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ABSTRACT

A synthesis is made of simple dynamics with a wide variety of observations to produce a zero-order approximate
analytical spectral description of low-frequency oceanic variability in the Northern Hemisphere oceans. Because
the spatial inhomogeneity is so great, one must account for it at lowest order, rendering a power density spectrum
only a first step toward to a full statistical description. The fundamental hypothesis is that there exists, for each
vertical mode of variability, n, a function F(k, l, v, n, f, l), where (k, l ) are local horizontal wavenumbers; v
is frequency; and (f, l) are latitude and longitude, respectively, and that can, as a first approximation, be
represented in a simple factored form. Data from altimetry, moored current and temperature sensors, acoustic
tomography, and XBTs are used to find a first guess form for F(k, l, v, n, f, l), which is at least semiquantitatively
accurate. A useful model spectrum proves to be representable as a product of separate factors for wavenumber,
frequency, mode number, and a function of latitude and longitude. The results raise dynamical questions con-
cerning the forms that emerge, and present a challenge for improvement of the representation by existing and
future observations. Numerous improvements can be made to the detailed structure. A number of illustrative
applications are then made, including calculation of an unobserved spectrum (velocity wavenumber) and the
detection of climate-scale shifts in ocean property fluxes.

1. Introduction

Over the past several decades, the oceanographic
community has acquired a large variety of measure-
ments of oceanic variability. This variability depends
on the data type (e.g., sea level, velocity at depth), time
and space scales, and the location. The details lie in
many millions of separate measurement values. One is
led to ask whether there are some simple analytical de-
scriptors of the many data that would permit one to unify
what is otherwise a bewildering amount of detail.

The synthesis of internal waves by Garrett and Munk
(1972, hereafter GM) revolutionized that field by show-
ing that a comparatively simple set of rules described
the seemingly highly disparate results. Their spectral
density estimate led to an explosion in knowledge of
internal waves, both observationally and in stimulating
theoretical work to understand the particular descriptive
rules. We are motivated by the success of that effort to
ask whether an analogous set of rules exist for oceanic
variability at frequencies lower than the local inertial
frequency. From the existing literature on oceanic var-
iability, one expects, a priori, a much more difficult task:
GM were able to assume temporal and spatial station-
arity (homogeneity) and lateral and vertical isotropy.
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None of these assumptions can be expected to be valid
at lower frequencies, and it is not at all obvious whether
an analogous synthesis is possible.

Our working definition of ‘‘low frequency variability’’
is motions on timescales longer than the inertial period
and shorter than a few years, and with spatial scales rang-
ing from tens to thousands of kilometers. Theoretically,
there is no low-frequency cutoff for periods shorter than
the lifetime of the ocean, but because most observations
span only months to a year or two, we leave the description
of very low-frequency motions (beyond a year or two) to
the future. A long wavelength cutoff does exist, given by
the circumference of the earth, which is nearly 40 000 km.
Again, the practicalities of array dimensions, and the very
strong inhomogeneities associated with boundary currents,
limit us in practice to the oceanic interior and to longest
wavelengths of about 1000 km. This scale is sufficiently
short that to the extent that we find the spatial inhomo-
geneity is on yet longer scales, we will be making a two-
scale approximation: a locally uniform spectrum is mod-
ulated by a slowly changing geographical function. For a
zero-mean stationary Gaussian process, it is easy to show
that the power density spectrum is a complete statistical
specification [Gille and Llewellyn-Smith (2000) show that
altimetric velocity data are at least locally indistinguishable
from Gaussian].

For technical purposes however, the energy on wave-
lengths longer than 1000 km cannot be ignored com-
pletely, both because the observed spectrum of sea sur-
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face height on long wavelengths is slightly red between
about 400 km and the longest possible wavelength and
we need to suppress Gibbs effects, which would oth-
erwise be present in the corresponding covariance func-
tions. In this study, the wavenumber spectral structure
at wavelengths longer than 1000 km and shorter than
40 000 km is derived in part by extrapolation.

The equatorial waveguide is considered here to be a
boundary region, and is not explicitly described. Mixed
layer motions and surface temperature variations also
lie beyond the scope of the dynamics used. Despite these
limitations, a successful spectral description could still
apply to most of the volume of the world ocean.

2. Dynamic model for low frequency motion

We take as our basic model, the linearized b plane,
equations (e.g., Gill 1982) for perturbation quantities
and adopt the conventional definitions of u, y, w, r, and
p. Separating variables,

`

p(x, y, z, t) 5 p (x, y, z, t)O n
n50

`

5 P (x, y, t)F (z), (1)O n n
n50

leads to a sum over orthonormal vertical modes, Fn(z),
satisfying (Gill 1982):

d 1 dF (z)n 25 2r F (z), (2)n n21 2dz N (z) dz

where is a separation constant.2rn

Here, w(z) is proportional to another vertical mode
function, Gn(z):

1 dF (z)nG (z) 5 , (3)n 2N (z) dz

where

2d G (z)n 2 21 r N (z)G (z) 5 0. (4)n n2dz

Equations (2) and (4) are readily solved numerically.
Analytic solutions to the vertical equation are available
for a few forms of N(z), including the exponential profile,

azN(z) 5 N e ,0 (5)

which following GM, we will adopt for use over the
whole depth with N0 5 0.007 s21 and a 5 0.001 m21

in dimensional form. Equation (5) is a reasonable fit to
the actual buoyancy profile below 1 km. Use of a re-
gionally varying form, perhaps with arbitrary vertical
structure, is one of the ways in which the results below
could be improved. Here the relative insensitivity of Fn,
Gn to details of N(z) is exploited.

Observations strongly suggest the presence of vertical
standing modes for low frequency variability. Given the
exponential profile of N(z) and vertical boundary con-
ditions, Eqs. (2) and (4) can be solved analytically. The
solutions of the vertical eigenvalue problem are given
in appendix A.

The Rossby radius of deformation for mode n can be
obtained from rn through

1
R 5 . (6)n f rn

The first four eigenvalues, rn, are listed in Table 1 and
can be compared to the values from climatology of Chel-
ton et al. (1998).

The horizontal structure for each mode is represented
in the form of propagating waves:

P (x, y, t)n

1` 1` 1`

i2p (kx1ly2vt)5 p̃(k, l, v, n)e dk dl dv,E E E
2` 2` 2`

(7)

where (k, l) are the local horizontal wavenumbers and
v is the frequency. Cyclical frequencies and wave-
numbers are used here. The full solution for each mode,
in pressure, is

1` 1` 1`

i2p (kx1ly2vt)p (x, y, z, t) 5 p̃(k, l, v, n)F (z)e dk dl dv. (8)n E E E n

2` 2` 2`

Define

p̃(k, l, v, n)
c̃(k, l, v, n) 5 , (9)

r f0

which represents the Fourier transform of the stream-
function for each mode. If the signal is real *(k, l, v,c̃
n) 5 (2k, 2l, 2v, n), where the asterisk denotes thec̃
complex conjugate.

