shear modes onto the interior and surface modes.

Figure 4.12 shows global maps, computed using the layered formulation, of

the baroclinic growth rate. The upper panel shows the maximum growth rate,

computed over a 100 × 50 grid in wavenumber space (k, ℓ) ∈ {[−10λ1,−0.1λ1] ∪

[0.1λ1, 10λ1]} × [0, 10λ1] at each (lat,lon) position3 The lower panel shows the

maximum zonal growth rates, i.e., when ℓ = 0. Minimum time scales are ∼5 days

in the major eddying regions: the ACC, Gulf Stream, and the Kuroshio (although

the Kuroshio is a bit weaker). Outside of the major eddying regions the time

scales on the order of 50 to 100 days. The decrease going from the upper plots to

the lower plots gives an indication of the importance of nonzonal flow. Some high

latitude regions have exceptionally high growth rates because they are bottom

water forming regions with very low stratification at depth. The area below the

jet in the ACC in Figure 4.11 is a good example of this.

3The lower half plane in (k, ℓ)–space is symmetric since the dynamic variables are real.
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Figure 4.12: (Upper panel) Maximum baroclinic growth rates over a grid in (k, ℓ)–
space. See text for details of the wavenumber grid. (Lower panel) Maximal growth
rates given ℓ = 0. Zonal averages are shown on the right.
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Figure 4.13: An alternative measure of the baroclinic growth rate, the “Eady time
scale”.

As an alternative measure of baroclinic growth rate, Smith (2007); Stammer

(1997); Treguier et al. (1997) considered the “Eady time scale” τE , where

τ−1
E = f

√

1

6H

∫ 0

−H

dz

Ri(z)
, where Ri(z) =

N2

U2
z + V2

z

is the Richardson number. The global map of the inverse of the “Eady time scale”

in Figure 4.13 shows that it is consistent with the linear baroclinic growth rate,

although perhaps slightly larger. The most obvious difference between Figure 4.13

and Figure 4.12 is the lack of the low latitude bands as f → 0 near the equator.

This is because the baroclinic growth rate contains surface trapped, small scale

instabilities that are smoothed over by the vertical integral in the “Eady time

scale” measure.

Figure 4.14 shows the length scales associated with the growth rates in Figure

4.12, normalized by the deformation scale at each location. The most unstable
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Figure 4.14: (Upper panel) Length scales of maximal growth rates in Figure 4.12
nondimensionalized by the deformation scale, i.e., λ1/Kmax. (Lower panel) As
above but for ℓ = 0.

length scales in the major eddying regions tend to be on the order of, or larger

than, the deformation scale, and their vertical structures (not shown) tend to deep,

first baroclinic. Outside of the major eddying regions the most unstable growth

occurs at scales smaller than the deformation scale, and the vertical structure

tends to be shallow, or surface trapped.
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Figure 4.15: The transition length scale computed using Equation (4.4) nondi-
mensionalized by the deformation scale, i.e., λ1/Kt, see text for details. Note that
the color axis is saturated at the small (blue) end.

4.3.2 Global map of transition scale

Figure 4.15 shows a global map of the transition scale given by Equation (4.4),

nondimensionalized by the deformation scale, i.e., λ1/Kt, computed from the For-

get (2008) ocean atlas. The transition scale appears to be negatively correlated

with maximum baroclinic growth rate, although there are notable exceptions. The

eddying regions tend to have large growth rates, which are at large horizontal scales

with deep, first baroclinic vertical structure. In much of these regions the tran-

sition scale λ1/Kt is quite small. Conversely, the maximum growth rate in the

non-eddying regions tends to be weaker, at smaller horizontal scales, and surface

trapped. Consistent with this, the predicted transition length scale for the tran-

sition from QG to SQG dynamics is larger in such regions, most notably East

and West of Australia. Le Traon (1993) and Stammer (1997) have showed that

the SSH spectra are steeper in the Gulf Stream compared to the mid-Atlantic,
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Figure 4.16: Mean state at 130◦E, 60◦S. (Left panel) Mean velocity. Solid lines are
the total zonal (black) and meridional (gray) velocities, and dashed lines are the
component of the flow due to the surface gradient, and x’s are the component of
the flow due interior shear. (Middle panel) The stratification nondimensionalized
by the local Coriolis frequency N/f. (Right panel) The first four neutral modes.

suggesting that surface modes, which would have shallower SSH spectral slopes,

may be less important in the Gulf Stream4.

4.3.3 Simulation at a location in the ACC

To validate the scaling for the transition wavenumber we consider an example

nonlinear simulation at 130◦E, 60◦S in the ACC. The mean velocities, stratification

(normalized by the local Coriolis frequency), and the first four neutral modes at

130◦E, 60◦S are shown in Figure 4.16. Being in the ACC this region is dominated

by zonal flow that is primarily first baroclinic. There is a kink in the stratification

just below 1km which is likely a source of instability at depth.

4Note that the observed SSH spectral slopes also tend to be uniformly shallower than theory
predicts. Le Traon et al. (2008) argues for SSH spectral slopes of K−11/3 in the main eddying
regions, which would correspond to a K−5/3 KE slope, as in SQG. Meanwhile Stammer (1997)
argues for a slope “close to K−5 toward smaller scales”, although none of the spectra he shows
are steeper than K−4. Stammer and Böning (1992) did however show K−5 in the Gulf Stream
and slopes as shallow as K−2 away from East of the Gulf Stream. Le Traon (1993) obtained
K−4 in the Gulf Stream and approximately K−3 away from the Gulf Stream.
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Figure 4.17: (Left panel) Linear baroclinic growth rate at 130◦E, 60◦S. (Right
panel) Amplitude of the vertical structure of the dominant baroclinic instability,
multiplied by the growth rate ωi|Φ(z)|. The vertical structure is 62% first baro-
clinic, 22% second baroclinic and 13% is due to the top surface mode.

Linear instability

Indeed, computing the linear baroclinic growth rate in (k, ℓ)–wavenumber space,

Figure 4.17 shows that the dominant instability is larger than the deformation

scale, has about a 25 day time scale and its orientation is close to zonal. The right

panel of Figure 4.17 shows that the vertical structure of the dominant instability

is mostly in the first baroclinic mode (62%), with significant contributions from

the second baroclinic mode (22%) and the top surface mode (13%)5.

Nonlinear simulation

Given that the baroclinic forcing is primarily in the first baroclinic mode near the

deformation scale, we expect that dynamics at the deformation scale should also

5The modal percentages are calculated as the absolute value of each modal weight divided by
the 2-norm of the vector of all the modal weights.
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be dominated by the first baroclinic mode. Figure 4.18 shows that this is indeed

the case. Plotted are the KE spectra at the surface of the relevant modes from

a simulation with 5122 horizontal resolution and 8 interior vertical modes. Near

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

10
2

Wavenumber K

K
in

et
ic

 E
ne

rg
y 

S
pe

ct
ru

m

 

 

2π/K
t
theory = 11km2π/λ

1
 = 59.7km

−5/3

−3

KE
TOT

KE
S

KE
BC1

KE
BC2

KE
BT

Figure 4.18: Kinetic energy spectra of the various interior modes (gray lines) and
surface mode (black dashed line) at the surface at 130◦E, 60◦S. The total KE
spectra at the surface (solid black line) transitions near the predicted scale, which
is 2πK−1

t = 11km.

the deformation scale the first baroclinic mode (solid gray line) dominates, but the

surface mode (black dashed line) dominates toward small scales and the barotropic

mode (gray dashed line) dominates at the largest scales. The total KE spectrum

also transitions from K−3 to K−5/3 at roughly the scale predicted by the theory.

Figure 4.19 shows the KE (solid line) and APE (dashed line) spectral fluxes,

as defined by Equations (4.2) and (4.3), at the surface for the simulation at 130◦E,

60◦S. Both fluxes are consistent with an SQG cascade (Capet et al., 2008); at

small scales where the surface mode dominates the forward flux of APE is equal

to the KE flux at the surface plus a APE to KE conversion term.
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Figure 4.19: Spectral fluxes of KE (solid) and APE (dashed) at the surface for
simulation at 130◦E, 60◦S.

