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The set of all relevant variables could be termed the dynamical state: dC(t) = [dA(t), dTM(t)]T. 
This state is fully prescribed by the combined NCEP, ECCO, and CLM-derived fields (in short 
NEC), and is not altered as a consequence of the state estimation. All associated variables are 
thus passive. A flow diagram might look as follows: 
 

 

(4.3.5) 

Besides its key role in the state vector and model parameter estimations, the global adjoint 
system will be used to analyze the origin of observed anomalies in terms of specific model 
properties and initial conditions. This linking of effects to causes will be invaluable in addressing 
our scientific objectives. 

4.3.2 Hessian-based inverse uncertainty propagation 

The solution to the statistical least-squares problem results in a set of control variables, which, 
applied to the model, minimize the model vs. data misfit. In a similar way that the first derivative 
of the misfit function with respect to the controls (the gradient) provides a powerful tool in the 
optimization, the second derivative (the Hessian) evaluated at the minimum yields important 
information regarding the uncertainties. A general expression of our least-squares misfit function 
formulated earlier, and its approximate form is (see Figure 4.3.2):  

 
Figure 4.3.2 Schematic of relationship between the misfit function at the minimum, its local curvatures, r1, 
r2, and its prior (Rprior) and posterior (Rpost) uncertainty/error covariances. For large curvatures, the 
posterior errors are small, for small curvatures, the posterior errors are large. Note that the posterior 
errors depend on the prior errors, as well as the sensitivities of the model with respect to the controls. 
Large sensitivities contribute to small posterior uncertainties. 
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(4.3.6) 

Compare this to the general form of a multi-variate Gaussian distribution: 
  (4.3.7) 

We identify the approximate form of Eqn. 4.3.) as linear transformation of the prior error 
covariance Rprior into the posterior error covariance Rpost or via the second derivative of J: 
 

 

(4.3.8) 

The eigenvalues of the inverse Hessian are the posterior control variable uncertainties, based on 
the observations used, their uncertainties, and the model sensitivity, all of which are ingredients 
in the estimation process (e.g., Tarantola, 1987). 

4.4 Target/objective functions and forward uncertainty propagation 

In a last step, the posterior uncertainties of the control variables can be used as inputs in 
conjunction with the model, its linearized version (the model Jacobian), and the optimized 
control variables to infer uncertainties in any model diagnostic or target quantity considered. 
Note that in doing so, several crucial things have been achieved: 

(1) the forward propagation is with respect to an optimized model trajectory (i.e. one which 
fits the observations used in the previous inversion), 

(2) the uncertainties used as inputs are based on the available observations used and their prior 
uncertainties (use of different or more observations would result in different uncertainty 
inputs), 

(3) the uncertainties are propagated based on the “known” sensitivities encapsulated in the 
model formulation. 

A full end-to-end system of the sort described here does not currently exist. It has nevertheless 
been achieved using simpler models and in the more limited context of a marine ecosystem 
model (Fennel et al., 2001) and a terrestrial carbon cycle model (Kaminski et al., 2010). Our 
proposed system is in many ways a concrete implementation of a generic formal UQ chain as 
suggested by Oden et al. (2010a,b). The ECCO group is working toward enabling such an end-
to-end system for quantifying oceanic indices on climate time scales (Wunsch et al., 2009). All 
studies rely on automatic differentiation to derive 1st and 2nd derivative models required for the 
optimization and uncertainty propagation. The need to bring these methods to bear in a fully-
coupled system and taking advantage of all available observations from all components has 
clearly been identified by the recent study of the National Research Council (NRC) on “Verifying 
Greenhouse Gas Emissions: Methods to Support International Climate Agreements” (Pacala et 
al., 2011). Specifically, the NRC report envisions the requirement “to reduce errors in the 
transport models and to overcome the noise from natural climate variability”, and the vision that 

J = (L(x)− y)T · R−1
prior · (L(x)− y)

≈ δxT

�
∂L

∂x

�
· R−1

prior ·
�

∂L

∂x

�
δx

N (x0, R) ∼ exp
�
−(x− x0)T · R−1 · (x− x0)

�

R−1
post =

�
∂L

∂x

�T

· R−1
prior ·

�
∂L

∂x

�
=

�
∂2J0

∂xi∂xj

�



61 

“information derived from all sources could be synthesized in a data assimilation system to 
produce accurate estimates of anthropogenic CO2 emissions and trends at national scales”. 

