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Abstract - The long-period tides are a tool for understanding oceanic motions at low frequencies 
and large scales. Here we review observations and theory of the fortnightly, monthly and pole tide 
constitutents. Observations have been plagued by low signal-to-noise ratios and theory by the com- 
plex lateral geometry and great sensitivity to bottom slopes. A new spectral element model is used 
to compute the oceanic response to tidal forcing at 2-week and monthly periods. The general 
response is that of a heavily damped (Q ~- 5) system with both the energy input from the moon 
and the dissipation strongly localized in space. The high dissipation result is probably generally 
applicable to all low frequency barotropic oceanic motions. Over much of the ocean, the response 
has both the character of a large-scale and a superposed Rossby wave-like character, thus vindicat- 
ing two apparently conflicting earlier interpretations. To the extent that free waves are excited they 
are consistent with their being dominated by Rossby and topographic Rossby wave components, 
although gravity modes are also necessarily excited to some degree. In general, a modal represen- 
tation is not very helpful. The most active regions are the Southern Ocean and the western and 
northern North Atlantic. These results are stable to changes in geometry, topography, and tide 
period. On a global average basis, the dynamical response of Mm is closer to equilibrium than is 
Mf. © 1998 Elsevier Science Ltd. All rights reserved 

1. INTRODUCTION 

The long-period tides at 8 days, 2 weeks, 1 month, 6 months . . . . .  18.6 years, etc., have been 
studied since the time of Laplace. WUNSCH (1967) reviewed the considerable late nineteenth 

and early twentieth century analytical work by Kelvin, Rayleigh, Poincarr, Proudman, and 
others. From the point of view of modem oceanography, one is interested in these phenomena 
for the light they may shed on the more general motions existing in the ocean at low frequencies; 

some general background can be found in HENDERSHOTT (1981 ) and a general historical treat- 
ment can be found in CARTWR1GRX (1998). They are also of concern in studies of the rotation 

of the earth and are now a significant contributor to sea level variations as seen by the latest 

altimetric missions. 
Studies of wind- and/or buoyancy-driven motions in the ocean at long periods are made 

complicated by the considerable remaining uncertainties in the structure of the forcing functions 
(uncertainties in the wind stress, etc.), which render highly ambiguous many inferences about 
the oceanic response. In contrast, the periods and structures of the long-period tides are known 
with literal astronomical precision, and no ambiguity deriving from their uncertainty propagates 
through the observations or theory. But the price one pays for studying these tides is not small: 
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the motions are relatively weak; they are curl free; the forcing has no longitude dependence; 
and they are narrow-band deterministic forces whose response usually carries less information 
than does that from broadband stochastic driving. 

After examining the available tide gauge records from islands in the tropical and sub-tropical 
Pacific (typically 4years in duration at most), WUNSCH (1967) suggested that the oceanic 
response to long-period tide forcing would be dominated by the generation at the lateral bound- 
aries of barotropic Rossby waves. He offered a crude solution for a rectangular/3-plane ocean 
of roughly Pacific Ocean dimensions, in which the oceanic response was equilibrium plus a 
sum over the Rossby wave modes of the box. Apparent small spatial scales in the tide gauge 
results were to be explained by the presence of the waves. 

In the 30 years since then, there has been a small number of papers published on the long- 
period tides, including KAGAN, RIVKIND and CHERNAYEV (1976), LUTHER (1980), CARTON 
(1983), O'CONNOR (1995), SCHWIDERSKI (1982), DICKMAN (1989), SEILER (1990), RAY and 
CARTWRIGHT (1994) and a few others. MILLER, LUTHER and HENDERSHOTT (1993) review 
much of this literature. A small separate literature on the 14-month pole tide, which is not of 
gravitational origin and for which the forcing does have a longitudinal dependence, will be 
considered separately below. We are motivated to re-open the question of the nature of the 
oceanic response to long-period tide forcing for a number of reasons. ( l )  The now 4-year long 
TOPEX/POSEIDON altimeter record should soon become adequate to produce high accuracy, 
truly global estimates of the fortnightly and monthly tides. (2) Numerical models have advanced 
to the stage where calculations of the tidal response are "almost easy". (3) MILLER et  al. (1993) ,  

using a numerical model, drew the very surprising conclusion that in the Pacific Ocean at least, 
the dominant response was not primarily a Rossby wave, but was produced by a Kelvin wave 
response propagating from a generation region in the Arctic Ocean. If their conclusion is correct, 
it needs rationalization and much better understanding. (4) Finally, and probably most important, 
issues of oceanic dissipation remain vexingly obscure; the response of long period tides may 
well represent the most direct path to understanding the oceanic dissipation of barotropic 
motions generally. 

Our focus here is on understanding the physics of the response to potential forces acting on 
the ocean at long periods with a numerical model as our primary tool. It is specifically not our 
intention to model the altimeter results in detail--a job that others are undertaking. Consequently, 
we omit such important (but not fundamental) details as a treatment of tidal self-attraction and 
load tides, and indeed have felt free to change the forcing frequencies to suit our convenience. 
The extraction of the Mf and Mm constituents from TOPEX/POSEIDON data is still not defini- 
tive; but within about 2 years, there should be quite dramatic improvements in the description 
of the detailed structure of the oceanic response. Thus the time seems ripe to undertake an 
overview of this subject. 

2. EQUATIONS AND THE MODEL 

The gravitational long-period tides (what Laplace called "tidal species l " - - see  LAMB, 1932) 
are all of equilibrium form 

~1 = H(o ' )~(cos  0)exp( - itrt) ( 1 ) 

where ~ is the spherical harmonic of degree 2 and order 0, and 0 is the co-latitude. ~r is the 
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tidal frequency corresponding to 2 weeks (the strongest long-period tide), 8 days, 1 month, etc. 
H(~) is an amplitude. There is no longitude, A, dependence in (1). Standard references for the 
amplitudes are DOODSON (1921), SCHUREMAN (1958) or CARTWRmHT and EDDEN (1973). 
Under the (good) assumption of linear dynamics, the governing equations are the Laplace Tidal 
Equations (LTE) on the sphere with real topography. These equations are not reproduced here 
but may be found in LAMB (1932), LONGUET-HmGINS (1968), GILL (1982) or in many other 
books and papers. To be specific, we will focus here on the fortnightly tide Mf whose period 
is 327.86 h (13.66 days), but will also touch on the monthly Mm constituent (period 661.31 h, 
27.6 days). The major solar contributions at 6 months (Ssa) and annual (Sa) are dominated by 
thermal effects, and thus their gravitational component will be treated here only implicitly. 