4.4 Conclusions

The SMQG model was applied to the ocean to determine which dynamics, inte-

rior QG or surface QG, dominate at the surface. First, modal energy interactions

were investigated in freely decaying turbulence to determine how the surface mode

interacts with interior modes, which led to a slight amendment to the most likely

interactions predicted by Fu and Flierl (1980). With exponential stratification

the barotropic mode is suppressed, so energy in higher baroclinic modes is pref-

erentially deposited into the first baroclinic mode. Energy in surface modes pref-

erentially interacts with either the barotropic mode at large scales and the first

baroclinic mode at deformation scales. Surface modes likely also interact with

higher baroclinic modes at higher wavenumbers, though the effect, if present, is

small and does not alter the spectral slope of the surface kinetic energy spectrum.

Energy spectra and fluxes indicate that the surface dynamics are largely SQG-
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like at small scales, and agree with the findings of Capet et al. (2008). The

transition scaling derived in Chapter 3, is refined in Equation 4.4 and shown to hold

for highly non-uniform stratification. Applying this diagnostic to the World Ocean,

Figure 4.15, indicates that the magnitude of surface modes ought to be comparable

to interior modes in many regions. However, there appears to be an anti-correlation

between regions with large transition scales (i.e., prominent surface mode regions)

in Figure 4.15 and regions with large baroclinic growth rates in Figure 4.12(a),

although there are exceptions in convective regions in the ACC and North Atlantic

near 60◦N. The length scale of maximum growth in these highly unstable baroclinic

regions, Figure 4.14(a), is also quite large, indicative of deep Eady-Green type

instabilities. On the other hand, less baroclinically unstable regions appear to be

dominated by shallow Charney type instabilities, which is consistent with SQG-

like flow. These findings are also consistent with observational findings that show

steeper SSH spectra in the main eddying regions and shallower SSH spectra in

other regions, however all of the SSH observations are biased towards shallower

spectral slopes than balanced turbulence theory predicts6 (Stammer and Böning,

1992; Le Traon, 1993).

6The shallower than expected SSH spectral slopes observed in much of the world ocean are
not understood. Observational error and noise might contribute, especially away from the main
eddying regions where SSH anomalies are weaker.
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Chapter 5

Interpretation of ocean surface

phase propagation observations

In the previous chapters we used our surface-modal formulation to predict tran-

sitions between steep and shallow kinetic energy spectra downscale of the defor-

mation scale. We showed that high vertical resolution or an analytical inversion

are required to resolve the downscale surface dynamics because their vertical-

horizontal aspect ratio remains constant toward small scales. In Chapter 4 we

applied our transition scaling to the world ocean to predict whether the surface

turbulence at deformation scales and below is dominated by interior modes or sur-

face modes. In this chapter, we consider westward phase propagation which, for

most latitudes, is typically observed at scales above the deformation scale (Chelton

et al., 2007), where interior QG dynamics and surface QG dynamics are indistin-

guishable because they both possess K−5/3 inverse cascades. Our goal here is

to determine whether the observed phase propagation is due to linear waves or

nonlinear turbulence.
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First we review the noteable observation of westward phase propagation of SSH

anomalies by Chelton and Schlax (1996), and the various theories that have since

been proposed in the literature. In Section 5.2 we compare first baroclinic Rossby

wave phase speeds calculated with the Forget (2008) ocean atlas with observed

altimetric phase speeds provided by Chris Hughes. We repeat the calculations

of Chelton and Schlax (1996) and Killworth and Blundell (2005) with mean flow

and stratification, and topographic slopes, arriving at a conclusion consistent with

Chelton et al. (2007) – in mid-latitudes, phase speeds predicted by long-wave

linear theory are typically faster than observed phase speeds. In Section 5.3,

where possible, we fit the phase speeds predicted by the linear model to observed

phase speeds by adjusting the horizontal scale of the waves. We obtain a marked

meridional variation in the scale of the fitted waves: equatorwards of ±30◦ the

implied scale is large and gradually decreases with latitude, having an implied

Rhines wavelength of about 600km. Polewards of of ±30◦ the linear fit begins to

fail, and eventually fitted scales match the deformation scale. In section 5.4 we

interpret our result via a comparison of turbulent and wave timescales. Finally

we estimate the critical latitude at which waves give way to turbulence by making

use of surface eddy velocities from drifter data, provided by Nikolai Maximenko.

5.1 Background

Altimetric observations of sea surface height (SSH) of the ocean show westward

propagating phase anomalies in all of the major oceans except the Antarctic Cir-

cumpolar Current (ACC), the Kuroshio and the Gulf Stream, where the prop-

agation is eastward. Chelton and Schlax (1996) attempted to understand these
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observations in terms of linear, first baroclinic Rossby waves in a resting ocean

and in the long-wave limit. They found that observed phase speeds were larger

than predicted by theory outside the tropics by as much as a factor of two (see, for

example, the introduction of Colin de Verdière and Tailleux, 2005, who review an

extensive literature on the subject). Chelton et al. (2007) recently observed that

SSH variability appears to be nondispersive and consistent with the behavior of

nonlinear eddies in many regions of the world ocean, particularly poleward of 25◦,

in western basins and in the ACC. Some of the discrepancy between the observa-

tions and linear theory can be resolved by including mean flow and topography

(Killworth et al., 1997; Dewar and Morris, 2000; Killworth and Blundell, 2005;

Maharaj et al., 2007). We find that the “fit” of linear theory to observations at

high latitudes is not as successful as at low latitudes. However, the downstream

phase speed observed in the ACC is captured rather well. Less satisfying, is the

mismatch of best fit speeds to observations in the 40◦ to 50◦ latitude bands. Kill-

worth and Blundell (2005) appear to obtain a closer fit there, the reasons for which

are not clear to us.

A number of authors adopt the planetary geostrophic approximation (De-

war, 1998, appendix; Killworth and Blundell, 1999, 2003; Colin de Verdière and

Tailleux, 2005) and so automatically make the long-wave approximation by ne-

glecting relative vorticity. Others have considered Rossby basin modes in the

quasi-geostrophic approximation (Cessi and Primeau, 2001; LaCasce and Pedlosky,

2004). As noted by Killworth and Blundell (2005), all such calculations implic-

itly assume production of waves at the eastern boundary, yet their ray tracing

calculations through the observed hydrography indicate that such waves are gen-

erally unable to cross the basin. Instead, Killworth and Blundell (2007) investigate
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the assumption that waves are produced throughout the ocean via local forcing by

winds, buoyancy exchange or baroclinic instability of the mean state; they put this

assumption to use by computing the dispersion relation at each lateral position,

assuming local forcing and horizontal homogenity (i.e. doubly-periodic boundary

conditions for each 1◦ × 1◦ section, the ‘local approximation’).

Both Killworth and Blundell (2007) and (Smith, 2007) (in a similar analysis)

find that the oceans are rife with baroclinic instability, occurring at or below the

deformation scale, thus providing a ready source of energy, cascading upscale from

below, for the waves and turbulence seen at the ocean’s surface. Indeed both al-

timeter observations and numerical ocean models provide evidence of an inverse

spectral flux of kinetic energy from the deformation scale up to an arrest wave-

length of order 500–1000 km, which decreases with latitude but does not scale

closely with the deformation scale (Scott and Wang, 2005; Schlösser and Eden,

2007). Such an inverse cascade1 is possibly the result of nonlinear interactions

in geostrophic turbulence. The inverse cascade can be arrested or slowed be-

fore reaching the basin scale by Rossby waves (Rhines, 1975), stratification N2(z)

(when energy is contained in baroclinic modes, particularly if N2 is surface in-

tensified as in the ocean — see Fu and Flierl, 1980; Smith and Vallis, 2001) or

dissipative processes (Arbic and Flierl, 2004; Thompson and Young, 2006). It is

not yet clear which of these processes, if any of them, sets the ultimate arrest scale.