At low frequencies, given the streamfunction cn, hor-
izontal velocity can be derived through the geostrophic
relations, and density and vertical velocity can be ob-
tained from the hydrostatic equation and density con-
servation equation, respectively. Let qn(x, y, z, t) be a
generic variable for the nth mode, that is, any one of
the dependent variables pn(x, y, z, t), un(x, y, z, t), etc.
Then, for any variable,
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1` 1` 1`

i2p (kx1ly2vt)q (x, y, z, t) 5 c̃(k, l, v, n)q̃(k, l, v, n)e dk dl dv, (10)n E E E
2` 2` 2`

where q̃ is the characteristic function for each of the
dependent variables. The specific characteristic func-
tions for pressure, zonal velocity, temperature, etc., are
provided in appendix B.

3. Spectra of the model
We begin by working with the individual vertical

modes.

a. Covariance and cross-covariance
For a spatially and temporally stationary process,

^c̃(k, l, v, n)c̃*(k9, l9, v9, n)&
25 d(k9 2 k)d(l9 2 l)d(v9 2 v)^|c̃(k, l, v, n)| &, (11)

where the angle bracket represents an ensemble average.
Define

2F(k, l, v, n) 5 ^ | c̃(k, l, v, n) | &, (12)

which is the three-dimensional frequency and wave-
number spectrum of the streamfunction for each vertical
mode. For a real signal, F(2k, 2l, 2v, n) 5 F(k, l,
v, n). The autocovariance function of qn(x, y, z, t) is

1` 1` 1`

2i2p (kr 1lr 2vt )x yR (r , r , t, z, n) 5 q̃(k, l, v, z, n)q̃*(k, l, v, z, n)F(k, l, v, n)e dk dl dv. (13)q x y E E E
2` 2` 2`

Let sn(x, y, z, t) be any other generic variable; then the cross-covariance function between qn(x, y, z, t) and
sn(x, y, z, t) for a homogeneous and stationary process is

1` 1` 1`

2i2p (kr 1lr 2vt )x yR (r , r , t, z, n) 5 q̃(k, l, v, z, n)s̃*(k, l, v, z, n)F(k, l, v, n)e dk dl dv. (14)qs x y E E E
2` 2` 2`

TABLE 1. Eigenvalue, gravity-wave phase speed, and equivalent depth.

Mode
number

Eigenvalue (rn)
(s m21)

Gravity-wave
phase speed (cn)

(m s21)

Equivalent
depth (hn)

(cm)

0
1
2
3

0
0.402
0.861
1.319

`
2.48
1.16
0.76

`
63
14

6

b. Three-dimensional spectra

The three-dimensional spectra of q for fixed z are
2Y (k, l, v, z, n) 5 | q̃ | F(k, l, v, n).q (15)

If the full three-dimensional spectrum of any variable
for each mode were known, F(k, l, v, n) could be ob-
tained from (15) from any q, but no such spectrum has
ever been determined. We must resort to various esti-
mates of one- and two-dimensional projections of Y and
attempt to estimate the underlying three-dimensional
structure.

Notation is a problem. We will use a superscript (1),
(2) to denote the dimensionality (apart from z, n) of the
spectrum, but must ask the reader to recognize that
changing arguments denote different functions. So for

example, (k, l, z, n) is a different function from(2)Yq

(k, v, z, n). Otherwise, the notation list becomes(2)Yq

unworkable.

c. Two-dimensional spectra

Two-dimensional spectra are
1`

(2) 2Y (k, l, z, n) 5 |q̃ | F(k, l, v, n) dv, (16)q E
2`

1`

(2) 2Y (k, v, z, n) 5 |q̂ | F(k, l, v, n) dl, (17)q E
2`

etc.

d. One-dimensional spectra

The one-dimensional frequency spectra are

1` 1`

(1) 2Y (v, z, n) 5 |q̃ | F(k, l, v, n) dk dl (18)q E E
2` 2`

and the wavenumber k spectra are
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1` 1`

(1) 2Y (k, z, n) 5 |q̃ | F(k, l, v, n) dl dv, (19)q E E
2` 2`

and analogously for all others.

e. Energy level

The kinetic energy for each mode at depth z is

1` 1` 1`1
2 2E (z, n) 5 (|ũ | 1 |ỹ | )F(k, l, v, n) dk dl dv,k E E E2

2` 2` 2`

and the kinetic energy per unit surface area is
0

K (n) 5 E (z, n) dz. (20)E E k

2h

The potential energy per unit surface area is
1` 1` 1` 01

2 2P (n) 5 N |z̃ | F(k, l, v, n) dz dk dl dv.E E E E E2
2` 2` 2` 2h

The rigid-lid assumption has very little effect on the
eigenvalues and eigenfunctions of baroclinic modes; its
effect on the potential energy of baroclinic modes can
be ignored. For barotropic motions, the free surface is
important only for waves with wavelengths greater than
about 2000 km. The potential energy contribution from
the barotropic mode is set to zero here.

f. Heat and momentum transport

For this linear model,

^u u & 5 ^y u & 5 0,n n n n (21)

and there is no eddy heat transport. Wunsch (1999a)
estimated the eddy heat fluxes based on quasi-global
current meter and temperature mooring records. He con-
cluded that eddy heat fluxes were generally quite small
with respect to total heat fluxes in the ocean interior
and only significant near western boundary current areas
and in the Southern Ocean so that (21) is not a crippling
assumption.

The momentum transport is

1` 1` 1`

2 2^u y & 5 R (0, 0, 0, z, n) 5 2F (z) 4p klF(k, l, v, n) dk dl dv,n n uy n E E E
2` 2` 2`

which vanishes only if F(k, l, v, n) is isotropic.

4. Observed spectra

a. A First-guess k, l, v spectral form

The simplest form is one that factors, and we postulate
as a working hypothesis,

F(k, l, v, n, f, l) 5 B (k)C (l)D (v)E (n)I(f, l). (22)n n n 0

Here Bn(k) and Cn(l) are the zonal- and meridional-
wavenumber spectral densities of nth mode respectively;
Dn(v) is the corresponding frequency spectrum; E0(n)
is a constant determining the energy partition among
modes; and I(f, l) is a slowly varying spatial function.
[As discussed by Zang (2000), the frequency and wave-
number separated form in (22) does not distinguish
westward- from eastward-going energy. A more so-

phisticated frequency and wavenumber coupled form for
F(k, l, v, n, f, l) is eventually required to represent
these effects.]

b. Horizontal inhomogeneity

The most striking property of low frequency kinetic
energy is the variation of energy level with position.
Figure 1a (Wunsch 1997) shows surface kinetic en-
ergy from the current meters in the North Pacific; Fig.
1b (Stammer 1997) displays the surface kinetic energy
from the altimeter in the North Pacific. There is rough
agreement between the two estimates. The corre-
sponding estimates in the North Atlantic are shown
in Fig. 2.

The zonal averages between 08 and 3608E of surface
eddy kinetic energy Ek and sea surface slope variance
Vsl 5 Ek sin2f are provided as a function of latitude in
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FIG. 1. Surface eddy kinetic energy in the region of North Pacific. (a) from the current meters (Wunsch 1997), (b) from TOPEX/Poseidon
data (Stammer 1997), and (c) from the empirical formula.