4.5 Quantitative observing system design 

Observing system design addresses several questions related to the optimal use of existing 
observations or the potential use of future observations:  

(1) For a given mix of observing systems consisting of different types of observations, how 
does each type contribute to the overall constraint, which locations contribute most, and 
are there significant redundancies or complementing elements?  

(2) For a proposed variable to be monitored or a planned network or instrument to be 
deployed, which type of observation would contribute optimally to constrain the target 
quantity, where should observations best be taken, what are required accuracies and 
sampling rates, and what would be an optimal combination of different instruments?  

The assessment of the relative contribution of existing observations in an inversion (item 1) is 
called Observing System Experiment (OSE), whereas the simulation of observations in a planned 
observational network (item 2) is called Observing System Simulation Experiment (OSSE). 
A third category, termed Sensitivity Observing System Experiment (SOSE) is mentioned here, 
but not further discussed (see, e.g., Langland and Baker, 2004). Several Community Whitepapers 
(CWPs) on the subject in the context of climate monitoring were published as part of the 
OceanObs’09 symposium (see, e.g., Heimbach et al., 2009; Lee et al., 2009; Wunsch, 2009). 

We anticipate that the coupled, adjoined system described in this report will require 
significant resources and time to establish. The initial version of this framework will be 
relatively simple and considerable further development will be required to enhance and improve 
it. This will be a time consuming process. However, the initial version could be extremely 
valuable as an aid to understanding the sensitivity of the system to choices made and as a tool to 
guide further monitoring systems. The initial system can used to perform a series of OSSEs. 

The idea behind an OSSE is to assume that the model re-creates a “reality” that can be used to 
systematically explore how sensitive (important) different parameters and different data sets are 
in recreating the “truth” as seen by the model. An initial forward simulation with the fully-
coupled system will produce output. It will be assumed that this output is the “truth”. This output 
can then be degraded to produce “pseudo-datasets”. For instance, ocean surface chlorophyll 
output from the model can be mapped onto coarser temporal scales to resemble the type of data 
provided by satellites. This “pseudo-dataset” can then be further downgraded by addition of 
random noise to capture the uncertainty present in the satellite data. Pseudo-datasets will be 
reproduced for all the observations described in Section 3 and provided in the tables in that 
section. Experiment with adjoined version of the model will attempt to uncover how much 
information these “pseudo-datasets” actually provide. 
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5. RECOMMENDATIONS 
5.1 Maintaining and Improving the Existing System 
The current greenhouse gas observing system is measuring various aspects of the evolving 

composition of Earth’s atmosphere, oceans and land ecosystems and is providing the fundamental 
understanding needed to construct accurate process models. These measurements include: 

• Surface-based in situ measurements of all major greenhouse gases at high-frequency stations 
augmented by flask sampling; 

• Remote sensing of CO2, CH4 and N2O, and other greenhouse gases both from the surface and 
from space; 

• Vertical profiles of greenhouse gases using aircraft and balloons; 
• Land greenhouse gas flux measurements, using eddy covariance and smoke-stack 

monitoring; 
• In situ and satellite observations of land vegetation, soil moisture and other relevant; 

biogeochemical and hydrologic variables for land greenhouse gas flux determination; 
• Oceanic measurements of pCO2, pN2O and other greenhouse gases for flux determination; 
• In situ and satellite measurements of biologically and biogeochemically important oceanic 

tracers, and relevant material fluxes; 
• Economic data on production and trade flows associated with industrial and agricultural 

activities that generate greenhouse gases. 
The combination of all of these complementary data with state-of-the-art global models of 
atmospheric chemistry and circulation, land ecosystems, oceanic circulation and 
biogeochemistry models is providing a significant advance in our understanding of the global 
sources, chemistry, transport and sinks of the trace substances determining atmospheric 
composition and air quality, and the radiative forcing of climate change. 

While it is essential that this system continue to operate, to address the challenge of accurate 
GHG emissions verification it will need significant improvements as summarized below. 