Rhines (1975) theorized that, because the eddy timescale increases as the

spatial scale grows in the inverse cascade, a transition will occur at the spatial

1The inverse cascade observed by Scott and Wang (2005) presented a conundrum since up
to 70% of the variability at the ocean surface is contained in the first baroclinic mode (Wunsch,
1997) and it was thought that first baroclinic energy should cascade towards the Rossby radius.
However Scott and Arbic (2007) showed in simulations of two-layer baroclinic turbulence, that
while the total energy in the first baroclinic mode cascades towards the Rossby radius, the kinetic
energy moves upscale.
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scale where the eddy timescale matches that of Rossby waves with the same spa-

tial scale. The transition scale, commonly referred to as the Rhines scale, is

LR ∼ (2ut/β)1/2, where ut is the square root of the eddy kinetic energy (which,

in the two-dimensional system considered, is the only energy). It is at this spa-

tial scale, Rhines suggested, that the turbulent energy is shunted into either jets

or waves, or both, depending on the strength and homogeneity of the eddy field.

Numerical experiments presented in Rhines’ paper demonstrate that, even when

the eddies are energetic enough to form jets, Rossby waves may also be energized.

Vallis and Maltrud (1993) refined the idea of a wave-turbulence crossover by not-

ing that while the Rhines effect cannot halt the cascade alone, it inhibits energy

transfer into a dumbbell-shaped region around the origin in wavenumber space,

which leads to the generation of zonally elongated flow. There is some evidence for

zonal jet formation in the ocean (Maximenko et al., 2005; Richards et al., 2006),

perhaps a signature of the Rhines effect, in addition to the observations of waves

by Chelton and Schlax (1996) and Chelton et al. (2007).

Recent research (Theiss, 2004; Smith, 2004b) has suggested that, on the giant

gas planets, turbulent generation at small scales should result in jet formation in

regions equatorward of some critical latitude, and a more isotropic eddy field in

regions poleward of that critical latitude. Scott and Polvani (2007) confirmed that

a critical latitude for jet formation does arise in direct numerical simulations of

forced-dissipitave shallow-water turbulence on the sphere. Theiss (2006) extends

the idea further by replacing β with the mean flow-dependent meridional potential

vorticity (PV). Specifically, he derives a “generalized” Rhines scale, which includes

the effect of mean shears, and a corresponding critical latitude, polewards of which

jets do not form.
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Following on these ideas, Eden (2007) analyzed eddy length scales in the North

Atlantic Ocean both via satellite altimetry and an eddy resolving primitive equa-

tion model. At high latitudes, he shows evidence that eddy scales vary with the

Rossby deformation radius, consistent with Stammer (1997), while at low latitudes

eddy scales are consistent with a generalized Rhines scale. That is, eddies scale

with the smaller of the deformation radius and the Rhines scale, with a critical

latitude near 30◦N, where the deformation scale is similar to the Rhines scale.

In this Chapter we reinterpret sea surface height (SSH) signals in the con-

text of the aforementioned theoretical ideas. Specifically, we avoid the issue of jet

formation, but assume that below a critical latitude baroclinic eddies transform

some of their energy into Rossby waves, and that these waves dominate the surface

height field. At higher latitudes, where Rossby wave frequencies are too small to

be excited by the inverse cascade, the surface height field remains turbulent. We

investigate this hypothesis as follows. Following Killworth and Blundell (2007),

we compute the local Rossby wave dispersion, but rather than make the long-wave

approximation, we adjust the horizontal scale of first baroclinic waves to best-fit

the observed phase speeds, and thereby infer a length scale for the waves. In

the tropics the fitted wavelength is close to both the Rhines scale and previously

observed SSH scales. Outside the tropics, it is either impossible to match the

observed phase speeds with Rossby wave speeds at any wavelength (probably be-

cause linear theory is inadequate) or the fitted wavelength lies near the deformation

scale. Using surface drifter data to estimate the eddy timescale and energy level,

we show that at high latitudes the turbulent timescale is faster than the Rossby

wave timescale, so turbulence dominates, but at low latitudes the Rossby wave

and turbulent timescales overlap, enabling the excitation of waves by turbulence.
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In Section 5.2 we compare first baroclinic Rossby wave phase speeds calculated

with the Forget (2008) ocean atlas with observed altimetric phase speeds provided

by Chris Hughes. We repeat the calculations of Chelton and Schlax (1996) and

Killworth and Blundell (2005) with mean flow and stratification, and topographic

slopes. We arrive at a conclusion consistent with Chelton et al. (2007) – in mid-

latitudes, phase speeds predicted by long-wave linear theory are typically faster

than observed phase speeds. In Section 5.3, where possible, we fit the phase

speeds predicted by the linear model to observed phase speeds by adjusting the

horizontal scale of the waves. We obtain a marked meridional variation in the

scale of the fitted waves: equatorwards of ±30◦ the implied scale is large and

gradually decreases with latitude, having an implied Rhines wavelength of about

600km. Polewards of of ±30◦ the linear fit begins to fail, and eventually fitted

scales match the deformation scale. In section 5.4 we interpret our result via a

comparison of turbulent and wave timescales. Finally we estimate the critical

latitude at which waves give way to turbulence by making use of surface eddy

velocities from drifter data, provided by Nikolai Maximenko. In Section 5.5 we

conclude.

5.2 Linear Rossby waves

Rossby waves result from the material conservation of potential vorticity (PV)

in the presence of a mean gradient. As a parcel moves up or down the back-

ground mean PV gradient, its own PV must compensate, generating a restoring

force toward the initial position. The result is a slow, large-scale westward prop-

agating undulation of mean PV contours. Mean currents change the structure
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of the waves in two ways: by altering the background PV gradient (sometimes

so much so that β is negligible), and by Doppler shifting the signal. A number

of authors (Killworth et al., 1997; Dewar and Morris, 2000; Killworth and Blun-

dell, 2005; Maharaj et al., 2007) have shown that the straightforward inclusion

of the mean thermal-wind currents in the linear Rossby wave problem leads to a

much closer agreement between the observed phase speeds and theory. Here we

take an approach closest to Killworth and Blundell (2007) (see also Smith, 2007)

and compute phase speeds in the local quasi-geostrophic approximation, using the

full background shear and stratification in a global hydrographic dataset. Our

focus, however, is on attempting to fit the linear results to the satellite data and

thereby determining the limitations of linear wave theory when mean effects are

fully included, and characterizing the scale of the waves that are consistent with

the observed phase speeds. We now briefly outline the approach, relegating details

to the Appendix A.7.

We assume, away from coasts, that the Rossby wave and eddy dynamics of the

ocean at each latitude, longitude coordinate may be represented by the linearized

inviscid quasi-geostrophic equations on a β-plane with slowly varying local mean

velocity(see Pedlosky, 1984)2. In the interior, linear QG potential vorticity is

linearly advected by the mean flow

∂tq + U · ∇q + u · ∇Q = 0, −H < z < 0, (5.1)

where U = U(x, y, z)x̂ + V (x, y, z)ŷ is the local mean velocity, q = ∇2ψ +

2Note that in this Chapter we will use a layered formulation in the vertical since we are
concerned with waves at or above the deformation scale. At these large horizontal scales, surface
dynamics will be resolved by the layered formulation.
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(f 2/N2ψz)z is the quasi-geostrophic potential vorticity (QGPV), f is the local

Coriolis parameter, H is the local depth of the ocean, N2(z) = −(g/ρ0)dρ/dz, and

the eddy velocity is u = −ψyx̂ + ψxŷ. The mean QGPV gradient ∇Q, includes

horizontal shear3, and is given by

∇Q =

[

Vxx − Uyx +

(

f 2

N2
Vz

)

z

]

x̂ +

[

β + Vxy − Uyy −
(

f 2

N2
Uz

)

z

]

ŷ. (5.2)

At the rigid lid upper boundary buoyancy is linearly advected

∂tb+ U · ∇b+ u · ∇B = 0, z = 0, (5.3)

where the buoyancy anomaly is defined as b = fψz = −gρ/ρ0, the mean buoyancy

is B = −gρ/ρ0, so the mean buoyancy gradient, via thermal wind balance, is

∇B = fVzx̂ − fUzŷ. Slowly varying bottom topography is included using the

approach of Smith (2007), using the Smith and Sandwell (1997) global seafloor

topography dataset; see the appendix for details.