Fig. 3 (Stammer 1997). The zonally averaged Ek de-
creases from a maximum near the equator to a minimum
in high latitudes. Between 258S and 258N Vsl remains
almost constant. So equatorward of 258, the zonally av-
eraged Ek is approximately inversely proportional to
sin2f.

We represent the surface eddy kinetic energy in the
North Pacific as the sum of four parts: 1) a uniform back-
ground, 2) a low latitude component (south of the energetic
currents) where Ek } (1/sin2u), 3) a high energy region
with a center near (358N, 1508E), and 4) a low energy
area in the north North Pacific and expressed as



3078 VOLUME 31J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 2. As in Fig. 1 except for North Atlantic.
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2 20.0032 (l 2 150) (f 2 35)
E (f, l, z 5 0) 5 0.003 1 1 0.1 exp 2 1kP 2 5 6[ ]sin f 900 50

2 2(l 2 190) (f 2 42)
2 0.008 exp 2 1 , 1208 # l # 2708E, 108 # f # 608N5 6[ ]1600 200

(23)

in units of m2 s2. For the North Atlantic, the corresponding expression is

2 20.0035 (l 2 305) (f 2 43)
E (f, l, z 5 0) 5 0.005 1 1 0.1 exp 2 1kA 2 5 6[ ]sin f 400 80

2 2 2 2(l 2 320) (f 2 16) (l 2 320) (f 2 42)
2 0.028 exp 2 1 2 0.016 exp 2 1 ,5 6 5 6[ ] [ ]2000 200 900 50

2808 # l # 3608E, 108 # f # 608N. (24)

The expressions (23) and (24) were obtained by in-
spection. Results from Eqs. (23) and (24) are shown in
Figs. 1c and 2c, respectively, and are generally within
a factor of 2 of the observations everywhere. It remains
to determine Bn(k), Cn(l), Dn(v), and E0(n).

c. Vertical structure of kinetic energy and potential
energy

Schmitz (1978, 1988) showed that to a first approx-
imation the vertical profile of eddy kinetic energy was
independent of geography across the entire midlatitude
band. Eddy kinetic energy, Ek, dropped exponentially
from the surface to a depth of about 1200 m, then re-
mained almost constant within the abyss.

Wunsch (1997) showed that in the open North Pacific,
about 30%–40% of the water column average kinetic
energy was in the barotropic mode and about 55% was
in the first baroclinic mode. The open North Atlantic
has about 40% of the kinetic energy in the barotropic
and 50% in the first baroclinic modes. Strong deviations
from these values occur near the Gulf Stream and near
the equator, and no attempt is made here to model them
in those regions. The results by Wunsch and Schmitz
are consistent: because the first baroclinic mode is sur-
face intensified, horizontal kinetic energy will be dom-
inated by the first baroclinic mode in the upper ocean;
thus it will decay nearly exponentially in the main ther-
mocline. Within the deep water, horizontal kinetic en-
ergy remains almost constant because the deep ocean is
dominated by the barotropic mode. These results are all
reduced to the statement, for present purposes, that the
vertically integrated modal energies are in the ratio 1:
1:1/2 for the barotropic through the second baroclinic
modes.

Wunsch (1999b) inferred the vertical displacement of
an isopycnal from temperature measurements and in-
vestigated the vertical structure of potential energy in
the North Atlantic. He found that 30%–40% of the water

column average potential energy was in the first baro-
clinic mode. The ratio of kinetic energy in the first bar-
oclinic mode to potential energy was 0.2–0.4 in mid-
latitudes away from the western boundary.

d. Observed spectra of sea surface height

Pressure perturbations at the sea surface are related
to elevation changes through

p(x, y, z 5 0, t) 5 gph(x, y, t), (25)

which is correct even with the rigid-lid assumption.
Equation (25) has been used to estimate the spectrum
of p (Stammer 1997; Wunsch and Stammer 1998). How-
ever, the vertical partitioning of the modes generating
the surface pressure fluctuations must be inferred in-
dependently. Zang (2000) further investigated the spec-
tral dependence on zonal- and meridional-wavenumber
and frequency. As a representative result, Figs. 4 and 5
show the zonal-wavenumber and frequency spectrum of
sea surface height in the area 268–508N, 1958–2258E in
the North Pacific. The wavenumber spectrum spectral
slope is about 21/2 at wavelengths longer than 400 km,
increasing to about 22.5 at shorter wavelengths. Zang
(2000) found that the meridional-wavenumber spectrum
is very similar to the zonal-wavenumber spectrum. The
spectrum in Fig. 4 has a similar shape to the globally
averaged one, which can be written (Wunsch and Stam-
mer 1995)

21/2|k | , 1/40 000 # |k | # 1/400

(cycles per km)
(1) 25/2Y (k) } |k | , 1/400 # |k | # 1/150 (26)h

(cycles per km)
24|k | , 1/150 # |k |.

The frequency spectrum in Fig. 5 is dominated by the
seasonal cycle; the peak near 60 days is a residual tidal
alias. On timescales shorter than about 100 days, the
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FIG. 3. Zonal averages between 08 and 3608E of (a) Ek, (b) Vsl,
and (c) sea surface height variance plotted vs latitude (Stammer
1997).

FIG. 4. Zonal wavenumber spectrum of sea surface height from
TOPEX/Poseidon and ERS-1/2 altimeter measurements (Le Traon et
al. 1998).

FIG. 5. Frequency spectrum of sea surface height from TOPEX/
Poseidon and ERS-1/2 altimeter measurements (Le Traon et al. 1998).
The conspicuous peak is from the annual cycle and a much smaller
peak near the 60-day period is a small residual tidal alias.

spectra approximately follow an v22 power law, with
an v21/2 form at longer periods. Stammer (1997) com-
pared the wavenumber and frequency spectra in differ-
ent regions and found them to be nearly uniform in
shape in the extratropical basins. Uncertainty remains
at wavelengths shorter than about 100 km because mea-
surements by TOPEX/Poseidon at high wavenumbers
are contaminated by noise and aliasing by small-scale
physical processes such as internal waves and internal
tides (Wunsch and Stammer 1995).

e. Observed wavenumber spectra of temperature

The data used here are from the repeated XBT lines
in the North Pacific between San Francisco and Hawaii
and extend to 800 m. They were previously compared
to TOPEX/Poseidon data by Gilson et al. (1998), who
found that at wavelengths longer than about 500 km,
altimetric height variability has a coherence with steric
height of 0.9. The time-averaged wavenumber spectra
of the temperature perturbations at different depths are
displayed in Fig. 6 with a spectral shape nearly inde-
pendent of depth; this result at least partially justifies
the assumption that the modal partition is independent
of wavenumber. The temperature wavenumber spectrum
obtained by Roemmich and Cornuelle (1990) in the
South Pacific has nearly identical form.

The wavenumber spectral shape of temperature is al-
most identical to that of surface elevation with a break-
point near 400 km. The similarities of sea-surface height
and interior temperature spectra and the latter’s apparent
depth independence permit a straightforward combi-
nation of the two very different data types.

f. Observed frequency spectra of horizontal velocity
and temperature

Figure 7 displays the mean, frequency spectra of hor-
izontal velocities in the barotropic and first baroclinic
modes from measurements on 105 scattered current me-
ter moorings (Wunsch 1997). At each site, the spectra
have been normalized by their total energy before av-
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FIG. 6. Wavenumber spectra of temperature from XBT measure-
ments (Gilson et al. 1998) averaged among depths (1) 0–100 m, (2)
100–200 m, . . . , (8) 700–800 m.