5.1.1 Improvements needed to current atmospheric GHG monitoring systems 

The three leading greenhouse gases (CO2, CH4 and N2O) are generally measured by a variety 
of systems (surface in situ, surface flask, and surface, aircraft and satellite remote sensing), 
whereas the lesser GHGs, which have a significant aggregated radiative forcing (e.g., PFCs, SF6, 
HFCs, etc.), are generally only measured at the surface. For example, AGAGE is the only 
network that currently makes regular, high-frequency measurements of the major PFCs and all 
the major HFCs. While the AGAGE network is expanding, there is a great deal of the Earth’s 
surface that is not currently covered by the observations. For example, Stohl et al. (2009) find 
very low sensitivity of the AGAGE network to tropical regions. Satellite observations go some 
way to addressing the lack of in situ measurements of CO2 and CH4 in the tropics, and other 
under-sampled areas of the world. However, the accuracy of current space-based measurements 
of these gases is much less than can be achieved in situ even in cloud-free regions. Further, as 
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pointed out by Chevallier et al. (2007), while even significant uncertainties in individual 
retrievals can lead to large error reduction in surface flux estimates, regional biases in the 
satellite observations (due, for example, to scattering by aerosols) could produce errors in the 
derived emissions fields large enough to prevent them from being useful for treaty verification. 
Therefore future treaty verification will require significant improvements in the precision and 
accuracy of the remote sensing measurements, new approaches for inverting satellite radiance 
measurements over partially clouded regions, and order of magnitude increases in the spatial 
coverage of the high-frequency in situ measurements.  

5.1.2 Improvements needed to current oceanic monitoring systems 

For the purpose of a greenhouse gas observing system, there is a major lack of in situ pCO2 
measurement in the ocean from which to infer air-sea exchange of CO2 (see Figure 3.1.2). 
Systematic and regular measurement of pCO2, particularly in very under sampled Southern 
latitudes, which cover important parts of the world ocean and are among the most active players 
of oceanic variability, will be essential. Additional long ocean time series (such as BATS, 
HOTS, see Section 3.1.2) are also needed. Stations such as these in higher latitude regions are 
particularly essential. The largest sink of anthropogenic carbon is the Southern Ocean, yet this 
region has some of the least measurements. 

One of the hardest issues in ocean biogeochemistry models is to achieve the correct flux of 
carbon from the surface ocean to depths. This process effectively “stores” carbon away from the 
atmosphere. The processes that govern this flux though are extremely complex and involve the 
types and abundances of organisms in the sunlight layers as well as the sinking and decomposing 
timescales of the organic matter that they produce. Yet there is very little measurement of these 
fluxes (see discussion in Section 3.1.1). A network of consistent measurements, possibly both 
sediment traps and isotopic, needs to be established. 

The data with the most global and temporal coverage are those provided by satellite 
measurements. Though these measurements (chlorophyll, primary production) have large errors, 
long records provide a means to see (and hopefully understand) the inter-annual variability and 
trends of the ocean biological pump of carbon. Continued and consistent satellite missions 
measuring ocean color are essential. Consistency of waveband intervals would greatly aid in 
maintaining a useful long record. 

Measurements of other greenhouse gases such as methane and N2O are currently not wide 
spread. More regular and wider coverage of these gases in the ocean needs to be undertaken. 

5.1.3 Improvements needed to current land monitoring systems 

While the use of land surface models with spatially explicit time series data sets has improved 
the ability to capture spatial and temporal variations in greenhouse gas emissions from land 
ecosystems based primarily on associated variations in climate, the lack of information on 
relatively fine-scale distribution of environmental factors and carbon, nitrogen and water stocks 
across the land surface has limited the ability of these models to predict GHG fluxes more 
accurately. Traditionally, these models are parameterized with limited observational data 
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sampled at relatively small spatial (0.1 m2 to 1 ha) and temporal (minutes to years) resolutions 
and are then applied over extended spatial (0.5º latitude x 0.5º longitude) and temporal (decades 
to centuries) scales. Thus, regional estimates by these models may be biased by their scaling 
assumptions to represent plot scale dynamics at larger scales (Rastetter et al., 1992, 2003; 
Kicklighter et al., 1994; Rastetter, 1996; Williams et al., 2002).  

Fine-scale spatial variations in GHG emissions from land ecosystems are primarily influenced 
by topography, variations in soil characteristics, and human and natural disturbances. As 
described earlier, while some land surface models consider the influence of some major 
disturbances (e.g., deforestation, row-crop agriculture and wildfires), the influence of other major 
disturbances (e.g., insect outbreaks, urbanization/suburbanization) are not currently considered. 
These models also do not consider more subtle changes to ecosystem dynamics imposed by ice 
storms, wind damage, floods, selective logging, fuel-wood gathering, or land management 
practices (e.g., fertilizer application, irrigation, tillage) that may have a large influence on the 
storage of carbon in land ecosystems and GHG emissions.  