Assuming a wave solution ψ(x, y, z, t) = ℜ{ψ̂(z) exp [i(kx+ ℓy − ωt)]}, and

likewise for q and b, one obtains the linear eigenvalue problem,

(K · U − ωn) b̂n = (ℓBx − kBy) ψ̂n, z = 0, (5.4a)

(K · U − ωn) q̂n = (ℓQx − kQy) ψ̂n, −H < z < 0, (5.4b)

where K = (k, ℓ), and ψ̂n is the nth eigenvector, sometimes called a ‘vertical shear

mode’, and q̂n and b̂n are linear functions of ψ̂n. (The hat notation implies de-

pendence on the wavenumber K, which is suppressed for clarity). The eigenvalues

3Horizontal shears of the mean state contribute little to ∇Q (Smith, 2007), but we retain
them in our calculations for completeness.
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ωn are the frequencies of the wave solutions, with the real part resulting in phase

propagation and imaginary parts, if they exist, producing growth or decay of the

wave. The problem is discretized in the vertical using a layered formulation; in

the discretized case, there are as many shear modes as there are layers. The ex-

pressions for the discrete surface buoyancy b̂ and q̂ in terms of ψ̂, and other details

of the discretization can be found in Appendix A.7, and in Smith (2007).

Equation (5.4) is solved by first considering the neutral modes, which diagonal-

ize the vertical derivatives in the stratification operator as follows. For a resting

ocean (U = 0, implying Bx = By = Qx = 0 and Qy = β), Equation (5.4) reduces

to the standard Rossby wave dispersion relation

ωm =
−kβ

K2 +K2
m

, (5.5)

where K = |K| and Km is the mth deformation wavenumber, which is given by

the following Sturm Liouville problem

d

dz

(

f 2

N2

dΦm

dz

)

= −K2
mΦm,

dΦm

dz

∣

∣

∣

∣

z=0

=
dΦm

dz

∣

∣

∣

∣

z=−H

= 0. (5.6)

The eigenfunctions Φm are often called the ‘neutral modes’; they form an orthonor-

mal basis of the vertical structure in a resting ocean.

The mean velocity and buoyancy fields are computed from the ocean atlas of

Forget (2008), as described in Appendix A.7, and these are used to construct the

mean buoyancy and PV gradients. At each lateral position in the ocean, we then

compute the neutral modes and their deformation scales from (5.6), as well as ωn

and ψ̂n from the complete dispersion relation (5.4). We denote the zonal phase
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speed of this mode as

cR =
ωn
k
.

5.2.1 Observations of phase propagation from altimetry

In the long-wave, resting ocean limit, the dominant first baroclinic mode has a

westward phase speed given by equation (5.5) with K = 0, so cR = β/K2
1 . A

zonal average of the long-wave phase speed is computed over the central pacific

(170◦W to 120◦W), and plotted against latitude in Figure 5.1. Also plotted are

phase propagation observations provided by C. Hughes (2007, personal communi-

cation), zonally averaged over the same range. Speeds at latitudes 20◦S and 20◦N

are well captured by the classic long Rossby wave solution. However departures

are observed at both low latitudes and high latitudes. Observed speeds reach a

maximum near ±5◦. Poleward of 20◦ the Rossby wave solution diverges from the

observations, reaching roughly a factor of two (Chelton and Schlax, 1996), and

eastward propagation in the ACC region is also not captured. Figure 5.2 shows

global maps of phase speed, “wavelikeness” and amplitude from Hughes’ dataset.4

Wavelikeness measures the precision of the distribution of phase speeds computed

via a Radon transform at a given latitude, so one can already see from Figure 5.2

that low latitudes propagate mostly at coherent phase speeds while high latitudes

exhibit a larger spread of propagation speeds, likely indicating a more turbulent

4The observed propagation speeds were calculated by Hughes from SSH observations in the
following way. First, thin longitude (5 degrees) and tall time (11.5 years) strips are bandpassed
filtered in time from 5 to 57 weeks, then zonally averaged (at each time) and the annual and
semiannual cycles are removed. A Radon transform was then performed by shifting each longi-
tude such that signals traveling at a speed c line up horizontally, summing over longitude and
taking the standard deviation in time. A “wavelikeness” parameter is also computed as the peak
value of the Radon transform divided by its mean. Based on advice from Hughes we have filtered
out observations with wavelikeness less than 1.5. Figure 5.2 shows global maps of the observed
phase speed, wavelikeness (with black contour at 1.5), and a measure of wave amplitude.
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Figure 5.1: Westward phase speed estimated from Hughes’ data averaged from
170◦W to 120◦W (black x’s) plotted against the standard linear, first baroclinic,
long Rossby wave phase speed (solid line), computed from the Forget (2008) atlas.
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Figure 5.2: Hughes’ analysis of surface altimetric data. Phase speed (upper panel)
“wavelikeness” (middle panel — see text for details), with contour at 1.5 to dif-
ferentiate regions that are wavelike and not wavelike, and a measure of amplitude
(lower panel).
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flow.

5.2.2 Applicability of linear theory

We now consider the effects of including U and ∇Q, as estimated from the Forget

(2008) atlas, using the dispersion relationship (5.4) then setting K = 0 (i.e. the

long-wave approximation). For each location we choose the vertical shear mode

ψ̂n whose real part projects the most onto the first neutral mode Φz(z) after its

mean is subtracted and it is normalized5.

The zonally averaged (from (170◦W to 120◦W) phase speeds are represented

by the solid gray line in Figure 5.3. The observed central Pacific phase speeds

from Figure 5.1 are also replotted for comparison. The long-wave limit predicts

speeds which are too fast in low latitudes and typically (but not always) too slow

in high latitudes. It is pleasing, however, to now observe eastward propagation in

the ACC, a consequence of downstream advection by the mean current.

The assumed spatial scale of the waves also affects the predicted phase speeds.

The same computation described above, but with deformation-scale waves (K =

K1x̂), gives the dashed gray line in Figure 5.3. Assuming the deformation scale as

a lower limit for the wavelength of the observed waves, the solid and dashed lines

in Figure 5.3 bracket the range of values one can obtain for the phase speed from

linear theory. We address this range of possibilities more fully in the next section.

5Specifically, we choose ψ̂n such that

max
n

∫

Φ1

(

ψ̂n − ψ̂n

)

dz

/
∫

(

ψ̂n − ψ̂n

)2

dz.
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Figure 5.3: Hughes’ phase speed observations (black x’s) compared to linear theory
in the presence of a mean current: long-waves (gray solid line) and deformation
scale waves (gray dashed line).
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5.3 Fitting linear model phase speeds to obser-

vations

Traditionally, the long-wave approximation has been used when interpreting alti-

metric signals in terms of Rossby wave theory. The influence of horizontal scale

on Rossby wave speed has largely been neglected, except for calculations assuming

uniform wavelengths of 500 km and 200 km reported in Killworth and Blundell

(2005). Chelton et al. (2007) argue that the propagation of the observed SSH vari-

ability is due to eddies rather than Rossby waves, and remark that, equatorward

of 25◦, eddy speeds are slower than the zonal phase speeds of nondispersive baro-

clinic Rossby waves predicted by the long-wave theory. Here we show, however,

that such a difference in speed can be accounted for by linear Rossby waves when

their wavelengths are chosen appropriately.