FIG. 7. Estimated mean normalized frequency spectra of zonal (a) and meridional (b) velocities in the
barotropic (solid line) and first baroclinic modes (dashed line) from 105 current meter measurements (Wunsch
1997). At each site, the spectra have been normalized by their total energy before the spatial average is done.

eraging. The results for zonal and meridional velocities
in the barotropic and first baroclinic mode are very sim-
ilar. As will be seen later, in most regions the flows are
isotropic, in the sense that the difference between the
frequency spectra of the two components of horizontal
velocity is statistically insignificant. Frequency spectra
of the barotropic and first baroclinic mode also display
similar structure, implying that the frequency spectral
shape of horizontal velocity is again, to first order, in-
dependent of depth and is basically universal in shape.
Variance-preserving figures (not shown) demonstrate

that the kinetic energy is dominated by motions with
periods around 100 days—the mesoscale.

Moored temperature frequency spectra (e.g., Fig. 8)
are not very dependent on geography either and exhibit
a behavior similar to that of velocity. Away from major
topographic features, these are also essentially indepen-
dent of depth. But the energy level of the temperature
frequency spectra drops more rapidly with depth than
that of the horizontal velocity and is a consequence of
the reduction in the vertical temperature gradient with
depth.

g. Acoustic tomography data

Tomographic data integrate spatially through the
ocean, thus filtering out high wavenumbers. Assuming
that a preliminary inversion of the data has been done,
tomographic observations are reduced to a horizontal
average of temperature at fixed depths (Munk et al.
1996).

Suppose the acoustic ray path is along the east–west
direction and the equivalent horizontal tomographic
path length is L. Then it is readily shown that the fre-
quency spectral density of the tomographic temperature
average is

Y (v, z, n)d

1` 1`

25 |ũ | F(k, l, v, n)W(k, L) dk dl, (27)E E
2` 2`

where
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FIG. 8. Frequency spectrum of temperature at the depth of 635 m
at 41.08N, 1858E (Wunsch 1997). The spectrum is estimated using
the multitaper method (Percival and Walden 1993).

FIG. 9. Frequency spectra for the zonal (solid line) and meridional (dash–dotted line) component of horizontal
velocity in the barotropic and first baroclinic mode at 38.88N, 68.18W (Wunsch 1997). The ratio of the variance
of zonal component to that of meridional component in the barotropic and first baroclinic mode is 3.5 and
2.7, respectively.

2sin (pkL)
W(k, L) 5 (28)

2(pkL /)

represents the spatial filtering. Zang (1998) analyzed the
tomographic measurements from the 1987 Reciprocal
Tomography Experiment and the Acoustic Thermome-
try of Ocean Climate. He found, as expected, that, com-
pared with the temperature measurements at a point,
tomographic data change relatively smoothly over time,
because the small-scale variations have been integrated
out, and that the frequency spectra of tomographic data

follow an v22 power law at periods shorter than about
100 days. Equation (27) shows that if the ocean is ho-
mogeneous, the longer the acoustic ray path, the less
the energy level of the frequency spectra of tomographic
data. Zang (1998) found, however, that it was difficult
to identify differences in energy level as a function of
L in tomographic data, owing to spatial inhomogeneity,
etc. But there is no conflict with Eq. (27).

h. Anisotropy

Two types of anisotropy for low frequency oceanic
variability are possible: 1) The energy is not traveling
uniformly in all directions. The three-dimensional spec-
trum of sea surface height shows that there is more
energy going westward at large scales and low fre-
quencies and the difference is about a factor of 3 in the
North Pacific (Zang 2000). As mentioned above, this
type of anisotropy cannot be represented by Eq. (22)
and can only be modeled by a frequency and wave-
number coupled form. 2) Anisotropy is displayed in the
form of differences between zonal and meridional com-
ponents of horizontal velocity, which include differ-
ences in i) total energy, ii) the frequency, and iii) the
wavenumber spectra. Only a very few current meter
mooring array records of short duration provide direct
estimates of the wavenumber spectra of velocity; these
will not be discussed here (see Wunsch 1981).

Variances of the zonal and meridional components of
velocity in the barotropic and first baroclinic mode from
the current meter mooring measurements [see Wunsch
(1997) for description of the data] were calculated for
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FIG. 10. As in Fig. 9 except at 38.28N, 124.48W (Wunsch 1997). The ratio of the variance of zonal
component to that of meridional component in the barotropic and first baroclinic mode is 0.34 and 0.25,
respectively.

each site. For most of them (about 80%), the difference
is less than a factor of 2. For 92% of them, the difference
is less than a factor of 3. Significant differences typically
occur in the regions close to jets, boundaries, and fronts.
At the present level of descriptive accuracy, we will
ignore the differences, treating the horizontal kinetic
energy as first-order isotropic. The frequency spectra of
zonal and meridional components of the barotropic and
first baroclinic mode at each site were then examined.
Far from boundaries and strong jets, no anisotropy was
found in the frequency spectra which was significant
point-by-point at 95% confidence. Figures 9 and 10 pre-
sent two examples of significant anisotropy. The first
shows that the energy level of the frequency spectrum
of the zonal component is more than an order of mag-
nitude greater than that of the meridional component at
periods longer than 100 days for both the barotropic and
first baroclinic modes. The result in Fig. 10 is the op-
posite: at periods longer than 50 days, the energy level
of the meridional component is significantly higher than
that of the zonal component in the two modes. Data
used in Figs. 9 and 10 were obtained from within the
Gulf Stream and near the eastern boundary of the North
Pacific, respectively. For the open ocean, we will thus
accept the statement that the frequency spectra are in-
distinguishable from isotropic at all frequencies, rec-
ognizing that this is another approximation that is ex-
pected to break down in different ways near the ex-
cluded boundary areas.

i. Fitting F(k, l, v, n, f, l) to observations

Because most of the region is dominated by the first
few modes as described in section 4c, only the baro-

tropic and first two baroclinic modes are included in
our model: n 5 0, 1, 2. In the following, the units of
all variables are expressed in terms of meter, second,
and kelvin.

For each mode,

F(k, l, v, n, f, l) 5 B (k)C (l)D (v)E (n)I(f, l). (29)n n n 0

From the observed spectra we choose the meridional-
and zonal-wavenumber spectra as

C (k) 5 B (k)n n

37 27.2 3 10 |k |
28if 0 , |k | # 2.5 3 10

18 21/27.1 3 10 |k | 28 26if 2.5 3 10 , |k | # 2.5 3 10
5 (30)

7 25/24.4 3 10 |k |
26 26if 2.5 3 10 , |k | # 8.0 3 10

24|k |
26if |k | . 8.0 3 10 (cycles/meter).