The recent availability of new, fine-resolution data sets and development of some new 
measurement approaches will allow improvements in the characterization of environmental 
factors and carbon stocks across the Earth’s land surface, which in turn, will help to improve the 
parameterization and evaluation of land surface models. For topography, the recent availability 
of fine resolution (30 m x 30 m) topography developed from imagery collected by the Shuttle 
Radar Topography Mission (SRTM3; Farr et al., 2007) for about 80% of the Earth’s surface 
potentially allows modeling groups to improve their consideration of drainage and small land 
depressions on storage of soil moisture in the landscape and its influence on GHG emissions. 
Because the spatial resolution of existing soil maps for most parts of the world are too coarse to 
help with practical land management, considerable effort is going into the development of a 
better digital soil map of the world (Sanchez et al., 2009) based on information of soil properties 
determined from soil pit analyses, SRTM3 topography, local climate, land cover and remote 
sensing imagery from a number of satellites including QuickBird, LANDSAT, MODIS and 
AVHRR. The digital map is being organized to provide information at a variety of spatial scales 
with a basic product for small-holder farmers having a resolution of 30 m x 30 m. For 
aboveground carbon stocks, Baccini et al. (2008) recently used MODIS data to describe spatial 
variations in forest carbon density in sub-Saharan Africa at a resolution of 1 km2. The results 
matched well with comparable results from an analysis of lidar metrics from the Geoscience 
Laser Altimetry System (GLAS) instrument on the Ice, Cloud, and Elevation Satellite (ICESAT). 
In the Peruvian Amazon Basin, Asner et al. (2010) recently used airborne lidar to document 
variations in the standing stock of carbon in aboveground vegetation airborne and the influence 
of land-use change at a spatial resolution of 0.1 ha.  

In addition to the development of fine resolution data sets, there have been other recent 
attempts at improving the measurement of error and uncertainty associated with determining 
carbon and nutrient budgets from field studies (Rastetter et al., 2010; Yanai et al., 2010).  
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Besides scaling and uncertainty considerations, there are some natural phenomena that 
influence greenhouse gas emissions that need more attention in land surface models. One such 
phenomenon is how warming-induced permafrost degradation and associated thermokarst 
dynamics influence GHG emissions.  

To address the need for more observations of the influence of ecosystem dynamics on land 
GHG emissions (Schimel et al., 2000, 2001), a number of observing networks have recently been 
initiated including a network of eddy covariance sites (FLUXNET; http://www.fluxnet.ornl.gov), 
the National Ecological Observatory Network (NEON; Schimel et al., 2007; 
http://www.neoninc.org) and the Arctic Observatory Network (AON; http://www.aoncadis.org). 

5.2 Future Developments 

New measurement technologies are beginning to emerge that have the potential to dramatically 
reduce the uncertainty of GHG emissions estimates. Also, further advances in the knowledge of 
source and sink processes and oceanic and atmospheric circulations, and the resultant 
improvements in the accuracy of process models will further lower uncertainties. Finally, the 
inclusion of reliable economic, production and trade flow data along with the GHG measurement 
data could also improve emissions estimates. Some examples are briefly outlined below. 

5.2.1 High-frequency carbon dioxide, methane and nitrous oxide isotopologue observations 

For greenhouse gases that have natural, anthropogenic, industrial and biogenic emissions, 
such as CO2, CH4 and N2O, measurements of atmospheric abundances alone are often inadequate 
to differentiate precisely among these different sources. High frequency in situ measurements of 
not just the total mole fractions of these gases, but also their isotopic compositions (12C, 13C, 14C, 
14N, 15N, 16O, 18O, H, D) are a new frontier in global monitoring and hold the promise of 
revolutionizing understanding of the natural cycles of these gases and verifying claims of 
emission reductions. High-frequency in situ isotopic measurements are now becoming feasible 
using optical (laser) detection. Recent improvements in mid-infrared quantum cascade lasers 
(QCL) enable continuous wave (CW) operation near room temperature with higher power, 
narrower line-widths, and higher spectral mode purity than previously possible. For CH4 and 
N2O, automated cryogenic pre-concentration will be necessary to measure their isotopic 
compositions with the precision necessary to differentiate their various surface fluxes (biogenic, 
anthropogenic) and photochemical sinks.  