Using Equation (5.4) in its most general form, including bottom topography,

Figure 5.4 shows both the best-fit phase speeds (left) and the wavelengths asso-

ciated with those phase speeds (right) for a zonal average from 170◦W to 120◦W

in the Pacific (upper panel) and a global zonal average (lower panel). We have

assumed that the fitted waves have an east-west orientation (ℓ = 0). Setting k = ℓ

makes little difference in the fitted wavelength, which is consistent with the find-

ing in Killworth and Blundell (2005) of a weak dependence of phase velocity on

orientation. In the fitted wavelengths plots, the black x’s correspond to individual

latitudes, the solid gray curve is a smoother version of the black x’s6, and the thin

6The fitted wavelengths are smoothed across latitudes using a 1-1-1 smoother defined by:

λ′i = (λi−1 + λi + λi+1)/3,

where λi is the wavelength at latitude i and λ′i is the smoothed value.
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Figure 5.4: Top left: Phase speeds according to linear theory (solid gray line)
adjusted to give the best match to Hughes’ data (black x’s). The fit is done for a
zonal average over 170◦W to 120◦W in the Pacific. Top right: Fitted wavelengths
at each latitude (black x’s, gray line is a smoothed version) along with the defor-
mation scale (thin solid line). Bottom panels: As in the top panels but zonally
averaged across all oceans.
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black line is the first deformation wavelength. The fitted wavelengths typically

lie between 600 km and 800 km in the tropics out to about 30◦, with little or

no dependence on the deformation wavelength. Note that the baroclinic Rhines

scale (not shown) is roughly constant in the tropics, with a wavelength between

500km and 700km, and diverges to infinity when the turbulent velocity surpasses

the longwave resting phase speed near ±20◦ (see below). There is a gap in fit-

ted wavelength around ±40◦ where the linear theory fails to capture the observed

phase speeds. At high latitudes, the best-fit is obtained assuming scales near the

deformation scale. The inability to fit the phase speeds at higher latitudes is sug-

gestive that the ‘wave’ signal is not linear in those regions. Clearly, though, the

inclusion of wavelengths that result from a best-fit of theoretical to observed phase

speeds results in a greatly improved match between linear theory and observations.

Figure 5.5 shows the importance of the planetary vorticity gradient β relative

to the effect of mean flow U on the mean QGPV gradient ∇Q. Using the length

scales computed by the best-fit algorithm, we plot the phase speeds that result

from setting β = 0 while keeping the observed U (thick dashed-dotted line), as

well as the phase speeds that result from setting U = 0 and ∇Q = βŷ (thin

dashed line). [The solid gray line and black x’s are the same as those plotted in

the upper left panel of Figure 5.4.] The planetary gradient β is crucial in the

tropics, while in the subtropics U becomes increasingly important, particularly

from 35◦S to 20◦S, where the mean shear accounts for much of the factor-of-two

phase speed error discussed in Chelton and Schlax (1996). At high latitudes the

Doppler shift caused by U is crucial in capturing the downstream propagation in

the ACC. Figure 5.5 also shows the effect of bottom topography on phase speed.

Killworth and Blundell (2003) and Maharaj et al. (2007) showed that topography
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Figure 5.5: The effects of β, mean currents and topography on the prediction of
phase speed from linear theory. The thick gray line corresponds to the full theory
with mean flow U, β, and bottom topography. The thin black line contains U and
β but excludes topography. The thin dashed line only contains β and no mean
flow, while the thick dash-dotted line contains only U. In all cases the best-fit
horizontal scales are used (the x’s and thick gray solid line are identical to those
in the top left panel of Figure 5.4).
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is only important in the presence of a mean flow. Here the best fit phase speeds

with mean flow and a flat bottom (thin black line) are compared with the best

fit speeds with topography (thick gray line). The fit is slightly better from 40◦

to 50◦ but the addition of topography is still not enough to completely fit the

observations.

5.4 Wavelike and turbulent regimes in the ocean

A plausible interpretation of the results presented in Section 5.3 is that in low

latitudes, baroclinic eddies give their energy to linear Rossby waves, whereas at

high latitudes Rossby waves are less easily generated, and the SSH field remains

dominated by eddies. This can be understood in terms of a matching, or otherwise,

of turbulent and wave timescales, as discussed in the barotropic context by Rhines

(1975) and Vallis and Maltrud (1993), and in a (first-mode) baroclinic context

applied to the gas planets by Theiss (2004), Smith (2004b) and Theiss (2006). The

central idea of the Rhines effect is that, as eddies grow in the inverse cascade, their

timescale slows, and when this timescale matches the frequency of Rossby waves

with the same spatial scale, turbulent energy may be converted into waves, and the

cascade will slow tremendously. When this idea is applied to a putative interaction

with baroclinic Rossby waves, there is the added complication that frequencies tend

toward 0 at large scale (see Figure 5.6). In this case, only sufficiently weak eddies

have timescales, at any wavelength, that intersect the Rossby wave dispersion

curve.

For illustrative purposes, one can estimate the wavenumber at which the in-

tersection occurs by assuming a turbulent dispersion relationship of the form
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Figure 5.6: Dispersion relations for fitted phase speeds as a function of zonal
wavelength (with meridional wavenumber ℓ = 0) for latitudes in the South Pacific
(10◦S, 20◦S and 30◦S), compared with ωt = kut with two values of ut: 5 and 10
cm s−1 (dashed lines).
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ωt = kut, where ut is the turbulent velocity scale (the square root of the ap-

propriate eddy kinetic energy). Setting this equal to the absolute value of the

approximate Rossby wave frequency (ωR ≃ −kQy/(K
2 +K2

1 ) assuming that Qx is

small and U is either small or constant in z), we have (dividing by k)

ut ∼
Qy

K2
1 +K2

. (5.7)

Solving for K gives the relationship K2 = Qy/ut − K2
1 , for which there is a real

solution only if Qy/ut > K2
1 . At fixed Qy and K1, the implication is that waves

can be generated (and the cascade inhibited) only when the turbulent energy

is sufficiently small. On the other hand, assuming a constant ut, and noting

that Qy (through its dependence on β) and K1 (which is proportional to f) are

dependent on latitude, the relationship (5.7) implies the existence of a critical

latitude, polewards of which no intersection is possible.

Let us now see what the data suggests about a relationship like (5.7). We re-

place the approximate Rossby wave dispersion relation with the frequencies from

(5.4), using the fitted Rossby wave scales described in the previous section. The

idea is illustrated in Figure 5.6, which shows zonally averaged Rossby wave fre-

quency curves ωR(k), plotted against zonal wavelength, at three latitudes in the

tropical Pacific Ocean. Two hypothetical eddy frequency curves ωt = kut (dashed

lines) are added for comparison, with ut = 10 cm s−1 and ut = 5 cm s−1. At 10◦S

the eddy frequency curves intersect the Rossby wave frequencies at relatively small

wavelengths, indicating that observed tropical SSH length scales are certainly in

the wave region. On the other hand, at 30◦S even the 5 cm s−1 curve fails to

intersect ωR(k). We thus expect little wavelike activity outside the tropics.
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Figure 5.7: Root mean square eddying surface velocities (left) from N. Maxi-
menko’s drifter data, and zonal average thereof (right).

We can improve the frequency comparison test further by using observations

of surface drifter speeds to obtain estimates of ut. A global map of the root mean

square (rms) of the surface drifter data

urms(0) =
√

|u′
drifter(z = 0)|2

(courtesy of Nikolai Maximenko) is shown Figure 5.7, with its zonal average over

170◦W to 120◦W (the region within the rectangle) plotted on the right. The zonal

average is strongly peaked at the equator, and more constant at extra-tropical lat-

itudes. However, this may not be indicative of the distribution of depth-integrated

eddy kinetic energy, since the surface velocity gives no information about the ver-

tical structure of eddying motion. Additional assumptions are necessary to extract

the relevant eddy velocity scale.

Wunsch (1997) showed that, away from the equator, eddy velocities are pri-

marily first-baroclinic, with a smaller projection onto the barotropic mode, while

nearer the equator, motions tend to have a more complex vertical structure, pro-
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jecting onto many higher modes, approaching equipartition. Expanding u′
drifter(z)

in the neutral modes (5.6), we have

u′
drifter(z) =

N−1
∑

m=0

Φm(z)um.