The units of Bn(k) and Cn(k) are 1/(cycles/meter). As
described above, the finite ocean width precludes ar-
bitrarily long wavelengths. If the spectrum at wave-
numbers 0 # | k | # 2.5 3 1028 is chosen to be zero,
it will be discontinuous at | k | 5 2.5 3 1028, and Gibbs
effects will appear in the corresponding covariance
functions. To minimize the Gibbs effects, the spectrum
is chosen to diminish smoothly to zero from k 5 2.5 3
1028 to k 5 0 by choosing it to be proportional to | k | 2,
0 , | k | # 2.5 3 1028.

The frequency spectrum is taken to be
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FIG. 11. Zonal-wavenumber spectrum of sea surface height. Solid
line is the observed spectrum from TOPEX/Poseidon and ERS-1/2
altimeter measurements (Le Traon et al. 1998). Dash–dotted line is
the corresponding model spectrum.

FIG. 13. Frequency spectrum of sea surface height. Solid line is
the observed spectrum from TOPEX/Poseidon and ERS-1/2 altimeter
measurements (Le Traon et al. 1998). Dash–dotted line is the cor-
responding model spectrum. There is a striking peak at the annual
period on the observed spectrum which is not modeled here. More
generally, the model spectrum underpredicts the very low frequency
energy by about a factor of 2.

FIG. 12. Meridional-wavenumber spectrum of sea surface height.
Solid line is the observed spectrum from TOPEX/Poseidon and ERS-
1/2 altimeter measurements (Le Traon et al. 1998). Dash–dotted line
is the corresponding model spectrum.

210 21/22.5 3 10 |v |
27 if 0 , |v | # 1.16 3 10

D (v) 5n 22|v |
27if |v | . 1.16 3 10 (cycles/second).

(31)

The units of Dn(v) are 1/(cycles/second).
The partition among vertical modes is

E (0) 5 1, E (1) 5 1, E (2) 5 0.5,0 0 0 (32)

which are nondimensional.
The magnitude function is

E (f, l, z 5 0)kI(f, l) 5 . (33)
328.7 3 10

The units of I(f, l) are (m2 s22)m2. Expressions for
Ek(f, l, z 5 0) in the North Pacific and North Atlantic
are in Eqs. (23) and (24), respectively.

Given F(k, l, v, n, f, l), any spectrum of any variable
at any place can be estimated. Expressions for frequen-
cy/wavenumber spectra of sea surface height, temper-
ature, and horizontal velocity are given in appendix C,
and will be used in section 5.

5. Model/data comparison

The above expressions represent the distillation of
spectral estimates from very large quantities of data,
and it is impractical to show all the results. But the
degree to which the analytical expressions actually re-
produce the underlying original spectra needs to be ex-
amined. In this section, we will display a few typical
comparisons of original spectra with those inferred from
(29). We will be seen to have a reasonable first descrip-
tion, albeit there are inevitably some misfits and dis-
crepancies.

a. Spectra of sea surface height

The model and observed, from altimetry, zonal-wave-
number, meridional-wavenumber, and frequency spectra
are plotted in Figs. 11, 12, and 13. Observed spectra
are from the area of 258–508N, 1958–2258E described
in section 4d. The energy level inside this area is rel-
atively uniform. By (23), the average value Ek(f, l, z
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FIG. 14. Zonal-wavenumber spectrum of temperature. Solid line is
the observed spectrum from XBT measurements (Gilson et al. 1998).
Dash–dotted line is the corresponding model spectrum.

5 0) in this area is about 9.4 3 1023 m2 s22; therefore,
I(f, l) 5 1.1 3 10235 (m2 s22)m2. Figures 11, 12, and
13 show that the model spectra are reasonable fits to
the observations. One major difference between the ob-
servations and the model is that at wavelengths shorter
than 200 km, the observed wavenumber spectrum is
more red than the model spectrum. The reader is re-
minded that the gridded values used to construct the
observed spectra in Fig. 11 are produced by using a
spatial covariance function with correlation scale of
about 200 km (Le Traon et al. 1998); this correlation
partially suppresses the estimated high wavenumber
spectrum.

b. Temperature wavenumber spectrum

An observed temperature wavenumber spectrum in
Fig. 14 is from the XBT data in the eastern North Pacific
described in section 4e, running from 388, 2368E to
218N, 2028E. Surface eddy kinetic energy here is rel-
atively homogeneous, and according to (23), its mean
value is about 1.5 3 1022 m2 s22. Because the vertical
gradient of mean temperature changes strongly with lo-
cation in the upper ocean, violating the assumption of
horizontal homogeneity, we compare the model spec-
trum with the observations at the depth of 700 m; at
that depth the vertical gradient of mean temperature is
much more uniform. With a mean value of ]u0/]z of
about 0.00418C/m, the model temperature wavenumber
spectrum is plotted in Fig. 14 and the agreement with
the observed spectrum is satisfactory.

c. Frequency spectra of horizontal velocities and
temperature

Results from one set of current meter data are dis-
played here; the records are from 39.58N, 232.38E inside

the low energy area in the eastern North Pacific. Record
depths are nominally 160, 580, 595, 1230, 3000, and
3800 m (Wunsch 1997). Measurements at 3800 m are
neglected because the temperature signals are very
weak. According to (23), Ek(39.58N, 232.38E; z 5 0)
5 8.6 3 1023 m2 s22. Therefore, I(39.58N, 2328E) 5
1.0 3 10235 (m2 s22)m2. The vertical gradients of the
mean temperature at depths of 160, 580, 595, 1230, and
3000 m are 0.020, 0.0042, 0.0040, 0.0019, and
0.000248C/m, respectively. The model and observed
spectra are plotted in Fig. 15. Visual agreement between
the model and the observed spectra is again quite pleas-
ing.

d. Ratio of kinetic energy to potential energy

The kinetic energy to potential energy ratio of the
first baroclinic mode is 0.48 in midlatitudes. This value
is roughly consistent with the result by Wunsch (1999b)
from current meter and temperature mooring measure-
ments (section 4c).

6. Discussion and applications

A spectral density estimate has been produced from
a variety of observations restricted to regions far from
oceanic boundaries and unusual topographic features,
and a simplified guess at the underlying algebraic form.
The model is a universal one, up to division by a geo-
graphic-dependence function I(f, l), and the resulting
F(k, l, v, n, f, l)/I(f, l) is shown in Fig. 16. The
structure of I(f, l) is completely ad hoc and is deduced
primarily from the satellite altimetry in the North At-
lantic and Pacific. It remains to try and construct a sim-
ilar function for the other ocean basins and ultimately
to understand why it takes the observed shape.

This zero-order fit fails qualitatively in the regions
we have omitted, including the boundary current areas,
the surface mixed layer, and the equatorial waveguide.
We suspect, but cannot prove from data, that the vertical
modal partition should be more heavily dominated at
high frequencies (periods shorter than 10 days) by the
barotropic mode. This inference is made from the be-
havior of recent model results (Fukumori et al. 1998;
Tierney et al. 2000; Stammer et al. 2000). So few
moored data exist at high latitudes that we cannot test
this hypothesis with data at the present time.