While optical instruments to measure the stable isotopic composition of ambient CO2 currently 
exist, their sensitivity needs improvement. Current optical CH4 and N2O isotopic instruments are 
capable of analyzing the stable isotopic composition of these gases at the much-elevated 
concentrations near their sources, but they lack the sensitivity to measure this composition at 
ambient concentrations. A combination of automated pre-concentration and optical detection 
could conceivably achieve this sensitivity. In this respect, MIT has recently received a 4-year 
NSF-MRI grant to develop and deploy two automated high frequency laser-based instruments for 
analysis of the isotopologues and isotopomers of N2O. Isotopic ratios will be monitored using 
tunable infrared laser differential absorption spectroscopy (TILDAS) with CW-QC lasers. This 
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technology is well suited for long term deployment at remote sites as the instruments are fully 
automated and can also be accessed and controlled via the Internet. The new instruments will 
monitor four isotopologues/isotopomers of nitrous oxide (15N14N16O, 14N15N16O, 14N14N18O and 
14N14N16O) with a precision of at least 0.025 per mil (‰) for the 15N isotopomers of N2O. The 
projected precision for 14N14N18O is about 0.05‰. The development tasks for the nitrous oxide 
instrument include a detailed optical design, infrared detector optimization, calibration system 
design, and the design and implementation of the cryogenic pre-concentration system. This pre-
concentration will be achieved through development of a new generation high efficiency cryo-
focusing trap and a sample transfer module that is also being designed to serve for CH4 isotopic 
measurements. The instrument development and deployment will be staged over a four-year 
period. During the first year, we are focusing on instrument design and development. During the 
second year we will construct the first prototype instrument capable of quantifying the 
aforementioned isotopomer/isotopologue abundances that will be deployed during the third year 
at one of the AGAGE stations. During the third year, we will also design and construct the second 
isotope monitor using the experience gained with the prototype instrument. This instrument will 
be based at MIT and be used primarily for measurements at strongly emitting surface sites (e.g., 
soils) to characterize for the first time their isotopic signatures at high frequency. During the 
fourth year, we will continue testing and improving the instruments as we perform sample 
analyses with the MIT instrument and monitor and support the instrument deployed at the 
AGAGE station. Experience gained from the AGAGE deployment will then be used to finalize 
the instrument designs. These final designs will form the basis for more extensive N2O and CH4 

isotope monitor deployments at AGAGE and other global network stations in the future. 

5.2.2 Space-Based Differential Absorption Lidar (DIAL) 

Current space-based greenhouse gas observations rely on spectral measurements of 
backscattered or reflected sunlight (particularly in the near-infrared). This limits these 
observations to the daytime and at low-latitude, and therefore could induce a bias in the derived 
emissions. Plans are underway for active systems in which space-based instruments detect CO2 

concentrations using lidar. Such potential missions are NASA Ascends (Michalak et al., 2008) 
and the ESA’s A-SCOPE (Kaminski et al., 2010). The use of lidar will allow measurements 
throughout the day at all latitudes. Further, a measurement of the atmospheric path is obtained, 
providing information about scattering by aerosols. As summarized in the NRC Report (Pacala et 
al., 2010), DIAL techniques have significant potential for measuring both vertical profiles and 
column amounts of important GHGs. Ehret et al. (2008) estimated systematic errors in 
measurements of CO2, CH4, and N2O columns from satellite-borne DIAL instruments and 
concluded that they were less than 0.4% for CO2, 0.6% for CH4, and 0.3% for N2O. DIAL 
observations from aircraft are significantly easier than satellite measurements due to much 
shorter distance to surface and the lack of interference from high- and mid-level clouds. NASA 
has carried out studies of aircraft-borne DIAL measurements of CO2 1.57 µm as a step toward 
satellite measurements (Browell et al., 2008; Abshire et al., 2009). Deploying a second lidar that 
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simultaneously measures the column amount of oxygen (O2), that is a very accurate indicator of 
the total amount of dry air in the column, avoids the problem of having to convert a column 
measurement to a mole fraction. Instrumentation problems, such as maintaining and monitoring 
long-term laser stability, are among the main challenges in the development of the needed 
precise DIAL systems. 