Following Wunsch (1997), we extract the vertical structure at each location by

assuming that the rms velocity projects entirely onto the first baroclinic mode,

which gives u1 = urms(0)/Φ1(0). We take the relevant eddy velocity scale to be

the root vertical-mean square velocity, thus

ut =

[

1

H

∫ 0

−H

urms(z)
2 dz

]1/2

= urms(0)/Φ1(0)

where we have used the orthonormality of the neutral modes.7 The scaling by the

first baroclinic mode has the effect of reducing the estimated turbulent velocity

scale in regions of strongly surface intensified stratification, such as near the equa-

tor. In these regions, the first baroclinic mode itself is quite surface intensified,

so Φ1(0) can be considerably larger than one (see the modal structure in Figure

4.10). Physically, if the first neutral mode, onto which all the motion is assumed

to project, is very surface intensified, then eddy velocities are weak at depth, so

the total turbulent velocity estimate is diminished.

7Suppose, instead of assuming that all the energy was in the first baroclinic mode, we imagined
that U(z) projected equally onto the barotropic and first baroclinic mode. Then

ut =

[

1

H

∫

urms(z)
2 dz

]1/2

=
urms(0)

1 + Φ1(0)

[

1

H

∫

(1 + Φ1(z))
2dz

]1/2

=

√
2 urms(0)

1 + Φ1(0)
,

since the modes are orthonormal. In the world ocean 2 ≤ Φ1(0) ≤ 4, so the ratio of this projected
value to one which is entirely first baroclinic, as assumed in the text, is 0.94 ≤

√
2Φ1(0)/[1 +

Φ1(0)] ≤ 1.13. An assumption of equipartition among N vertical modes unambiguously reduces

ut, roughly by a factor of roughly
√
N .
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Figure 5.8 shows the eddy velocity scale ut and zonal Rossby phase speed

cR zonally averaged over 170◦W to 120◦W and plotted against latitude. These

are essentially the left hand and equivalent right hand sides of Eq. (5.7). Our

Figure 5.8 is similar to Fig. 3 of Theiss (2006) for Jupiter, except that here our

dispersion relation is computed from the full vertical structure of the mean flow,

rather than just the first baroclinic component (because of the dominance of the

first baroclinic mode, however, the first baroclinic calculation is rather similar

— not shown). Note that ut is nearly constant with latitude, varying between

and 5 and 10 cm s−1 — the strong equatorial values have been reduced, through

projection onto the surface-intensified first baroclinic mode, as explained above (if

one assumed equipartition, the velocity estimate in the equatorial region would

be reduced even further). In contrast, the (Doppler-shifted) Rossby wave speed

varies markedly, exceeding 20 cm s−1 in the tropics and falling toward zero at higher

latitudes (and even becoming prograde in the ACC). The cross-over between the

two curves occurs at a latitude of roughly ±25◦. Note that since we have assumed

that the turbulent velocity scale ut is entirely in the first baroclinic mode, the

crossover latitudes should be considered as lower bounds.

The lower plot in Figure 5.8 shows the ratio of linear phase speeds cR to the

eddy velocity scale ut, with dashed lines denoting cR/ut = 2 and 1/2. Theiss

(2006) shows that stormy regions on Jupiter are highly correlated with regions

where this ratio is less than one. Notably, ±25◦ is also the crossover latitude

between linear wavelike behavior and nonlinear eddies found by Chelton et al.

(2007). Outside this latitude band, first-baroclinic Rossby wave timescales cannot

match the turbulent timescales implied by ut. Note that this would not preclude

the formation of the mid-latitude zonal jets observed by Maximenko et al. (2005)
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Figure 5.8: Top: Doppler shifted long-wave phase speed (thin black line), versus
the root mean square of the eddy velocity ut (thick gray line) from Maximenko’s
drifter data. It has been assumed that the eddy velocity is entirely in the first
baroclinic mode. Bottom: The ratio cR/ut with dashed curves at ratios 1/2 and
2.
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Figure 5.9: Comparison of fitted wavelengths over the global ocean (gray curve,
taken from the bottom-right of Figure 5.4) with Eden’s observed (black o’s) and
simulated (black x’s) wavelengths, Chelton’s observed wavelengths (black circles
with solid line) and the deformation wavelength (thin black line).

and Richards et al. (2006): since barotropic Rossby waves are possible, turbulent

energy can still accumulate around the dumbbell of Vallis and Maltrud (1993).

Finally we return to a consideration of the spatial scales obtained by fitting lin-

ear Rossby wave theory to observed phase speeds, as in Figure 5.4. A global zonal

average of the fitted wavelengths is plotted against latitude in Figure 5.9. Also

plotted are both observed (black o’s) and simulated (black x’s) eddy wavelengths

in the North Atlantic from Eden (2007), as well as globally observed wavelengths

(small circles with line) from Chelton et al. (2007)8. The deformation wavelength

(thin black line) is also plotted for reference. At low latitudes all of the scales are

8Chelton provides eddy diameters, and here these are multiplied by π to give wavelengths.
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in close agreement, while the fitted wavelength diverges from the observed eddy

scales at latitudes poleward of about ±30◦. This is also the latitude where Eden’s

scales transition from a flatter Rhines scaling to a steeper deformation scaling. In

the Southern Ocean there is a transition from westward propagation to eastward

propagation upon entering the ACC region. Finally we note that, in contrast to

Eden (2007), Chelton’s data do not exhibit a clear transitional latitude between

Rhines scaling and deformation scaling. The reasons for this remain unclear.

5.5 Conclusions

We have revisited the interpretation of altimetric phase speed signals in terms

of linear Rossby wave theory. Given observations of the interior u and ∇Q fields

(courtesy of Forget, 2008), and assuming quasi-geostrophic theory, we adjusted the

lateral scale of linear waves to best fit altimetric observations of westward phase

propagation. We find that the implied scales have a well-defined meridional struc-

ture. In low latitudes the waves have a scale of 600 km or so, broadly consistent

with an appropriately defined Rhines scale. In high latitudes it is more difficult

to fit linear theory to the observations, but our attempts to do so imply a scale

that is much smaller than in the tropics, closer to the local Rossby deformation

scale. There is a rather abrupt transition from low-latitude to high-latitude scaling

at ±30◦. These results are broadly consistent with observed and modeled eddy

scales, as reported in Eden (2007).

We put forward an interpretation of the reported results in terms of the inter-

action between turbulence and waves. Over vast regions of the ocean, at scales on

or close to the Rossby deformation scale, baroclinic instability converts available
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potential energy to kinetic energy of turbulent geostrophic motion. Non-linear

interactions result in an upscale energy transfer. At low latitudes, where we ob-

serve that ut < |cR|, turbulent energy cascades upscale from below readily excites

Rossby waves. At higher latitudes, where ut > |cR|, turbulence cannot readily

excite waves because of the weak overlap in timescales between turbulence and

waves. Making use of surface drifter observations, we estimate that the latitude

at which waves give way to turbulence coincides with that at which ut ∼ |cR|, and

is found to be ±30◦ or so, roughly consistent with the transition from waves to

non-linear eddies recently highlighted by Chelton et al. (2007).
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Chapter 6

Conclusion

In this thesis we have attempted to explain mesoscale observations in the atmo-

sphere and ocean that classic GFD theory has so far failed to explain. The goal

from the outset was to derive a quasi-geostrophic model that accurately and ef-

ficiently captures the interaction between surface QG dynamics and the interior

QG dynamics.

We developed a formalism, called surface-modal QG (SMQG), which decom-

poses the geostrophic streamfunction into components due to surface temperature

perturbations at the upper (ψT ) and lower (ψB) boundaries, and potential vortic-

ity perturbations in the interior (ψI). SMQG has the advantage that each of the

streamfunction components can be independently diagnosed to arbitrary accuracy,

via modal inversion relations which are constant in time.

Using the SMQG formalism we demonstrated, in a nonlinear Eady model,

that while the typical layered QG formulations contain both surface and interior

dynamics, they fail to properly resolve the small scales if the horizontal and vertical

resolutions are not matched via the Prandtl ratio, N/f . On the other hand when
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the horizontal and vertical resolutions match, the layered formulation converges

to the Blumen (1978) model. Similarly, layered and modal linear instabilities

converge to each other given sufficient vertical resolution.

Next we applied the SMQG formalism to the atmospheric energy spectrum.