To the extent that a near-universal spectrum for the
open ocean emerges, one can then begin to attempt to
understand why and how its structure is determined.
Although a full discussion is beyond our scope, we here
make some general remarks about the elements that
would go into such an understanding. The low-mode
character of low frequency variability is partially attri-
buted to quasigeostrophic nonlinear interactions (two-
dimensional turbulence), which drives the motion to-
ward larger scales both in the vertical and horizontal
directions (Charney 1971; Rhines 1975; Fu and Flierl
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FIG. 15. Frequency spectra of zonal (a) meridional velocity (b) and, temperature (c) at depths of (i) 160
m (ii) 580 m (iii) 595 m (iv) 1230 m and (v) 3000 m. Solid line is the observed spectrum from current
meter measurements (Wunsch 1997) and dash–dotted line is the model spectrum.

1979). In the absence of forcing and dissipation, two-
dimensional flow must transfer kinetic energy from
small to larger scales and large to smaller scales through
nonlinear interactions between different scales of mo-
tion (Fjortoft 1953). Kraichnan (1967) postulated that
there exists two distinct ‘‘inertial’’ subranges of two-
dimensional turbulence. The large-scale subrange has a
kinetic energy spectrum of k23/5, while the kinetic en-
ergy spectrum of small-scale subrange is proportional
to k23. Charney (1971) also obtained a 23 law at the
tail of the kinetic energy spectrum from a quasigeo-
strophic model and conjectured that in this region there
would be equipartition between the kinetic and potential
energies.

Rhines (1975) further argued that kinetic energy
should exhibit a maximum at the wavelength close to

the scale, l } , where U is a measure of the am-ÏU/b
bient velocity. Results from numerical simulation are
consistent (Lilly 1969; McWilliams and Chow 1981)
with that argument. For the ocean, two-dimensional tur-
bulence theory only offers explanations for the spectral
shape at wavelengths smaller than about 400 km. It is
unclear why the wavenumber spectra of sea surface
height and temperature are proportional to k21/2 at wave-
lengths longer than 400 km. In a full turbulence theory,
one would have a connection between frequency and
wavenumber structure; no such relationship is known
to us for the ocean.

The frequency spectral shape can be rationalized in
part as the integral response of the ocean to continuous
random forcing of the atmosphere (Hasselmann 1976;
Frankignoul and Hasselmann 1977). They showed a
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FIG. 15. (Continued)
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FIG. 16. The universal frequency and wavenumber spectrum for the stream function F(k, l, v,
n, f, l)/I(f, l), which is identical for each mode.

white noise atmospheric forcing at periods longer than
one week produced an open ocean frequency spectrum
proportional to v22 at periods from a few days to about
150 days. At periods longer than a year, the frequency
spectrum of the ocean is more nearly white because
negative feedbacks become important [see Frankignoul
and Müller (1979); Willebrand et al. (1980)]. The latter
found that the ocean response should be primarily bar-
otropic at periods between the inertial period and about
300 days, a result in conflict with the observations and
hence with our model.

The present work can be improved and modified in
a large number of ways, and we anticipate that ulti-
mately regional spectral models will emerge, perhaps
described in terms of their deviations from this more
global one. Near the western boundary currents, the
barotropic mode dominates (Wunsch 1997); the effect
of mean flow cannot be neglected and significant dif-
ferences exist between the energy level of zonal and
meridional components of horizontal velocity. The fre-
quency and wavenumber spectral shape near the western
boundary is also different from that in the interior ocean
(Stammer 1997). In areas close to the equator, high
modes become more important (Eriksen 1981; Wunsch
1997) and, as mentioned, high latitudes may also be
dominated by barotropic motions. Topography on all
scales must also introduce strong inhomogeneities of
many types.

Within the ocean interior, evidence does exist that
some of the energy (10%–40% depending on location,
but diminishing poleward) is consistent with anisotrop-
ically propagating linear Rossby waves (Zang and
Wunsch 1999). More generally, there are real anisot-

ropies as a function of frequency; Zang (2000) found
in the North Pacific that the energy of westward-going
motions was higher than that of eastward-going ones by
a factor of 3 at low frequencies and long wavelengths.
Finally, Stammer and Wunsch (1999) identified regional
trends in surface eddy kinetic energy over a four year
TOPEX/Poseidon record and this temporal nonstation-
arity is also excluded in the model.

Despite all its shortcomings, the model can be used
quantitatively for a number of applications. Two ex-
amples are now provided.

a. An unobserved wavenumber spectrum: Horizontal
velocity

The wavenumber spectrum of horizontal velocity in
the ocean is not normally determinable, requiring for
direct calculation, elaborate current meter arrays. Here
we will estimate it from the measurements of other
quantities that were available to us.

Figure 17 shows the estimate of the zonal-wavenumber
spectrum of zonal and meridional component of hori-
zontal velocity, based on the estimated F(k, l, v, n, f,
l). The zonal-wavenumber spectrum of zonal velocity is
proportional to k21/2 at wavelengths longer than 400 km,
k25/2 at wavelengths between 100 km and 400 km, and
k24 at wavelengths shorter than 100 km. The zonal-wave-
number spectral shape of the zonal velocity is similar to
the observed zonal-wavenumber spectral shape of sea
surface height and temperature and discussed in section
4. The zonal-wavenumber spectrum of meridional ve-
locity is nearly white, with a weak maximum at wave-
lengths near 400 km and has a slope of 11.5 and 20.5
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FIG. 17. Zonal-wavenumber spectrum of zonal velocity (solid line)
and meridional velocity (dash–dotted line). The total kinetic energy
is 100 cm2 s22. Note that zonal-wavenumber spectral shape of zonal
velocity is similar to zonal-wavenumber spectral shape of temperature
and sea surface height which is displayed in section 4.

FIG. 19. The normalized (L, n, l, f) (solid line) and (L, n, l,2 2s syu

f) (dash–dot line) as a function of L; (L, n, l, f) and (L, n, l,2 2s syu

f) are normalized by (L 5 0, n, l, f) and (L 5 0, n, l, f),2 2s syu

respectively.

FIG. 18. Autocorrelation of zonal velocity (solid line) and merid-
ional velocity (dash–dotted line) as a function of zonal separation
distance. Zonal autocorrelation of temperature is the same as zonal
autocorrelation of zonal velocity.

FIG. 20. The normalized (L, n, l, f) (solid line) and (L, n,2 2s sQ V

l, f) (dash–dot line) as a function of L; (L, n, l, f) and (L, n,2 2s sQ V

l, f) are normalized by (L 5 2000, n, l, f) and (L 5 2000,2 2s sQ V

n, l, f) respectively.

at wavelengths longer and shorter than 400 km, respec-
tively. The most conspicuous feature of Fig. 17 is that
the zonal-wavenumber spectrum of zonal velocity is red-
der than the zonal-wavenumber spectrum of meridional
velocity. The ratio of the zonal-wavenumber spectrum of
zonal velocity to the zonal-wavenumber spectrum of me-
ridional velocity is proportional to k22.