5.2.3 Improved and new estimates of air-sea exchange of CO2 

Obtaining global patterns of the air-sea fluxes of greenhouse gases are difficult. As explained 
in Section 3.1, the most available dataset of the air-sea fluxes of CO2 are those of Takahashi et 
al. (2009) calculated from direct pCO2 measurements. However there are significant 
uncertainties with these estimates (maybe as much as 50%). Inverse estimates using a suite of 
ocean general circulation model (GCM) have also been undertaken (e.g., Mikaloff Fletcher et al., 
2007; Gruber et al., 2009). These additional estimates (and there comparisons to the pCO2 
estimate have provided greater understanding of these fluxes. However additional and separate 
methods do need to be advanced in this regard. The model framework we suggest in this report 
would be one way forward. However we suggest that additional observation-only based 
inversion techniques such as those done for heat by Macdonald et al. (2003) may offer a new 
way forward for calculating air-sea fluxes of carbon dioxide. From an understanding the 
inventory of carbon from observations, constrained velocity fields and enforcing conservation, 
this method could provide information of where carbon must enter or leave the ocean. 

5.2.4 Profiling Lagrangian Platforms for measuring ocean biogeochemical data 

The international Argo float program (described in Section 3.1.3) presents a huge monitoring 
array of various physical aspects of the ocean. In the near future many of these floats will include 
chlorophyll and backscattering sensors. Recently new technology has allowed an oxygen sensor 
to be added to these floats successfully (Johnson et al., 2009). Technology advances (in different 
degrees) is underway to additional attach nitrate, pCO2, pH, optical sensors to these profiling 
floats. Such an array of floats would vastly improve the sampling of the important 
biogeochemical properties over the global ocean. 

5.2.5 Enhanced coupled Forward Models and their Adjoints 

In this report we recommend a modeling framework that will:  
• Contain a detailed economics model that will provide initial estimates of release rates of 

anthropogenic greenhouse gases to the atmosphere, and will help attribute emissions to the 
nations responsible through use of trade-flow information on fuels, agricultural products 
and energy-intensive goods. 

• Simulate atmospheric and oceanic trace gas transport and chemistry using the highest 
resolution meteorological and oceanic analyses available. 

• Simulate terrestrial sources and sinks of CO2, CH4 and N2O using a natural and managed 
ecosystem model, constrained offline by meteorological data and hydrological 
measurements. 
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• Simulate natural oceanic sources and sinks of CO2, CH4 and N2O using a physical-
biogeochemical-ecosystem model. 

• Be fully coupled between each model component, such that global budgets of all greenhouse 
gases are fully accounted for at all times and change strictly, in addition to emissions, 
according to known physical and biogeochemical conservation laws. 

• Be fully adjoined in order to quantify the sensitivity of all of the described measurements 
throughout the model environment, to changes in each uncertain model parameter. This 
adjoint system will allow the incorporation of the current measurements, and desired future 
observations, to improve the accuracy of estimates of both emissions and uncertain model 
parameters. The simultaneous determination of uncertain anthropogenic and natural model 
parameters is crucial, since this will allow covariance information between various model 
components and the residual uncertainties to be quantified. 

5.2.6 Inclusion of Reliable Economic Data 

The accuracy of emission estimates is expected to be significantly improved by inclusion of 
a reliable data-based economics model that will provide initial estimates of release rates of 
anthropogenic greenhouse gases to the atmosphere, and will help attribute emissions to the 
nations responsible through use of trade-flow information on fuels, agricultural products and 
energy-intensive goods. The most efficient way to incorporate economic data is to develop an 
accounting framework that in the first step takes advantage of available data (as discussed in 
Section 3.4). The required model could follow the IPCC three-tier methodology with the tier 
level being determined based on data availability, the level of detail needed to adequately 
constrain emissions estimates, and the degrees of freedom in the inverse approach. Within the 
model, the trade of emission-containing goods between countries will be accounted for using 
trade data so that measured emissions from in situ stations and satellite networks will match the 
emissions of country consumption, not production. Although the methodology is laid out, 
additional work will need to be done to construct a system for mapping the economic data to a 
global grid. The most crucial improvement in economic data is greater spatial detail (ideally 
gridded at 0.5° latitude x 0.5° longitude, or finer). This would include detail on the location of 
large point sources of emissions (e.g., power plants, etc.). Such data generally exist at some level 
but need to be assembled into a digitized global database. Similarly data on transport networks 
are needed.  
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Glossary 