We found that truncating the interior vertical structure to just the barotropic and

first baroclinic modes (the TMTS model) was sufficient to reproduce much of the

Nastrom and Gage (1985) kinetic energy spectrum at the upper boundary of our

model. Note however that the TMTS model is an incomplete and idealized model

of the atmosphere in many respects. It provides a downscale source of energy near

the surface which allows for a small scale K−5/3 spectrum, but does not rule other

mechanisms, such loss of balance or stratified turbulence, from contributing to the

spectrum or dissipating energy at small scales.

Using SMQG we derived a scaling law for the wavenumber Kt at which steep

spectrally sloped (K−3) interior dynamics yield to shallow spectrally sloped (K−5/3)

surface dynamics. We applied our scaling law to mean geostrophic currents de-

rived from a new ocean atlas (Forget, 2008) in order to assess whether the ocean’s

surface dynamics are dominated by temperature anomalies (surface QG) or po-

tential vorticity anomalies (interior QG). Conventional wisdom suggests that the

interior modes, specifically the barotropic and first baroclinic modes, dominate the

surface in the mesoscales. However, recent work has challenged this view, argu-

ing that the surface mode dominates the surface dynamics. Our transition scale

diagnostic suggests that there is a great deal of variability throughout the World

Ocean. The main western boundary currents and much of the ACC appear to be

dominated by interior modes, while many other regions contain significant surface

mode contributions. Consistent with our transition scale diagnostic, the western
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boundary currents and the ACC have instabilities with large growth rates, large

horizontal scale, and deep vertical structure. Conversely, away from these regions

the instabilities usually have weaker growth rates and smaller scales.

Finally we considered the westward propagation of SSH anomalies as seen by

satellite altimetry. We found that this propagation is consistent with linear Rossby

wave propagation in low latitudes, but not in high latitudes. In particular, between

40◦ and 50◦ neither mean flow nor bottom topographic extensions to the classical

QG Rossby wave theory are sufficient to produce waves fast enough to recover

the observed phase speed. We concluded that these higher latitudes must reflect

turbulence.
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Appendix A

Implementation details

A.1 Time stepping and enstrophy filtering

Time stepping in the spectral model is performed via a classic leap-frog scheme

with an implicit enstrophy filter applied to damp out small scales. In the case of

hyperviscous dissipation of order s, the equations of motion at the bottom, interior

and top all have the advective form

∂α

∂t
= −J(ψ, α) + F −D + (−1)s/2+1νs∇sα, (A.1)

where νs is the hyperviscous coefficient which on depends the flow velocity and

resolution but is the same for the bottom, interior and top at any given time, and

F and D are external forcing and dissipation respectively. In spectral space the

hyperviscous dissipation is

H = (−1)s/2+1νs∇s → −νsKs, (A.2)
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where K = |K|. The leap-frog scheme advances time via

αn+1 − αn−1

2δt
= Rn +H(K)αn+1, (A.3)

where Rn contains the advection, forcing and dissipation terms at time n and δt

is the time step. Solving for αn+1 gives an expression for the filter

αn+1 =
(

2δtR
n + αn−1

)

F (K), where F (K) = (1 + 2δtνsK
s)−1 . (A.4)

The time step is tuned via dttune such that the Courant number (Courant et al.,

1928) is sufficiently small

δt = dttune
∆x

max(|u|, |v|). (A.5)

The viscous coefficient is chosen so that the maximum dissipation is only a function

of resolution

νs =
FTtune

2dttune

max(|u|, |v|)
Ks

max

, (A.6)

where FTtune is a filter tuning parameter that is chosen such that the filter only

significantly impacts the highest resolved wavenumbers. The hyperviscous filter is

then

F (K) =

[

1 + FTtune∆x

(

K

Kmax

)s]−1

, (A.7)

so we have F (0) = 1 and F (Kmax) = 1/(1 +FTtune∆x) which approaches unity as

∆x→ 0.

In all of the simulations presented here, an exponential cutoff filter (Smith,

2004a) was used instead of a hyperviscous filter. The exponential cutoff filter
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mimics the hyperviscous filter but is explicitly restricted to act only on K > Kc &

2Kmax/3. The exponential cutoff filter is defined as

Fec(K) =











[

1
1+FTtune∆x

]( K−Kc

Kmax−Kc
)

s

, K > Kc

1 , K ≤ Kc.

(A.8)

A.2 Linearization of equations the SMQG equa-

tions

Linearization of (2.11) and (2.12) yields a set of N +2 linear differential equations

∂tψ̂
T = −iK ·

[

U (H)ψ̂T −∇⊥ΘT ψ̂|z=zT
φT (K, zT )/φTz (K, zT )

]

, (A.9a)

∂tψ̂
B = −iK ·

[

U (0)ψ̂B −
(

∇⊥ΘB − irK
)

ψ̂|z=zB
φB(K, zB)/φBz (K, zB)

]

,

(A.9b)

∂tψ̂n = −iK ·
[

ΓUS〈ψ̂〉n
K2 + λ2

n

+
∑

m

〈U〉mn(K2 + λ2
m)ψ̂m − 〈ψ̂〉mnλ2

mUm

K2 + λ2
n

]

+
ikβ〈ψ̂〉n
K2 + λ2

n

,

(A.9c)

which become an eigenvalue problem once a linear wave of the form eiK·(x−ct)] is

inserted for each modal and surface component of the streamfunction.
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A.3 Green’s function for the mean fields in the

TMTS equations

The mean velocity U(z) must solve

ΓU ≡ s
d2U

dz2
= β −Qy, Uz(H) = −ΘT

y , Uz(0) = −ΘB
y , (A.10)

and so we seek a Green’s function G(z, ξ) that satisfies

ΓG(z, ξ) = δ(z − ξ), Gz(H, ξ) = Gz(0, ξ) = 0.

There is a function G(z, ξ) that satisfies this problem, but is not a standard Green’s

function. The generalized Green’s function

G(z, ξ) =











−N2H
f2

[

1
2
(z/H)2 + 1

2
(1 − (ξ/H))2 − 1

6

]

, z ∈ (0, ξ)

−N2H
f2

[

1
2
(ξ/H)2 + 1

2
(1 − (z/H))2 − 1

6

]

, z ∈ (ξ,H).

yields a solution for U(z) that is augmented by an arbitrary constant, C:

U(z) =

∫ H

0

G(z, ξ)[β −Qy(ξ)] dξ + sG(z,H)ΘT
y − sG(z, 0)ΘB

y + C

=

∫ H

0

G(z, ξ)w(ξ) dξ + C (A.11)

where w is the standardizing function

w(z) = β −Qy(z) + sΘB
y δ(z) − sΘT

y δ(z −H)
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which must satisfy
∫ H

0
w(z) dz = 0 (Butkovskii, 1982, pg. 30). Using the expansion

U(z) = Ubcφ(z) + US(z), and equations (3.1) and (A.10),

β −Qy(z) = −λ2Ubcφ(z) + ΓUS.

Using this expression in (A.11), a few lines of computation reveals that

−
∫ H

0

G(z, ξ)ΓU I dξ = −Ubc

∫ H

0

G(z, ξ)Γφ(ξ) dξ = Ubcφ(z),

as it should, and

US(z) =

∫ H

0

G(z, ξ)ΓUS dξ + sG(z,H)ΘB
y − sG(z, 0)ΘB

y + C.

Demanding that ΓUS = const, 〈w〉 = 0 and 〈US〉 = 0 then yields C = 0 and the

form stated in (3.6) follows (note that
∫ H

0
G(z, ξ) dξ = 0).

A.4 Details of the TMTS equations

In forming the barotropic and baroclinic modal Eqs. (3.8c) and (3.8d), interaction

coefficients between the vertical structure functions φ arise. Using the expressions

for φt,b in (3.3) we have

〈φt〉 = 〈φb〉 =
1

H

∫ H

0

cosh(µz/H)

coshµ
dz = µ−1 tanhµ.