The important features of the forcing function in Eq. (1) are that ~ is curl free, and that it 
is a function of latitude (or co-latitude) alone. WvNscn (1967) discusses the many attempts to 
solve the LTE at low frequencies on a water-covered globe. The physical" argument is simple 
and worth recalling. At a period of 2 weeks, and away from the immediate vicinity of the 
equator, one anticipates any oceanic dynamical response to be nearly geostrophic. If the ocean 
floor were uniform, ~7 would set up a quasi-geostrophic flow field, dominated by flow in the 
zonal direction, and which would simply oscillate with frequency ~r. If the sea surface elevation 
is r/, the magnitude of the flow would be nearly, 

u-.f(o) aOO '1 1= lul <2) 

because cr<<f, where, conventionally, g is gravity, f is the Coriolis parameter, 0 is co-latitude, 
and a is the mean earth radius. (Eq. (2) is invalid very near the equator.) Higher order dynamics, 
including dissipation, determine the extent to which r/differs from ~/. If ~1 = ~7, one has the so- 
called "equilibrium tide" and the small horizontal flow exists only to provide the slight necessary 
divergence. These solutions are straightforward and are discussed at length in the references, 
including cases in which the bottom depth is a function of 0 alone. 

Difficulties arise as soon as the zonal flow is blocked by a continental boundary or by a 
seafloor ridge system. It was WUNSCH'S (1967) conclusion that the boundary condition of no 
normal flow, or at any feature capable of supporting a zonal pressure gradient, would be satisfied 
by the generation of barotropic Rossby waves able to produce a zonal velocity zero at a wall, 
or to match a mass-flux condition at a depth change. 

For a general bounded ocean basin, the solution can be written 

1 
n = ~ +/1 E Eanm'( n°rmal mode).,., (3) 

n m 

The factor 1/h has been separated from the anm, to emphasize that as h--ooo all tides tend to 
approach equilibrium in the absence of true resonance. One may summarize much of the litera- 
ture of the last 30 years as questioning the extent to which large spatial-scale normal modes are 
significant in the sense that a few of the terms in Eq. (3) are relatively strongly excited in a 
near-resonance, as WUNSCH (1967) supposed, or many modes are more or less all weakly excited 
as, for example, LUTHER (1980) concluded. 

Double indices n, m have been used in Eq. (3) because for a bounded two-dimensional ocean, 
one anticipates a two-parameter family set of eigenfunctions of the Laplace Tidal Equations. 
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LONGUET-HIGGINS and POND (1970) computed the normal modes of a flat-bottomed hemispheri- 
cal ocean, and PLATZMAN, CURTIS, HANSEN and SEATER (1981) computed them for a realistic 
ocean with bottom topography. Even for the fiat-bottomed hemisphere, the modes are not simple, 
but in various degrees of approximation can be divided into gravity and Rossby wave modes. 
When real topography is introduced, the Rossby waves are broken up into topographic Rossby 
waves, often tightly confined geographically to specific bottom features (see PEATZMAN et al., 
1981). Physically, however, the gravity wave branch at high frequencies and the Rossby 
wave/topographic Rossby wave branch at low frequencies persist as recognizable phenomena 
in all these solutions. A mode deriving directly from the Kelvin wave, as always, remains an 
exceptional solution existing at both low and high frequencies. Its low frequency cut-off is 
dictated by the wavelength exceeding the earth's circumference. All this discussion is quite 
loose, as the meaning of a Kelvin wave having a barotropic deformation radius, "~gh/f, of several 
thousand kilometers is not always clear, but some of the modes clearly possess Kelvin-wave 
like behavior. (O'CONNOR, 1995, has confused the issue by labelling the Rossby wave modes 
as "inertia gravity waves"- -a  clear misnomer.) 

For a linear system, the representation (3) is exact and to the extent that the normal modes 
are known, a formal solution to the LTE can always be found. The interesting question lies 
with the interpretation of the modes: whether some amplitudes are much larger than others, and 
whether those particular modes are readily interpreted in simple form as Rossby waves, Kelvin 
waves, etc. It is important to recognize that in a globally forced problem like this one, the modal 
amplitudes in a representation such as in Eq. (3) are not unique. The solution can also be 
written as 

~/= (particular solution) + (homogeneous solution) (4) 

where the homogeneous solution is a different sum of normal modes than in Eq. (3). Because 
we are free to choose a particular solution in infinitely many ways, the amplitudes of these 
normal modes will change correspondingly in an infinite number of ways. A normal mode 
expansion of the sum in Eqs (3) or (4) is, however, unique. 

Amplitudes of normal modes in a dissipationless system will occur in the general (and 
abstract) form 

Fnm(geometry ) 
a,,u = l(o.)2 _ q(n,m) 2 (5) 

that is with an order one factor, Fnm , depending upon the geometry, and an overall amplitude 
dependent upon whether the denominator is close to zero or not. l is a wavenumber representing 
the forcing function. A vanishing denominator corresponds to a resonant mode at frequency o-. 
q(n,m) is in general a transformation from the indices n, m to corresponding horizontal waven- 
umbers (a specific case is shown in WUNSCH, 1967, Eq. 29). The presence of dissipation usually 
renders i(0-)2 complex, so that no true infinity can occur. 

Formally, one can expect that all possible modes are excited to some degree, as long as the 
projection of the modes onto the forcing, implicit in Fn,,, does not vanish. In particular, MILLER 
et al. (1993) interpret their solution as showing the major excitation of the gravity wave modes 
in addition to the Rossby modes. Simple interpretation is possible, however, only if a small 
number of modes dominates the response. If many spatially complicated modes are present 
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and/or they are heavily dissipated, the normal mode representation--although remaining math- 
ematically val id--may no longer be an enlightening framework. 

For insight into the problem, we will avoid the use of normal modes and solve the forced 
problem directly with the spectral element ocean model (SEOM) of ISKANDARANI, HAIDVOGEL 
and BOYD (1995) and HAIDVOGEL, CURCHITSER, ISKANDARANI, HUGHES and TAYLOR (1997). 
Although such models are novel in oceanography, they have been widely used in other branches 
of fluid dynamics and we anticipate a more accurate solution than can be obtained with more 
conventional representations. 

SEOM solves the shallow water equations: 

ru V.(vhVu) 
u , + u . V u + f × u = - g V ( ~ / - ~ / ) - ~  + ~ ~ (6) 

+/, + V.(hu) = 0 (7) 

where u is the velocity, f is the vertical Coriolis vector, r / is  the surface displacement, r is the 
linear bottom drag coefficient, h is the total water depth (h = d + r/, d being the resting depth), 
v is the viscosity, and ~/is the surface displacement of the equilibrium tide. 

