

Overview

Global ocean model with self-assembling phytoplankton communities

• Allow nitrogen fixation with trade-off of slow growth and high Fe:P

- Emergent diverse population of diazotroph analogs
- Plausible habitat and abundances
- Strong regulation by iron availability

Described concisely using resource competition theory

The Model

- Global ocean circulation and biogeochemistry model
- Initialize many tens of phytoplankton "types"
- Random assignation of physological functionality and sensitivities to light, temperature and nutrients
- Constrained by simple, size-based trade offs.
- Nitrogen fixation possible trait, randomly assigned

• Trade-offs: Low max growth rate, high Fe:P stoichiometry

Diverse Diazotrophs in a Model Ocean

Contact: mick@ocean.mit.edu

Model Solutions: Emergent Diazotroph Analogs

What Regulates the Habitat of the Diazotrophs?

 Inhabit only warmer waters but temperature is not the key control. Model diazotrophs with cold optimal growth temperatures are never persistent.

• Confined to oligotrophic (warm) waters where nitrogen stress makes the trade-off between nitrogen fixation and slow growth viable.

 Sensitive to iron availability. In the South Pacific changes to the atmospheric iron source can switch the diazotroph population on and off.

• R* of iron, from resource competition theory (Tilman, 1977), accurately characterizes diazotroph habitat.

Modeled total diazotroph biomass (μ mol P I⁻¹)

Low solubility of aeolian iron

• White contours indicate where $R^{*}(Fe) = [Fe_{-}]$. • Resource competition theory (Tilman, 1977; ...) predicts this should bound habitat of diazotrophs if iron is the limiting resource.

habitats

Fanny Monteiro, Mick Follows, Stephanie Dutkiewicz, Sallie Chisholm, Jason Bragg Massachusetts Institute of Technology

Total diazotroph biomass (µmol P l⁻¹)

100 150 High solubility of aeolian iron

Diverse Model Diazotrophs

• Reflecting the observed diversity of nitrogen fixers in the ocean, diazotrophy can be a successful strategy associated with a variety of other physiological characteristics. • Emergent analogs of *Trichodesmium*, unicellular diazotrophs and diatom-diazotroph assocations. Plausible distributions and abundances of the three groups.

Distributions and Comparison to Observations

Published observations converted to estimated phosphorus biomass

Acknowledgements We are grateful for support f rom the Gordon and Betty Moore Foundation Marine Microbiology Initiative.