Measurables 
CFC = chlorofluorocarbons 
Chl = chlorophyll (generally Chl a) 
DIC = dissolved inorganic carbon 
DIN = dissolved inorganic nitrogen 
DOC = dissolved organic carbon 
DON = dissolved organic nitrogen 
DOP = dissolved organic phosphorus 
GHG = greenhouse gas 
HCFC = hydrochlorofluorocarbon 
HFC = hydrofluorocarbon 
HPLC = high-performance liquid chromatography 
LLGHG = long-lived greenhouse gas 
PAR = photosynthetically available radiation 
pCH4 = partial pressure of methane 
pCO2 = partial pressure of carbon dioxide 
PFC = perfluorocarbon (CF4, C2F6, C3F8, etc.) 
PIC = particulate inorganic carbon 
pN2O = partial pressure of nitrous oxide 
POC = particulate organic carbon 
PON = particulate organic nitrogen 
POP = particulate organic phosphorus 
 
Acronyms and terminology 
ACTM = Atmospheric chemical transport model 
AD = automatic differentiation 
AFEAS = Alternative Fluorocarbons Environmental Acceptability Study (http://www.afeas.org/) 
AGAGE = Advanced Global Atmospheric Gases Experiment (http://agage.eas.gatech.edu/) 
AIRS = NASA Atmospheric Infrared Sounder (http://airs.jpl.nasa.gov/) 
AMT = Atlantic Meridional Transect (http://www.amt-uk.org) 
AMOC = Atlantic Meridional Overturning Circulation (http://www.atlanticmoc.org/) 
AON = Arctic Observatory Network (http://www.aoncadis.org) 
ATM = Atmospheric Transport and Chemistry Model 
AVHRR = Advanced Very High-Resolution Radiometer  
BATS = Bermuda Atlantic Timeseries (http://bats.bios.edu/) 
Bio-ECCO = an ocean biogeochemical and ecology model 
CarboEurope = Project to assess European carbon balance (http://www.carboeurope.org/) 
CARIACO = Carbon Retention in a coloured ocean project (Cariaco basin time series station) 
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CARIBIC = Civil Aircraft for the Regular Investigation of the Atmosphere Based on an 
Instrument Container (http://www.caribic-atmospheric.com/) 

CARINA = Carbon dioxide in the Atlantic Ocean (http://cdiac.ornl.gov/oceans/CARINA/) 
CCGG = Carbon Cycle Greenhouse Gases Group (http://www.esrl.noaa.gov/gmd/ccgg/) 
CDIAC = Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/oceans/) 
CIAB = Coal Industry Advisory Board, http://www.iea.org/ciab/ 
CLIVAR = Climate Variability and Predictability (http://www.clivar.org/) 
CLM = Community Land Model; UCAR model of biogeophysics, hydrologic cycle, 

biogeochemistry and dynamic vegetation (http://www.cgd.ucar.edu/tss/clm/) 
CMIP = Coupled Model Intercomparison Project (http://www-pcmdi.llnl.gov/projects/cmip/)  
CPR = Continuous Plankton Recorder (http://www.sahfos.ac.uk/) 
CRF = Common Reporting Format 
CTM = chemical transport model 
CTV = climate verification treaty 
CW = continuous wave  
DIAL= differential absorption lidar 
DNDC = The DeNitrification-DeComposition model of nitrogen and carbon biogeochemistry 
ECCO = Estimating the Circulation and Climate of the Ocean (http://www.ecco-group.org) 
ECD = electron capture detector; used to measure trace species such as SF6 
EDGAR = Emissions Database for Global Atmospheric Research 
EIA = U.S. Energy Information Administration (http://www.eia.doe.gov/) 
ENSO = El Niño/Southern Oscillation 
ESIA = European Semiconductor Industry Association (http://www.eeca.eu/) 
ESRL = NOAA Earth System Research Laboratory (http://www.esrl.noaa.gov/) 
EVI = Enhanced Vegetation Index 
FLUXNET = network of CO2 flux towers (http://www.fluxnet.ornl.gov) 
FTIR = Fourier transform infrared spectrometer 
GC = gas chromatograph(y) 
GEOSECS = Geochemical Ocean Sections Study 
GEOTRACES = program investigating marine biogeochemistry (http://www.geotraces.org/) 
GLODAP = Global Ocean Data Analysis Project (http://cdiac.ornl.gov/oceans/glodap/) 
GMD = NOAA-ESRL Global Monitoring division 
GOSAT = Japan Aerospace Exploration Agency Greenhouse Gases Observing SATellite 