SEOM is based on the spectral element method, which can be categorized as an h-p type 
finite element method, where accuracy is improved by increasing the number of elements (h- 
refinement) and/or increasing the interpolation order within each element (p-refinement). Trunc- 
ation errors decrease at a high-order algebraic rate in the first case and exponentially fast in 
the second. 

The solution procedure starts with the variational form of Eqs (6) and (7). The domain of 
interest is then subdivided into quadrilateral isoparametric and conforming elements contained 
in C °, each of which contains a spectral grid based on the Gauss-Lobatto roots of the Legendre 
polynomials. The basis and trial functions in each element are the Legendre cardinal functions. 
We note that the interpolation order of the surface displacement is reduced by a factor of two 
with respect to the velocity interpolation to prevent the growth of spurious pressure modes. 
Substitution of the basis and trial functions in the variational formulation and evaluation of the 
ensuing integrals with Gauss-Lobatto quadrature produces a system of ordinary differential 
equations, which is integrated in time using a third-order Adams-Bashforth scheme. The coinci- 
dence of collocation and quadrature points yields a diagonal system of equations, which can be 
inverted easily and which simplifies considerably the time-integration procedure. 

Figure l shows the spectral element grid used to discretize the World Ocean. The grid contains 
1994 elements. With sixth-order polynomials to interpolate the velocity u and fourth-order poly- 
nomials for the surface displacement r/, the resulting nodal resolution averages 2 ° in the Indian 
Ocean, l ° in the Pacific and South Atlantic Oceans, 0.5 ° in the North Atlantic Ocean and 1/3 ° 
in the Arctic Ocean. Note that only the elemental grid is reproduced in Fig. l; the interior mesh 
of collocation points within each element, 6 by 6 for velocity and 4 by 4 for surface height. 
has been omitted for clarity. 

Dissipation in the model is provided by a linear bottom drag and a horizontal viscous term 
of Laplacian (harmonic) type. In the central experiment, the bottom drag coefficient r is set to 
l0 ~ m/s, yielding a spin-down time of --~ 46 days for h = 4000 m. The lateral viscosity coef- 
ficient is assumed to scale linearly with the maximum length of each element. (Grid Reynolds 
numbers are therefore approximately constant across the variable mesh.) The resulting viscosity 
coefficient varies from a minimum of 760 m2/s to 11,770 m2/s in the central experiment. The 
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,f 

Fig. 1. Two views of  the spectral element grid: (a) the northern hemisphere, and (b) the southern 
hemisphere. Only the quadrilateral elements and not the interior collocation nodes are shown. 
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time-step in the model is 20 s for all simulations. Integration is first performed for five periods 
to reduce transients created by the start-up; a sixth period is then computed and archived every 
6 h for subsequent analysis. The bathymetry is interpolated, with light smoothing, from the 
ETOPO5 data set. 

All major ocean basins are included. A passage simulating Bering Strait is included, but is 
wider than the real strait. The model strait has a depth of 50 m. Indonesian passages are included, 
with the same caveat. BARNIER (1988) has shown that barotropic Rossby waves tend to reflect 
from shelf-like geometries; this behavior suggests that failure to well-resolve the shelf areas 
should not have a first-order effect on the solutions or their dissipation. Details can, however, 
matter and the shelves require a more detailed examination; if they are important, dissipation 
would likely increase over our present estimate. 

Equilibrium tide is given by the real form of Eq. ( 1 ): 

= H( 1 - 3 sin 2 0b) cos(o-t) (8) 

where qb = 7r/2 - 0 is latitude, H = 2.1 cm, and t is time relative to the time origin. Note that 
~/ vanishes at ~bc = + sin-~(lf]~) = + 35.3 °. The frequencies are here taken to correspond to 
periods of  either 14 or 28 days - -a s  in the spirit of our focus on the physics, the precise Mf  and 
Mm periods are of only secondary interest. The response of the ocean 's  surface ~ is represented 
by an amplitude and phase: 

r /=  r/o(0,A ) cos(~ot - /3(0 ,A))  (9) 

Because the system is linear, we can write 

= ~ + A~ (10) 

where At/ is the anomaly relative to equilibrium (recall Eq. (3)). 
The full shallow water equations are used, rendering the model nonlinear. A test was made 

of dynamical linearity by computing the magnitudes of the velocity as a function of position at 
the first overtone (7-day period) of  the forced motion. A map (not shown) of the result produced 
amplitude ratios nowhere exceeding 10 -2 and, in general, were much smaller than that. We 
conclude that to a very good approximation, the tidal response in the model is linear. 

3. RESULTS 

A number of  numerical experiments were run; Table 1 lists those we will focus on here. 
Observational results are expressed often as complex admit tances-- the ratio of response to forc- 
ing. This form has advantages for data analysis discussed in WUNSCH (1967). A disadvantage 
is the vanishing of the forcing potential at ~b = &,:. With a model producing essentially spatially 
continuous, noise-free output, there is some advantage instead to examining the anomaly A~. 
In contrast to the earlier studies, however, we will focus here in large part on the velocity field 
implied by the model solution. The elevation over much of the ocean is visually dominated by 
the equilibrium contribution, while it is the comparatively small elevation gradients, which pro- 
duce the dynamically important velocities. Note that for equilibrium tide (which cannot be an 
exact result except asymptotically as o----~0, because there must be some water movement,  no 
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Table 1. Different model runs alluded to in the text 

Run Orig. Description Viscous Bottom Total Tidal PE KE Q 
description dissipation dissipation dissipation work 

1 17 Std. exp ( 14 d 3.21 2.25 5.46 5.45 2.29 2.87 5.0 
Mf) 

2 16 2 × bottom 2.26 3.29 5.55 5.54 2.29 2.15 4.2 
drag 

3 21 2 × viscosity 3.70 1.82 5.51 5.50 2.28 2.30 4.4 
4 23 1/2 × viscosity 2.68 2.73 5.41 5.42 2.28 3.50 5.6 
5 22 Smoothed 3.29 2.42 5.71 6.17 2.28 3.15 5.0 

bathy 
6 19 No Arctic 2.09 1.25 3.34 3.30 1.97 2.32 6.7 
7 25 28 d. Mm 1.11 0.77 1.88 1.88 2.46 0.88 4.7 
8 24 1/2 × visc 0.96 0.93 1.89 1.88 2.46 1.09 4.9 

(Mm) 

Viscous, bottom, total dissipation and tidal work are in units of 108 W, under the assumption of a fluid density 
of 103 kg]m 3. Potential (PE) and kinetic (KE) energies are in units of l0 j4 J. Q is defined in the text as the 
"quality factor" for a harmonic oscillator system. Changes in different experiments are all relative to run number 
1. Potential energy of equilibrium tide is about 2.7 × 10 TM J. 

matter how slight, to generate the elevation changes), the velocity field is formally zero. Thus, 
the structure and magnitude of the velocity field is an immediate measure of  non-equilibrium 
behavior. 