A rationalization of the relationship among the wave-
number spectra of sea surface height, zonal velocity,
and meridional velocity follows from geostrophy. For
large-scale and low frequency variability in the ocean,
the horizontal momentum equation is dominated by the
geostrophic balance:

]h
fy 5 g , (34)

]x

]h
fu 5 2g , (35)

]y

where h is the seasurface elevation. A Fourier transform
of Eq. (34) with respect to x gives

i2pkg
f̃ (k) 5 f̃ (k), (36)y hf

where f̃y (k) and f̃h(k) are the Fourier transform of me-
ridional velocity and sea surface height. Define Fy (k)
and Fh(k) to be the zonal-wavenumber spectrum of me-
ridional velocity and sea surface height; then,
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TABLE 2. Standard deviation of volume flux (Sv [ 106 m3 s21),
average temperature, and heat content for the first three modes and
the standard deviation of the total variability at 248N in the North
Atlantic.

sV

(0–2000 m)
(Sv)

sū

(1000–2000 m)
(8C)

sQ

(1000–2000 m)
(J m21)

n 5 0
n 5 1
n 5 2
total

2.6
1.8
1.0
3.4

0.012
0.022
0.025

2.5 3 1014

4.4 3 1014

5.1 3 1014

2F (k) ^| f̃ (k)| &y y 25 } k , (37)
2F (k) ^| f̃ (k)| &h h

and

F (k)u 0} k , (38)
F (k)h

which means that zonal velocity and sea surface height
have the same zonal-wavenumber spectral shape. The
relationship between the zonal-wavenumber spectral
shape of zonal velocity and meridional velocity can be
obtained from Eqs. (37) and (38) and

F (k)u 22} k (39)
F (k)y

F (l)u 2} l , (40)
F (l)y

showing that the meridional-wavenumber spectrum of
meridional velocity is more red than that for zonal ve-
locity. This above discussion is for sea surface currents
only. If the spectral shape is independent of depth, Eqs.
(39) and (40) can be applied at any depth.

b. Covariance functions

For some calculations, for example, for mapmaking
and interpolation, it is convenient to work in the tem-
poral and/or spatial domains, and one seeks the co-
variance functions implied by the estimated power den-
sity spectra. The Fourier transform of the wavenumber
(frequency) spectrum is the spatial (temporal) covari-
ance. For example, the zonal autocovariance of tem-
perature for each vertical mode is

2 1` 1` 1`]u02 2R (r , n, f, l, z) 5 f G (z) F(k, l, v, n, f, l) cos(2pkr ) dk dl dv. (41)u x n E E E x1 2]z
2` 2` 2`

The autocovariance of temperature and horizontal ve-
locity as a function of zonal separation distance is dis-
played in Fig. 18. It shows an exponential decay with
e-folding spatial scales of about 150 km. The zonal
autocovariance function of meridional velocity (Fig. 18)
has a zero crossing near 50 km. A striking feature is
that the autocovariance of zonal velocity is higher than
that of meridional velocity for the same zonal separation
distance. These results are consistent with well-known
results from the theory of three-dimensional homoge-
neous turbulence (Batchelor 1953) that the longitudinal
velocity autocorrelation (autocorrelation of the velocity
parallel to the separation vector) is always higher than
the lateral velocity autocorrelation. Middleton and Gar-
rett (1986) showed that Batchelor’s result could be read-
ily extended to two-dimensional turbulence. Based on
drifter data, they obtained an estimate of the correlation

of transverse velocity and found it had a zero crossing
at 32 km.

c. Estimating the variability of volume flux and
section heat content

Volume and heat transport in the ocean are often
estimated from hydrographic measurements (e.g.,
Wunsch 1996). These fluxes, and related quantities
vary with time, having values dependent upon the
lengths of hydrographic sections and the areas cov-
ered (e.g., for heat content). Here we estimate the
expected variability of heat content and volume flux
due to mesoscale eddies.

Suppose that a zonal hydrographic section of length
L terminates at land at each end. The variance of the
average temperature for each vertical mode in the region
bounding the hydrographic section is

2h 1` 1` 1`21 ]u02 2s (L, n, l, f) 5 G (z) dz f F(k, l, v, n, l, f)W(k, L) dv dk dl, (42)E n E E Eu 1 2h ]zh 2` 2` 2`1

and the variance of the average meridional velocity is
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2h 1` 1` 1`21
2 2 2s (L, n, l, f) 5 F (z) dz 4p k F(k, l, v, n, l, f)W(k, L) dv dk dl, (43)E n E E Ey 1 2h h 2` 2` 2`1

where h1 and h2 are the depths of the lower and upper
boundary of the hydrographic section; h 5 h2 2 h1 and

2sin (pkL)
W(k, L) 5 ; (44)

2(pkL)

W(k, L) arises from the horizontal averaging. In (42)
and (43) (L, n, l, f) and (L, n, l, f) depend on2 2s syu

location as well as the zonal length L. Our first concern
is how they depend on the zonal length L. At each site

(L, n, l, f) and (L, n, l, f) are normalized by2 2s syu

their maximum values, (L 5 0, n, l, f) and (L 52 2s syu

0, n, l, f). As displayed in Fig. 19, the normalized
(L, n, l, f) and (L, n, l, f) decrease with L. Figure2 2s syu

19 shows that, as one expects, the longer the length of
the hydrographic section, the less variable is the average
temperature and the average meridional velocity. Here

(L, n, l, f) decreases with L much more rapidly than2sy

does (L, n, l, f). For average temperature, half of2s
u

the energy is filtered out when the zonal length is about
350 km; for average meridional velocity, 90% of the
variance is removed due to filtering when the zonal
distance is 200 km.

The variance of volume flux is
2 2 2 2s (L, n, l, f) 5 h L s (L, n, l, f),V y (45)

and the variance of heat content is
2 2 2 2 2 2s (L, n, l, f) 5 r c h L s (L, n, l, f),Q 0 p u

(46)

where r0 is the density of the basic state and cp is the
specific heat. Note that (L, n, l, f) and (L, n, l,2 2s sQ V

f) do not simply increase with L2 (Fig. 20). The variance
of volume flux increases rapidly as L increases from 0
to 200 km, then it increases very slowly. As L increases
from 200 to 2000 km, the variance of volume flux only
increases by about 15% because the zonal length scale
of mesoscale eddies is about 200 km. Because the zonal
length scale of temperature is much larger than that of
meridional velocity, the variance of heat content always
increases with L.

Variances of volume transport and heat content de-
pend on location, too. As a representative result, the
variance of the volume flux and heat content for the
hydrographic section along 248N in the North Atlantic
is estimated (see, e.g., Roemmich and Wunsch 1984;
Parrilla et al. 1994; Arbic and Owens 2001). For the
volume transport, the vertical integration is chosen to
be from the surface to 2000 m, while for heat content
(temperature), the vertical integration is taken from
1000 to 2000 m because the signal-to-noise ratio for
temperature is largest within this depth range. The stan-
dard deviation of volume flux, average temperature and
heat content for this particular hydrographic section are

listed in Table 2, which shows that the variability of
barotropic and baroclinic volume fluxes are approxi-
mately the same. For average temperature, the vari-
ability in the second baroclinic mode is larger than that
in the first baroclinic mode. These results are all con-
sistent with the ad hoc calculations of Ganachaud (1999)
and Arbic and Owens (2001).