(http://www.jaxa.jp/projects/sat/gosat/index_e.html) 
GTAP v7 = Global Trade Analysis Project version 7 (http://www.gtap.agecon.purdue.edu/) 
GWP = global warming potential 
HAIPER = High-Performance Instrumented Airborne Platform for Environmental Research 
Hessian = matrix of second partial derivatives of observations to state vector elements 
HIPPO = HAIPER Pole-to-Pole Observations 
HOTS = Hawaii Ocean Time Series (http://hahana.soest.hawaii.edu/hot/hot_jgofs.html) 
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IBUKI = GOSAT (http://www.jaxa.jp/projects/sat/gosat/index_e.html) 
IBP = International Biological Programme, predates the LTER 
IDE = Institute of Developing Economics, (http://www.ide.go.jp/English/) 
IEA = International Energy Agency, (http://www.iea.org/) 
IFA = International Fertilizer Association, (http://www.fertilizer.org/) 
ILTER = International Long Term Ecological Research network, (http://www.ilternet.edu) 
IPCC = Intergovernmental Panel on Climate Change 
IRRI = International Rice Research Institute, (http://irri.org/) 
Jacobian = matrix of first partial derivatives of observations to state vector elements 
JGOFS = Joint Global Ocean Flux Study (http://usjgofs.whoi.edu/) 
Kerfix = Southern Ocean Time series station – 50S 68E 
Lidar = Light detection and ranging 
Medusa = GC-MS system with preconcentration used in the AGAGE network for measuring 
MITgcm = MIT general circulation model (http://mitgcm.org)  
MODIS = Moderate-resolution Imaging Spectroradiometer (http://oceancolor.gsfc.nasa.gov/) 
MOMENTO = Marine Methane and Nitrous Oxide 
MOZART = Model for Ozone and Related Tracers; chemical transport model developed at 

NCAR 
MS = mass spectrometry 
NAO = North Atlantic Oscillation 
NASA = U.S. National Aeronautics and Space Administration 
NCAR = U.S. National Center for Atmospheric Research 
NCEP = U.S. National Center for Environmental Prediction 
NDACC = Network for the Detection of Atmospheric Composition Change 

(http://www.ndsc.ncep.noaa.gov/) 
NDVI = Normalized Difference Vegetation Index; an index used to determine whether a point 

on the surface has live vegetation or not 
NEON = National Ecological Observatory Network (http://www.neoninc.org) 
NIST = U.S. National Institute for Standards and Technology 
NOAA = U.S. National Oceanic and Atmospheric Administration 
NOBM = NASA Ocean Biogeochemistry Model 
OCO = Orbiting Carbon Observatory (http://oco.jpl.nasa.gov/) 
OSSE = Observing System Simulation Experiment 
OWS-I = Ocean Weather Station “India” 
OWS-M = Ocean Weather Station “Mike” 
PAPA = Ocean Weather Station “Papa” 
QCL = quantum cascade laser 
SCIAMACHY = Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 
SeaBASS = SeaWiFS Bio-optical Archive and Storage System 

(http://seabass.gsfc.nasa.gov/seabass/) 
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SeaWiFS = Sea-viewing Wide Field-of-view Sensor (http://oceancolor.gsfc.nasa.gov/) 
SOLAS = Surface Ocean Lower Atmosphere Study (http://www.solas-int.org) 
TCCON = Total Carbon Column Observing Network (http://www.tccon.caltech.edu/) 
TEM = Terrestrial Ecosystem Model; model of land-based ecosystems developed at the 

Marine Biology Laboratory, Woods Hole Oceanographic Institute 
TILDAS = tunable infrared laser differential absorption spectroscopy 
TRAGNET = Trace Gas Network 
TTO = Transient Tracers in the Oceans 
UCAR = University Corporation for Atmospheric Research (http://www2.ucar.edu/) 
UNFCC = United Nations Framework Convention on Climate Change 
UQ = uncertainty quantification 
VERTIGO = VERtical Transport In the Global Ocean 

(http://cafethorium.whoi.edu/website/projects/vertigo.html) 
WIOD = World Input-Output Database (http://www.wiod.org/) 
WMO-GAW = World Meteorological Organization’s Global Atmosphere Watch program 

(http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html) 
WOA = World Ocean Atlas (http://www.nodc.noaa.gov/OC5/WOA09/woa09data.html) 
WOCE = World Ocean Circulation Experiment 
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