Run 1, as listed in Table 1, is our reference or standard solution corresponding nominally to 
the M f  solution with realistic topography, geometry and reasonable values for the dissipation 
coefficients. Figure 2 shows IA I and its phase (relative to equilibrium) for the entire globe for 
a solution which appears fairly realistic. Over much of the tropical Pacific, the phases lie near 
180 °, serving to reduce the total amplitude relative to equilibrium as the tide gauges appear to 
show (MILLER et al., 1993; Fig. 1). Little small scale structure is observed (the velocities in 
Fig. 3 are a measure of  the gradients) except in the western tropical Pacific suggesting that 
whatever small scale Rossby waves are excited here tend to be damped heavily away from the 
western boundary. To some degree, this solution vindicates all of  the previous descriptions of 
the tidal response: there is clearly a large-scale structure present, along with a superposed small 
scale most conspicuously on the western sides of  the ocean basins, and identifiable as a Rossby 
wave contribution. 

Elsewhere, visually, there are a few major features: (1) The Southern Ocean (where almost 
no tide gauge records are available) displays a complex structure, evidently partly, but not 
wholly, associated with the topographic system there (compare to SEILER, 1990, Fig. 7). Anom- 
aly amplitudes approach 1 cm but are typically closer to 0.5 cm. (2) The Atlantic shows a distinct 
westward intensification only weakly evident in the Pacific Ocean. (3) The Arctic response has 
both a large amplitude ( ~ 1 cm) and phase lag ( typically 30-40°) ,  with large phase changes 
in the passages to the ocean further south. The Arctic tidal amplitude results are complex and 
interesting. Apparently the topography of this basin produces regional amplification. Phases here 
are more uniform than the amplitudes, lying near 180 ° . 

Figure 3 shows the corresponding zonal and meridional velocities at t = 70.25 days, a velocity 
field which is nearly in geostrophic balance with the elevation field and which is visually tightly 
bound to the gradients in Fig. 2, although the eye does not readily detect the large-scale features 
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associated with weak meridional pressure gradients. A general westward intensification, consist- 
ent with the simplest Rossby wave behavior in the presence of dissipation (WuNscr~, 1967), is 
clearly present. 

4. ENERGY AND DISSIPATION 

If the nominal Mf solution is accepted as realistic, the most interesting elements are the 
dissipation rates and distribution. At a single point, the total energy per unit mass is 

1 2 g 
T = ~ h( O,A)(u + v 2) + ~ "1'12 

Z 
(11) 

the first term being the kinetic and the second the potential energy/per unit mass. Averaging 
over one cycle, and integrating over the ocean (the area element being dA = a 2 sin 0 d0dA), the 
kinetic, TK, and potential energies, Tp, tabulated in Table 1 are respectively about 2.3 × l014 

and 2.2 × 1014 J (using a water density of 1000 kg/m3). For reference, the potential energy of 
equilibrium tide is about 2.7 × 1014J and thus the tidal response has a smaller potential energy 
than does the equilibrium tide. This result is best interpreted as showing that part of the dynami- 
cal response occurs on a very large scale and acts to render less than equilibrium the elevation 
response proportional to the ~ term in the forcing. 

The ratio of kinetic to potential energy in Rossby waves is a function of the wavenumber 
content of the waves. In the geostrophic limit, 

TK gh 
Tp - f2 ( k2 +/2) (12) 

Taking gh/J e = 9.4 x 1012, one has approximate mid-latitude (h = 5000 m, 2rr/f= 1 day) equiparti- 
tion if k 2 + 12 corresponds to a very long mean wavelength of about 19,000 km. Thus, the 
near equipartition of energies shows that the potential energy is dominated by the equilibrium 
component, ~1, which has a very long spatial scale but generates almost no flow, while the 
smaller dynamical response scales are dominated by the kinetic energy. 

The Laplace tidal equations are readily manipulated (e.g. TAYLOR, 1919; GARREXT, 1975) to 
produce an energy balance when integrated over a full tidal period of 

~gh(nu).ndl = fgh(u .V~)dA + fh(u.F)dA 

1 2 3 
(13) 

Here the bracket denotes the period average, the area A is any horizontal region, whose unit 
outward normal is n, and F represents any forces--here generally the dissipation terms, rendering 
F negative. Term 1 is the net flux in or out, term 2 is the work done in the volume interior by 
the horizontal pressure forces of the equilibrium tide, and the third term is the direct interior 
dissipation. If one uses 

hu.V~? = V.(h~u) - g~?V.(hu) (14) 
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Eq. (13) becomes 

~gh(~)u).ndl = ~gh(~)u).ndl + gf~l ~t dA + fh(u.F)dA 

1 2 3 4 
(15) 

The work by the moon (term 3) is now given in terms of the equilibrium elevation itself and 
the net energy flux out of the volume involves a flux of equilibrium energy (term 2), the one 
omitted by TAYLOR (1919) and corrected by GAm~ETT (1975). A criterion used to test for model 
convergence was that the sum of the two dissipation terms in Table 1 should equal to high 
accuracy the net work by the moon. 

Figure 4 displays for nominal Mf the distribution of kinetic energy/unit mass, the two contribu- 
tors to the dissipation and the distribution of work by the moon on the ocean. As a rough 
generalization, kinetic energies and dissipation are high in the Southern Ocean extending into 
the South Atlantic and Pacific, in the western and high latitude North Atlantic. Generally speak- 
ing, the regions of high dissipation correspond to strong input of energy by the moon into the 
ocean-suggesting that most energy is dissipated locally, rather than being transmitted over long 
distances, in contrast to (e.g. LYARD and LE PROVOST, 1997) the semi-diurnal tides. The strong 
spatial variability of the tidal elevations leads to a complex juxtaposition of regions where the 
net work is by the ocean on the moon with those of net work by the moon on the ocean. The 
sum is necessarily dominated by the latter. 