Many other applications are possible, including, for
example, coherence estimates, and applications to array
design, estimation of Lagrangian particle statistics, etc.
Some of these problems are worked out in Zang (2000).
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APPENDIX A

Vertical Representation

Rigid-lid upper and lower boundary conditions are
used here:

v(z) 5 0, z 5 0, 2h (A1)

or

G (z) 5 0, z 5 0, 2hn (A2)

Here the depth of the ocean, h, is assumed constant and
h 5 4500 m. The solutions of the vertical structure for
baroclinic modes are obtained first and the barotropic
mode is explicitly added later.

The solution to (4) is (GM)

N r N r0 n 0 naz azG (z) 5 A J e 1 B Y e ,n n 0 n 01 2 1 2a a

n $ 1, (A3)

where J0(z) and Y0(z) are the Bessel function of the first
kind. Boundary conditions require

J (j )Y (j ) 2 J (j )Y (j ) 5 0 and (A4)0 2h 0 0 0 0 0 2h

J (j )0 0B 5 A , (A5)n nY (j )0 0

where,
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FIG. A1. The vertical eigenfunctions Fn(z) and Gn(z) for modes 0 # n # 3 from the analytical N(z) profile.

N r N r N r0 n 0 n 0 naz 2ahj 5 e , j 5 , j 5 e . (A6)0 2ha a a

Defining

J (j)0W (z) 5 J (j) 2 Y (j), (A7)n 0 0Y (j)0

then

1 dG (z) A dW (z)n n nF (z) 5 2 5 2 . (A8)n 2 2r dz r dzn n

The vertical normalization is taken as
01

2F (z) dz 5 1, (A9)E nh
2h

and the normalized vertical eigenfunctions are

h dW (z)nF (z) 5 2n !ab dzn

h J (j )0 05 aj J (j) 2 Y (j) ,1 1[ ]!ab Y (j )n 0 0

n $ 1 (A10)

h
2G (z) 5 r W (z), n $ 1 (A11)n n n!abn

where,

j0

2b 5 jW (j) djn E n

j21

2
22 225 [Y (j ) 2 Y (j )]. (A12)0 0 0 212p

For the barotropic mode, that is, n 5 0,

r 5 0, F (z) 5 1, G (z) 5 0,0 0 0 (A13)

and are independent of depth.
The vertical eigenfunctions satisfy the orthonormality

conditions

01
F (z)F (z) dz 5 d , (A14)E m n nmh

2h

01
2 2N (z)G (z)G (z) dz 5 r d , (A15)E m n n nmh

2h

where dnm is the Kronecker delta function. Note that the
function Fn(z) is nondimensional and the units of Gn(z)
are s2m21. The Fn(z) and Gn(z) are plotted in Fig. A1
for 0 # n # 3. An important property in Fig. A1 is the
near-surface intensification of Fn(z) for n ± 0. Because
the vertical structure of the horizontal kinetic energy is
proportional to (z), the vertical structure of baroclinic2F n

horizontal kinetic energy will correspondingly show a
near-surface intensification.
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APPENDIX B

Characteristic Function

The characteristic functions for pressure, zonal ve-
locity, etc., are

p̃(k, l, v, z, n) 5 r f F (z), (B1)0 n

ũ(k, l, v, z, n) 5 2i2plF (z), (B2)n

ỹ (k, l, v, z, n) 5 i2pkF (z), (B3)n

w̃(k, l, v, z, n) 5 i2pv fG (z), (B4)n

r f0 2r̃(k, l, v, z, n) 5 2 N (z)G (z), (B5)ng

z̃(k, l, v, z, n) 5 2 fG (z), (B6)n

]u0ũ(k, l, v, z, n) 5 f G (z). (B7)n]z

The vertical displacement z is here attributed to the
vertical advection of the mean vertical temperature pro-
file ]u0/]z,

u(x, y, z, t)
z(x, y, z, t) 5 2 . (B8)

]u /]z0

APPENDIX C

Final Model Spectra

Given F(k, l, v, n, f, l), one can estimate the model
spectrum of any variable at any place. A few useful
examples are given here.

The total kinetic energy per unit surface area for each
mode is

1` 1` 1`

2 2 2 31 2 2K (n) 5 2p (k 1 l )F(k, l, v, n, f, l) dk dl dv 5 5.9 3 10 I(f, l)E (n) [m /s ]. (C1)E E E E 0

2` 2` 2`

The potential energy per unit surface area for each
mode is

P (n, f, l)E

1` 1` 1`1
5 F(k, l, v, n, f, l) dk dl dvE E E22Rn 2` 2` 2`

407.8 3 10 I(f, l)E (n)0 2 25 [m /s ].
2Rn

(C2)

Therefore, the ratio of kinetic energy to potential en-
ergy per unit surface area for the first baroclinic mode

K (1, f, l)E 210 25 7.6 3 10 R . (C3)1P (1, f, l)E

If we take f 5 1024 s21, which is the value of f at
midlatitude, (6) gives R1 5 2500 m. Then

K (1, f, l)E 5 0.48. (C4)
P (1, f, l)E

The zonal-wavenumber spectrum of sea surface
height is

(1)Y (k, f, l)h

1` 1`n52 2 2f F (z 5 0)n5 F(k, l, v, n, f, l) dl dvO E E2gn50 2` 2`

15 2 25 9.2 3 10 sin fI(f, l)B (k) [m /(cycles/meter)].1

(C5)

The meridional-wavenumber spectrum of sea surface
height is identical.

The variance of sea surface height is

1` 1` 1`n52 2 2f F (z 5 0)n2 32 2 2s (f, l) 5 F(k, l, v, n, f, l) dk dk dv 5 5.0 3 10 sin fI(f, l) [m ]. (C6)Oh E E E2gn50 2` 2` 2`

The zonal-wavenumber spectrum of temperature

2 1` 1`n52 ]u0(1) 2 2Y (k, z, f, l) 5 f G (z) F(k, l, v, n, f, l) dl dvOh n E E1 2]zn50 2` 2`

2
]u016 2 2 2 25 6.0 3 10 sin fI(f, l)[G (z) 1 0.5 3 G (z)] B (k) [8C /(cycles/meter)], (C7)1 2 11 2]z
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where the units of (z) are s4 m22, the units of ]u0/]z2Gn

are 8C/m, and the meridional spectrum is identical.
The frequency spectrum of sea surface height

(1)Y (v, f, l)h

1` 1`n52 2 2f F (z 5 0)n5 F(k, l, v, n, f, l) dk dlO E E2gn50 2` 2`

24 25 9.7 3 10 sin fI(f, l)D (v)1

2[m /(cycles/second)]. (C8)

The frequency spectrum of zonal and meridional ve-
locity

(1)Y (v, z, f, l)u

5 Y (v, z, f, l)y

24 2 2 25 1.1 3 10 [F (z) 1 F (z) 1 0.5 3 F (z)]D (v),0 1 2 1

(C9)

in the units of (m2/s2)/(cycles/second).
The frequency spectrum of temperature

(1)Y (v, z, f, l)u

25 2 2 25 6.3 3 10 sin fI(f, l)[G (z) 1 0.5 3 G (z)]1 2

2
]u0 23 D (v) [8C /(cycles/second)],11 2]z

(C10)

where the units of (z) are s4 m22 and the units of ]u0/2Gn

]z are 8C/m.
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