Notice that because the surface modes have both vertical and horizontal depen-

dence, the interaction terms involving surface functions are functions of µ. We

can form the other interaction terms using φ(z) from (3.2), and computing the
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integrals:

〈φφt〉 = −〈φφb〉 =
1

H

∫ H

0

√
2 cos(πz/H)

cosh(µz/H)

coshµ
dz = −

√
2 µ

µ2 + π2
tanhµ,

〈φφφt〉 = 〈φφφb〉 =
1

H

∫ H

0

2 cos2(πz/H)
cosh(µz/H)

cosh µ
dz =

2

µ

µ2 + 2π2

µ2 + 4π2
tanhµ.

Since ψ̂(z) = ψ̂bt +φ(z)ψ̂bc +φt(z)ψ̂t +φb(z)ψ̂b the barotropic projection is simply

the vertical average

〈ψ̂〉 = ψ̂bt + 〈φt〉ψ̂t + 〈φb〉ψ̂b.

where the baroclinic term has vanished since 〈φ〉 = 0. Summarizing, the projec-

tions of the total streamfunction onto various internal modes are

〈ψ̂〉 = ψ̂bt + γ0

(

ψ̂t + ψ̂b
)

, γ0 ≡ µ−1 tanhµ

〈φψ̂〉 = ψ̂bc − γ1

(

ψ̂t − ψ̂b
)

, γ1 ≡
√

2 µ

µ2 + π2
tanhµ

〈φφψ̂〉 = ψ̂bt + γ2

(

ψ̂t + ψ̂b
)

, γ2 ≡
2

µ

µ2 + 2π2

µ2 + 4π2
tanhµ.

We must also compute interactions between the mean shear components and ver-

tical mode structures. Interactions between the baroclinic mode φ and the surface

shear (3.6) are given by

〈φUS〉 =
1

H

∫ H

0

√
2 cos(πz/H)US(z)dz =

√
2H

π2
(Θt

y + Θb
y),

〈φφUS〉 =
1

H

∫ H

0

2 cos2(πz/H)US(z)dz = − H

4π2
(Θt

y − Θb
y).
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The projections of the mean velocity that appear in (3.8) are then

〈φU〉 = Ubc +

√
2H

π2
(Θt

y + Θb
y)

〈φφU〉 = − H

4π2
(Θt

y − Θb
y).

A.5 Linearization of the TMTS equations

The linear instability calculation is performed by linearizing the TMTS equations

as follows. Neglecting the nonlinear terms in (3.8), assuming a wave solution

(ψ̂t, ψ̂b, ψ̂bt, ψ̂bc) = Re(ϕ̂t, ϕ̂b, ϕ̂bt, ϕ̂bc)e−iωt,

and considering only zonal wave instabilities (ℓ = 0), so that the phase speed is

c = ω/k, we obtain

cϕ̂t = U(H)ϕ̂t +HΘT
y (µ tanhµ)−1(ϕ̂bt −

√
2ϕ̂bc + ϕ̂t + ϕ̂bsechµ)

cϕ̂b = U(0)ϕ̂b −H

(

ΘB
y + ir

K2

k

)

(µ tanhµ)−1(ϕ̂bt +
√

2ϕ̂bc + ϕ̂tsech µ+ ϕ̂b)

cϕ̂bt = 〈φU〉µ−2(µ2 + π2)ϕ̂bc − (β − ΓUS)K−2
[

ϕ̂bt + γ0(ϕ̂
t + ϕ̂b)

]

− Ubcλ2K−2
[

ϕ̂bc − γ1(ϕ̂
t − ϕ̂b)

]

cϕ̂bc = 〈φU〉µ2(µ2 + π2)−1 ϕ̂bt + 〈φφU〉ϕ̂bc

− (β − ΓUS)K−2µ2(µ2 + π2)−1
[

ϕ̂bc − γ1(ϕ̂
t − ϕ̂b)

]

− Ubcλ2K−2µ2(µ2 + π2)−1
[

ϕ̂bt + γ2(ϕ̂
t + ϕ̂b)

]

.

which is a 4× 4 eigenvalue problem with (ϕ̂t, ϕ̂b, ϕ̂bt, ϕ̂bc) the eigenvector and the

phase speed c the eigenvalue.
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A.6 Surface modes with exponential stratifica-

tion

With exponential stratification of the form

N2(z) =
exp (z/δc)

δcF

on z ∈ [−1, 0] the surface modes in (2.8) and (2.9) are given by

φT (K, z) = exp (z/2δc)
K0(Υ−1)I1(Υz) + I0(Υ−1)K1(Υz)

I0(Υ−1)K1(2δcµe) + I1(2δcµe)K0(Υ−1)

and

φB(K, z) = exp ((1 + z)/2δc)
K0(2δcµe)I1(Υz) + I0(2δcµe)K1(Υz)

I0(2δcµe)K1(Υ−1) + I1(Υ−1)K0(2δcµe)
,

where K0, K1, I0 and I1 are modified Bessel functions and µe = K/
√
δcF , Υz =

2δcµe exp (z/2δc), and Υ−1 = 2δcµe exp (−1/2δc). Therefore the surface-modal

gradients used to invert the surface streamfunctions are

φ̄T (K, 0) =
dφT

dz

∣

∣

∣

∣

0

= µe
I0(2δcµe)K0(Υ−1) − I0(Υ−1)K0(2δcµe)

K0(Υ−1)I1(2δcµe) + I0(Υ−1)K1(2δcµe)

and

φ̄B(K,−1) =
dφB

dz

∣

∣

∣

∣

−1

= −µe exp (−1/2δc)
I0(2δcµe)K0(Υ−1) − I0(Υ−1)K0(2δcµe)

K0(2δcµe)I1(Υ−1) + I0(2δcµe)K0(Υ−1)
.
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A.7 Mean State Calculation from the Forget At-

las and Discretization of Linear Problem

The Forget (2008) ocean atlas contains up to 50 layers (of thicknesses ∆j) of

potential temperature and salinity data at each (lat, lon) coordinate. We first

compute annually averaged global potential temperature and salinity fields, and

from these compute a neutral density field ρ using locally referenced pressure.

Thermal wind balance is then used to compute the mean velocity field U, assuming

a level of no motion at the bottom of the ocean (see the appendix of Smith, 2007,

for details). We define the top 5 layers, which are each 10 m thick, as a mixed

layer of depth h ≡ 50 m. The mean buoyancy gradients ∇B = −(g/ρ0)∇ρ at

the surface are averaged over the defined mixed layer, and then related to vertical

shears via thermal wind

Uz(z0) = − 1

fh

∫ 0

−h

By dz, Vz(z0) =
1

fh

∫ 0

−h

Bx dz.

The surface velocities themselves are obtained by averaging the velocities from the

ocean atlas over h, viz.

U(z0) =
1

h

∫ 0

−h

U dz, V (z0) =
1

h

∫ 0

−h

V dz. (A.13)

The linear problem is discretized, at each lateral location, onto the Nz dis-

crete depths zj of the data computed from the Forget atlas. The discrete surface

buoyancy is given by

b̂m(z0) = f
ψ̂m(z0) − ψ̂m(z1)

∆0

.
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and the discrete PV is

q̂m(zj) =
f 2

∆j

[

ψ̂m(zj−1) − ψ̂m(zj)

B(zj−1) − B(zj)
− ψ̂m(zj) − ψ̂m(zj+1)

B(zj) − B(zj+1)

]

−K2ψ̂m(zj), j = 1..Nz−1.

The mean QGPV gradients Qx(zj) and Qy(zj) are given by (5.2), using the same

vertical discretization, and simple horizontal finite differences to compute x and y

derivatives. At the bottom, q̂m(zNz
) = ψ̂m(zNz

) = 0. The discrete version of (5.4)

is then solved as a single matrix eigenvalue problem, using Matlab.

Following Smith (2007), bottom topography is added using the Smith and

Sandwell (1997) global seafloor topography dataset. At each latitude, longitude

location in the calculation we linearly regress a best fit plane of the form η(x, y) =

η0 + αxx + αyy using the surrounding 2◦ × 2◦ section of topography. The slopes

αx and αy are then added to the bottom (layer N ) QGPV gradient as

∇Qtopo =
f

∆N

(αxx̂ + αyŷ) .
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