The global dissipation is found to be nearly 0.5 x l09 W (0.5 GW). Thus, with the total 
energy quoted above, the "quality factor", Q is (JACKSON, 1975), 

E 
Q = 2 ~ _ _ ~  5 (16) 

ET 

where E is the total energy, E is the average energy dissipation rate, and T = 14 days. A Q- 
value of 5 is roughly consistent with, but lower than, estimates made for the ordinary tides. 
More significantly, it is indistinguishable from the value obtained by LUTHEI~ (1980) for an 
apparent 5-day normal mode of the Pacific Ocean and one of the few other available direct 
estimates of low frequency ocean dissipation. (From the crude GEOSAT measurements, CAkT- 
WRIGHT and RAY, 1990, estimated Q ~ 7.8.) On the global average, Q = 5 implies that all of 
the energy in the tide would dissipate in about 11 days--significantly less than one period. A 
strong conclusion then is that for barotropic motions, the average ocean is a very heavily damped 
system and large-scale, clear modal excitation does not occur. 

5. CHANGING PARAMETERS 

A number of experiments were carried out to elucidate the long-period response more gener- 
ally. These experiments included variations in the dissipation parameters, in the tidal period, in 
the topography, and owing to the MILLER et al. (1993) conclusions, in the connections to the 
Arctic Ocean. We will treat these results in mainly summary fashion although a great deal of 
detail is visible in the changes from the standard model. 
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5.1. Variations in dissipation parameters 

Experiment 2 was run using a doubled bottom friction coefficient, all other parameters remain- 
ing the same. As can be seen from Table 1, the total dissipation and hence the Q hardly changed, 
but the ratio of viscous to bottom drag dissipation did change significantly. The ratio of kinetic 
to potential energy was reduced----consistent with a reduced dynamical response. Visually, the 
fields of tidal work and bottom dissipation are largely unchanged from the central experiment 
in their spatial distributions. In experiment 3 the viscous coefficient was doubled, the bottom 
friction coefficient remaining as in experiment 1. Once again the total dissipation and Q hardly 
changed but one now has near equality in kinetic and potential energy. The net dissipation thus 
seems fairly robust, despite changes in the contributions to the system energy and dissipation 
mechanisms. 

5.2. Closing the arctic 

To investigate the suggestion of MILLER et al. (1993) that the Arctic Ocean might play an 
important role in regulating tidal response in the Pacific Ocean, we have repeated the central 
experiment on a global grid that omits the Arctic Ocean. The time- and volume-averaged stat- 
istics (experiment 6, Table 1 ) do in fact show an influence from the exclusion of the Arctic; in 
particular, tidal work and bottom dissipation values are greatly reduced, though the resulting Q 
is enhanced only slightly. Most important, however, the diagnostic measures discussed here 
(tidal amplitude and phase, kinetic energy, etc.) show no major change in spatial structure or 
amplitude in the Pacific, or for that matter over the majority of the globe with the exception of 
the western North Atlantic (Fig. 5). 

The Laplace tidal equations are sensitive to lateral boundary conditions, and the closing of 
the Arctic would be expected to generate a complex shift in the solution overall. But in addition 
to this dynamical response, the tidal equations admit the addition of a simple spatially constant, 
time-varying component to any solution 

r/--~r/+ C (17) 

where the numerical value of C is determined by mass conservation 

f f  (~ + C)dA = 0 (18) 
o c e a n  

Removal of the Arctic changes the dynamical boundary condition for the remaining ocean, but 
also the oceanic volume and hence the value of C. It is not possible to separate the dynamical 
changes from the kinematic ones, but the observed large-scale changes in amplitude and phase 
are approximately consistent with the changes forced by the volume reduction. We conclude 
from experiment 6 that, although the Arctic contributes substantially to the global budget of 
tidal energy in the Mf band, it does so primarily locally, without substantial remote effect on 
tidal response elsewhere except for the overall shifts expected from mass conservation. 

5.3. Smoothing the bathymet~' 

Experiment (5) was conducted to examine sensitivity to further smoothing of model bathyme- 
try. The procedure, whose details will not be reported here, involved a higher degree of spectral 
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smoothing to the topography within each element than was used for the central experiment. 
Perhaps contrary to expectation, the net energy production by tidal forces (and of course the 
total dissipation) are increased with the smoother bathymetry (Table 1 ), though Q is not influ- 
enced. Neither are the spatial patterns of energy gain and loss significantly affected. This 
behavior might be expected, e.g., from the work of BARNIER (1988), who found that barotropic 
waves tend to be strongly reflected from regions of depth change, once a steepness threshold 
was reached so that the smoother topography permits the wave motion to enter shallow, higher 
dissipation regions. 

5.4. Changing the period: Mm 

The lunar monthly tide has a period near 28 days, and has about half the amplitude of the 
fortnightly term. The observational literature is divided on whether it is closer to equilibrium 
than is Mf, as simple limiting theories suggest it should be. In experiment 7, all parameters of 
the standard experiment ( 1 ) were retained (including the amplitude) except that the tidal period 
was doubled. The visual change in the spatial patterns is again not striking in either amplitude 
or phase, though the overall levels of the former are reduced by about 50% over the central 
experiment. Again the system is highly damped. The tide is dominated now by the potential 
energy consistent with the presence of longer wavelengths, more relative potential energy, and 
a general shift toward a more nearly equilibrium response. (Q, as we have defined it here, would 
be infinite for a completely equilibrium tide: there would be a finite energy in the equilibrium 
response and no dissipation; pure equilibrium tide can only exist in the limit as ~r---~0. A Q', 
based solely upon the kinetic energy, can be deduced readily from Table 1, however.) 

6. EFFECT ON LUNAR ACCELERATION 

Tidal dissipation affects the lunar orbit as well as the earth's rotation. MUNK and MACDONALD 
(1960), LAMBECK (1980), etc. discuss the general problem in detail. Dissipation of the long- 
period tides contributes a small component to the overall tidal dissipation effect. Calculation of 
the effects on the lunar orbit has generated an opaque literature: CHRISTODOULIDIS, SMITH, 
WILLIAMSON and KLOSKO (1988) and MARSH et al. (1990) conclude that like the other tidal 
constituents, the long-period components accelerate the moon in its orbit, and slow the earth. 
In contrast, CHENG, EANES and TAPLEY (1992) found that, surprisingly, dissipation of the long- 
period tides brakes the moon and actually accelerates the earth's rotation! 

An heuristic explanation for this last conclusion appears to be as follows (R. EANES, personal 
communication, 1996): the earth's rotation is not directly relevant to the derivation of the forcing 
potential for the long-period tides, but depends only on the orbital period and the lunar orbital 
inclination. That is, the form and period of the long-period constituents is independent of the 
rotation rate. For these constituents, the moon (or sun) can be thought of as orbiting a non- 
rotating earth in a plane with the appropriate inclination to the equator. Then the tidal "bulge" 
lags behind the orbiting moon thus decelerating it in its orbit (bringing it closer to the earth), 
and by angular momentum conservation, the earth's rotation must accelerate. ("Bulge" must be 
interpreted loosely: consider the case of a water-covered earth; the oceanic response is then 
zonally symmetric, but the elevation would lag the orbiting moon.) But this argument is qualitat- 
ive, and a quantitative resolution of the conflicting conclusions is still needed. 

In any event, the inferred Mf dissipation rate of 0.5 GW is less than 0.1% of that inferred 
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for the other tidal constituents (of order 3.5 TW); the change in the lunar motion is thus very 
small and, at the present time, primarily of theoretical interest. 

7. COMPARISON WITH OBSERVATIONS 

As we have said, our present purpose is not an attempt at a detailed reproduction of the 
observations, but rather to gain insight into the major physics of the long-period tides. Nonethe- 
less, one needs to understand whether the model has been run in a physical regime consistent 
with what is known of the oceanic response. 

The chief difficulty in this subject is the low signal-to-noise ratio of the tidal response to the 
background variability in sea level records spanning a few years and, in the pre-satellite era, of 
the maldistribution of island tide gauges. The early estimates from tropical tide gauges by 
WUNSCH (1967) were based upon comparatively short (4 years at most) records and led to very 
large (if still optimistic) error bars. 

Much longer records (and the FFT algorithm) were available to MILLER et al. (1993) who 
tabulated estimates of Mf parameters from low-latitude Pacific tide gauge stations. Both in 
amplitude and phase the island observations are comparable to those seen in the standard model 
results for the tropical Pacific (the self-attraction and load effects are approximately a 15% effect 
not included in the model; see HENDERSHOTT, 1972; AGNEW and FARRELL, 1978). 

There are now sufficient TOPEX/POSEIDON altimetry data to estimate long-period tidal 
parameters. TOPEX/POSEIDON-derived estimates for Mf have been provided by DESAI and 
WAHR (1995), S. DESAI (personal communication, 1995, 1996) and L. KANTHA (personal com- 
munication, 1996). A summary would be that there is rough quantitative agreement between 
the standard model and these various estimates. For example, Fig. 6 (S. DESAI, personal com- 
munication, 1996) shows the corresponding smoothed TOPEX/POSEIDON amplitudes. Again, 
a reasonable correlation with the model is evident, by eye. 

The existing TOPEX/POSEIDON results are probably badly contaminated by background 
noise from the oceanic general circulation variability. There are two remedies: longer altimetric 
records should eventually raise the tidal signals arbitrarily far above the background noise- 
dependent only upon the record duration. More ambitiously, one could attempt to predict the 
oceanic variability in the TOPEX/POSEIDON data using a general circulation model driven by 
observed surface boundary winds and buoyancy fluxes. These estimates could then be subtracted 
from the altimetric data, and the tidal analysis done on the residuals. We expect that both routes 
will eventually be tried, and therefore a review such as this written a few years from now should 
be much more definitive than we can be. 

8. EARTH ROTATION AND POLAR MOTION 

The long-period tides contribute significantly to polar motion and length of day changes. All 
the solutions here are accompanied by computations of their contribution to these quantities, 
but for reasons of space will be reported elsewhere. 
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general circulation. 
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9. THE POLE TIDE 

The so-called pole tide is generated by the 14-month Eulerian free wobble (the "Chandler 
wobble") of the earth's rotation axis, which generates a corresponding change in the centrifugal 
potential at any point on the earth's surface. The result is equivalent to a 14-month tide of 
amplitude about 0.5 cm with eastward-moving spatial structure corresponding to spherical har- 
monic Y~ (0,A), but having the character of a narrow-band random process rather than a pure 
line frequency. Extended discussions of the wobble can be found in MUNK and MACDONALD, 
1960, LAMBEC~ (1980); LAMBECK, (1988)) and in many review articles. Dynamically, we have 
seen that there is a tendency for the long period tides to be become more equilibrium as the 
period lengthens. Various theoretical analyses of this problem have been carried out by WUNSCH 
(1986), CARTON and WAHR (1986), D I e , A N  (1988) and others. Although there are some 
claims of deep ocean non-equilibrium pole tides, these are unconvincing in view of the very low 
signal-to-noise ratios and the clear implications of theory. The global data analysis of TRUPIN and 
WAHR (1990) is consistent with a deep water equilibrium tide. 

HAUBRICH and MUNK (1959) apparently first noticed a peculiarly amplified response in the 
North and Baltic Seas appearing as a distinct spectral peak in sea level at the appropriate 14- 
month period. The available data were further analyzed by MILLER find WUNSCH (1973) who 
showed a greatly amplified response relative to equilibrium, striking amplitude growth to the 
east, along with an apparent phase propagation to the east. This response is difficult to rational- 
ize. 

As an explanation, WUNSCH (1986) suggested that, coincidentally, there was a travelling wave 
resonance to an eastward propagating topographic Rossby wave (eastward because the North 
Sea shoals southward, thus reversing the sign of the net /3-effect). More recently, TSIMPLIS, 
FEATHER and VASSIE (1994) claimed that the spectral peak in sea level was essentially an 
atmospheric phenomenon-driven in the ocean by a narrow-band peak in atmospheric forcing at 
the pole tide period. XIE and DICKMAN (1996) show evidence that the eastward intensified 
motion is not temporally stable--a result consistent with a stochastic excitation by the atmos- 
phere. A rationalization as an atmospheric peak, however, is even more difficult to accept than 
the idea of a coincident resonance in the North Sea. Maintenance of a narrow-band energy peak 
in atmospheric variables in the restricted region of the North Sea is counter to the known 
behavior of the lower troposphere and the atmospheric spectral peak in TSIMPLIS et al. 's Fig. 4 
is neither statistically significant, nor of as high Q as the one observed in oceanic sea level. 
(The direct atmospheric response to the gravitational forcing by the pole tide would be minute.) 
On the other hand, MILLER and WUNSCH (1973) reported significant coherence between tide 
gauge stations with a simple phase shift eastward across the North Sea. This result is difficult 
to reconcile with a purely atmospherically driven motion. MILLER and WUNSCH (1973) did 
note, however, that the background continuum did manifest much the same structure as the 
apparent pole tide. 

Thus, the enigma appears to have deepened. But an explanation exists consistent with all 
these phenomena: that there is indeed a resonant mode of the North Sea precisely at the pole tide 
frequency, excited by both meteorology and the pole tide. This conclusion appears to account for 
all the data analyses including those of MILLER and WUNSCH (1973), TRUPIN and WAHR (1990) 
and XIE and DICKMAN (1996). The regression analysis of the latter authors appears to produce 
a non-equilibrium pole tide, but not one showing a robust eastward growth. Another troubling 
point is the failure of the storm surge model of TSIMPLIS et al. (1994) to show the resonance. 

Overall, at the present time, it is probably best to state a negative conclusion: nowhere in the 
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world is there evidence of a non-equilibrium pole tide. The North and Baltic Seas remain a 
possible, but difficult, exception. The model used here for the Mf and Mm constituents could 
readily be employed for the pole tide period. The only difficulty is the pragmatic one of obtaining 
sufficient spatial resolution in the shallow seas to permit definition of the very short wavelengths 
at these periods implied by the dynamics. 

10. DISCUSSION 

The response at any given point of a barotropic ocean to forcing by a potential field at low 
frequencies is evidently a complex summation over motions generated both locally and propagat- 
ing in from long distances, affected along the way by topographic scattering and dissipation. 
Mathematically, the summation over the hypothetical normal modes, Eq. (3), is a valid represen- 
tation. But the picture that emerges from the present model is of a very heavily damped system, 
in which most input energy is dissipated locally and the modal structure is so complex as not 
to be particlarly helpful. 

MILLER et  al. ( 1 9 9 3 )  interpret their results as showing that a Kelvin wave emanating from 
the Arctic Ocean dominates the tropical Pacific Ocean. A barotropic Kelvin wave at 14-day 
period, in a water depth of 5000 m, would have a wavelength of about 2.7 x 105 km, or about 
seven times the circumference of the earth. The resulting modal coefficient in Eq. (3), (/2 _ 

q2) 1, characterizing the response, will be finite (see, e.g., MORSE and FESHBACH,  1953) and 
the wave will be present. Many other gravity modes will also be present in greater or lesser 
amounts, but in view of the comments made above, however, about non-uniqueness, and the 
heavy dissipation present, the modal representation does not appear to be a clearly advan- 
tageous one. 

Visually, the most active region for Mf and Mm is in the Southern Ocean. This feature appears 
quite conspicuously, e.g., in the earlier results of SEILER ( 1 9 9 0 ) .  The tropical Pacific--where 
most of the tide gauge data come from--is,  ironically, untypically simpler than most of the 
remaining global response. Some simple rationalization of the structure emerges from a study 
of the scale of barotropic Rossby waves. For a fixed frequency on a dissipationless mid-latitude 
/3-plane, the horizontal wavenumbers of permissible free waves at fixed frequency, o-, must 
satisfy the relation, 

/3k 12 f2 
k z + - + + = 0 (19) 

Here, (k,/) are the zonal and meridional wavenumbers respectively, and f is the local Coriolis 
parameter. Consider a flat-bottomed ocean in which the barotropic Rossby radius q ~ / f  
1800 km (appropriate to an ocean of about 4000 m depth at about 50 ° latitude). Setting 1 = 0, 
perhaps roughly appropriate for the central Pacific Ocean, the two roots of Eq. (19) correspond, 
at a period of 2 weeks, to wavelengths of about 2500 and 50,000 km. The longer of these is so 
great that it would act dynamically as a nearly uniform elevation, generating almost no flow 
response. Visually, one might anticipate seeing only a single propagating wave with a wave- 
length of several thousand kilometers (as in the central Pacific Ocean). 

If one now supposes that in the Southern Ocean, the comparatively narrow passages southward 
of Australia and South Africa force the solution to generate waves with a meridional length 
scale of l ~ 1 x 10 -6 ( = 27r/6000 km), then the two roots of Eq. (19) correspond to waves of 
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wavelengths of about 3200 and 8300 km--which  are comparable and expected to generate a 

visually much more complex pattern not unlike what we see in the Southern Ocean. 
This simple argument is, of course, too primitive to be more than suggestive. Barotropic 

Rossby waves interact strongly with topography, so that comparatively modest slopes, h~h, hy/h, 
generate "effective"/3-values whose magnitudes ~h~lh, hJh)  can easily overwhelm the planet- 

ary value. Furthermore, the phase velocity of the flat-bottom modes is so small (about 3 cm/s 

for the 3200-km wave), that neglect of the mean flow in the model is likely to produce unrealistic 
results. Accurate long-period tide models will eventually require the presence of the oceanic 
general circulation. 

11. ACKNOWLEDGEMENTS 

Supported in part by the Jet Propulsion Laboratory under Contract 958125 at MIT and Rutgers. 
Development of the spectral element ocean model was supported at Rutgers by the Office of Naval 
Research under Contract N00014-93-0197. A.J. Miller, D. Cartwright and P. Woodworth made 
many useful suggestions. This paper was presented in honor of David Cartwright on his 70th birth- 
day. 

12. REFERENCES 

AGNEW D.C. and FARRELL W.E. (1978) Self-consistent equilibrium ocean tides. Geophysical Journal of the 
Royal Astronomical Society 55, 171-181. 

BARNIER B. (1988) Numerical study on the influence of the mid-Atlantic ridge on nonlinear first-mode baroclinic 
Rossby Waves. Journal of Physical Oceanography 18, 417-433. 

CARTON J.A. (1983) The variation with frequency of the long period tides. Journal of Geophysical Research 8, 
7563-7572. 

CARTON J.A. and WAHR J.M. (1986) Modelling the pole tide and its effect on the Earth's rotation. Geophysical 
Journal International 84, 121-137. 

CARTWRmHT D.E. (1998) Tides--A Scientific Histor3,. Cambridge University Press, in press. 
CARTWRIGHT D.E. and EDDEN A.C. (1973) Corrected tables of tidal harmonics. Geophysical Journal of the 

Royal Astronomical Society 33, 253-264. 
CARTWRIGHT D.E. and RAY R. (1990) Observations of the Mf ocean tide from GEOSAT altimetry. Geophysical 

Research Letters 17, 619-622. 
CHENG M.K., LANES R.J. and TAPLEY B.D. (1992) Tidal deceleration of the Moon's mean motion. Geophysical 

Journal International 108, 401-409. 
CHR1STODOULIDIS D.C., SMITH D.E., WILLIAMSON R.G. and KLOSKO S.M. (1988) Observed tidal braking in the 

Earth/Moon/Sun system. Journal of Geophysical Research 93, 6216-6236. 
DESAI S.D. and WAHR J.M. (1995) Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry. 

Journal of Geophysical Research 100(25), 205-225, 227. 
DICKMAN S.R. (1988) The self-consistent dynamic pole tide in non-global oceans. Geophysical Journal of the 

Royal Astronomical Society 94, 157-174. 
DICKMAN S.R. (1989) A complete spherical harmonic approach to l uni-solar tides. Geophysical Journal Inter- 

national 99, 457-468. 
DOODSON A.T. (1921) The harmonic development of thhe tide-generating potential. Proceedings c~f the Royal 

Society of London A 100, 305-329. 
GARRETT C. (1975) Tides in gulfs. Deep-Sea Research 22, 23-36. 
GILL A.E. (1982) Atmosphere-Ocean Dynamics. Academic Press, New York. 
HAIDVOGEL D.B., CURCHITSER E., ISKANDARANI M., HUGHES R. and TAYLOR, M. (1997) Global modeling of 

the ocean and atmosphere using the spectral element method. In: Atmosphere--Ocean, XXXV, the Andre 
J. Robert Memorial Volume, C. LIN, R. LAPRISE and H. RITCHIE, editors, pp. 505-531. Canadian 
Meteorological and Oceanographic Society, Ottawa, Canada. 



108 CARL WUNSCH et al. 

HAUBRICH R. and MUNK W. (1959) The pole tide. Journal of Geophysical Research 64, 2373-2388. 
HENDERSHOTT M.C. (1972) The effects of solid earth deformation on global ocean tides. Geophysical Journal 

of the Royal Astronomical Society 29, 389-402. 
HENDERSHOTT M.C. (1981) Long waves and ocean tides. In: Evolution of Physical Oceanography. Scientific 

Surveys in Honor of Henry Stommel, B.A. WARREN and C. WUNSCH, editors, pp. 292-341. The MIT 
Press, Cambridge. 

ISKANDARAN! M., HAIDVOGEL D.B. and BOYD J.P. (1995) A staggered spectral element model for the shallow 
water equations. International Journal of Numerical Methods in Fluids 20, 393-414. 

JACKSON D.D. (1975) Classical Electrodynamics, 2nd ed. John Wiley, New York. 
KAZAN B.A., RIVKIND V.Y. and CHERNAYEV P.K. (1976) The fortnightly lunar tides in the world ocean, lzvestiya, 

Atmospheric and Oceanic Physics 12, 449-452. 
LAMB H. (1932) Hydrodynamics, 6th ed. Dover, New York. 
LAMBECK K. (1980) The Earth's Variable Rotation: Geophysical Causes and Consequences. Cambridge Univer- 

sity Press, Cambridge. 
LAMBECK K. (1988) Geophysical Geodesy. Oxford University Press, New York. 
LONGUET-HIGGINS M.S. (1968) The eigenfunctions of Laplace's tidal equations over a sphere. Philosophical 

Transactions of the Royal Society of London A 262, 511-607. 
LONGUET-HIGGINS M.S. and POND G.S. (1970) The free oscillations of fluid on a hemisphere bounded by 

meridians of longitude. Philosophical Transactions of the Royal Society of London A 266, 193-223. 
LUTHER D.S. (1980) Observations of long-period waves in the tropical oceans and atmosphere. Ph.D. dissertation, 

MIT and WHOI. 
LVARD C. and LE PROVOST C. (1997) Energy budget of the tidal hydrodynamic model FES94.1. Geophysical 

Research Letters 24, 687-690. 
MARSH J.G. et al. (1990) The GEM-T2 gravitational model. Journal of Geophysical Research 95, 22043-22071. 
MILLER A.J., LUTHER D.S. and HENDERSHOXT M.C. (1993) The fortnightly and monthly tides: resonant Rossby 

waves or nearly equilibrium gravity waves?. Journal of Physical Oceanography 23, 879-897. 
MILLER S. and WUYSCH C. (1973) The pole tide. Nature, Physical Science 246, 98-102. 
MORSE P.M. and FESHBACH H. (1953) Methods of Theoretical Physics, 2 vols. McGraw-Hill, New York. 
MtJNK W.H. and MACDONALD G.J.F. (1960) The Rotation of the Earth: A Geophysical Discussion. Cambridge 

University Press, Cambridge. 
O'CONNOR W.P. (1995) The complex wavenumber eigenvalues of Laplace's tidal equation for oceans bounded 

by meridians. Proceedings of the Royal Society of London, A 449, 51-64; Corrigendum, 1996, Proceed- 
ings of the Royal Society of London, A 452, 1185-1187. 

PLATZMAN G.W., CURTXS G.A., HANSEN K.S. and SLATER R.D. (1981) Normal modes of the world ocean. Part 
II: Descripton of modes in the period range 8 to 80 hours. Journal of Physical Oceanography 11, 
579-603. 

RAY R.D. and CARTWRI6HT D.E. (1994) Satellite altimeter observation of the Mf and Mm ocean tides, with 
simultaneous orbit corrections. Geophysical Monograph, 82, IUGG Monograph 17, 69-78. 

SCHUREMAN P. (1958) Manual of Harmonic Analysis and Prediction of Tides. US Department of Commerce, 
Special Publication No. 98. 

SCHWIDERSKI E.W. (1982) Global ocean tides, part X: the fortnightly lunar tide (Mf), atlas of tidal charts and 
maps. Report of the Naval Surface Weapons Center, TR-81-218, Dahlgren Va. 

SEILER U. (1990) Variations of the angular momentum budget for tides of the present ocean. In: Earth's Rotation 
from Eons to Days, P. BROSCHE and J. SONOERMANN, editors, pp. 81-94. Springer-Verlag, Berlin. 

TAYLOR G.I. (1919) Tidal friction in the Irish Sea. Philosophical Transactions of the Royal Society of London 
A 220, 1-33. 

TRUPIN A. and WAHR J. (1990) Spectroscopic analysis of global tide gauge sea level data. Geophysical Journal 
International 100, 441-453. 

TSIMPLIS M.N., FLATHER R.A. and VASSIE J.M. (1994) The North Sea pole tide described through a tide-surge 
numerical model. Geophysical Research Letters 21, 449-452. 

WtJNSCH C. (1967) The long-period tides. Reviews of Geophysics 5, 447-476. 
WUNSCH C. (1986) Dynamics of the North Sea pole tide revisited. Geophysical Journal of the Royal Astronomical 

Society 87, 869-884. 
XIE L. and DICKMAN S.R. (1996) Tide gauge analysis of the pole tide in the North Sea. Geophysical Journal 

International 126, 863-870. 


