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Abstract. The human eye and brain are powerful pattern detection in-
struments. Coupled with the clear human need to perceive the world as
deterministic and understandable, and the often counter-intuitive results of
probability theory, it is easy to go astray in making inferences. In partic-
ular, many examples exist where attention was called to apparent extreme
behavior, whether in time or space series, or in the appearance of unusual
patterns, that are just happenstance. Used carefully, and with a residual
open-mindedness, it is possible to employ some simple statistical tests to
avoid the outcomes of inferring unusual behavior where none is present, nor
in rejecting a major finding as being insignificant.

Introduction

“My eye is better than any statistical test.”
Well-known paleoceanographer, circa 2001.

Many of the most important inferences that are made
about the climate system and its changes are based
upon statistical or probabilistic inferences. These in-
ferences include the deduction of occurrence of extreme
events in a general sense (including e.g., exceptionally
large El Niño events, stronger than expected trends,
covariances beyond that expected between disparate
records, unusual “runs”). Probability and statistics are,
however, among the least intuitively accessible of all
mental constructs, and a very large literature now ex-
ists (e.g., Kahneman et al., 1982; Gilovich et al., 2002)
showing how counter-intuitive many important statis-
tical inferences are–with serious implications not only
for science, but for economics and public policy gener-
ally. Kahneman, although a psychologist, won the No-
bel Prize in economics because his discussions of how
people make decisions in the presence of uncertainty
captured so much of their real (as opposed to ideal)
behavior. A classic discussion of economic behavior is
Mackay (1852); a more recent one is Malkiel (1999).
Coupled with a very powerful human instinct that the
world must be deterministic (predictable)1 , the scien-
tific literature too, is riddled with misguided or mis-
taken conclusions. A number of authors (e.g., Diaconis

1 “Human nature likes order; people find it hard to accept the
notion of randomness. No matter what the laws of chance tell
us, we search for patterns among random events wherever they
might occur...” (Malkiel, 1999).

and Mosteller, 1989) have noted the very great difficul-
ties people, including scientists, have in dealing with
apparently amazing, but expectable, coincidences.
This paper has a primarily pedagogical intention–

there are no original results; rather it arises out of at-
tempts to teach students some of the most basic of sta-
tistical inference skills, while simultaneously cautioning
them to remain open-minded and skeptical.
Most of what follows is nothing more than a series of

examples where some statistical or probabilistic infer-
ence was made of a remarkable event that is less clear-
cut than the authors’ seemed to believe, and/or where a
certain skepticism would have been better retained de-
spite the temptation to make an exciting inference. The
possible connection with the widespread wish for atten-
tion in the popular media will be obvious. An earlier
more limited version of these examples was discussed
by Wunsch (1999).

Single Time Series Examples

Time Domain

Consider Fig. 1 showing the negative of the anom-
aly of atmospheric pressure in Darwin, Australia and
used by Trenberth and Hoar (1997) as a measure of
the strength of the Walker circulation. Fig. 2 displays
the sea surface temperature (SST) Niño3.4 index com-
monly used as a measure of the strength of El Niño.
Trenberth and Hoar (1997) infer that ENSO behavior
shifted after about 1970 to more frequent and larger El
Niño events. (The change was interpreted as the result
of global warming and to be “unprecedented” in the
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Figure 1. Negative of the anomaly of atmospheric
surface pressure at Darwin, Australia (Trenberth and
Hoar, 1997) and used by them as a measure of the

Walker circulation strength. Curve is normalized to be
dimensionless An 11-year low-passed version is plotted

as the heavy curve.

Figure 2. Time series of the Niño-3 index (from
Trenberth and Hoar, 1997). A baseline of the first 30
years sets the zero and El Niño and La Niña identified
events are indicated by the black and gray areas.

Figure 3. Thin line shows the so-called winter North
Atlantic Oscillation (NAO) Index from Hurrell and
van Loon (1997). Thick line is a low-pass filtered
version. The subject of discussion is the apparent

trend beginning about 1960, and inferred to represent
a climate change.

historical record.) Solow (2006), however, noted that
their anomalous test period, 1992-mid-1995, in Fig. 1
was not independent of the earlier interval of suppos-
edly normal behavior; he used the subsequently longer
record to recalculate the probability that the nature of
ENSO had changed in some significant way. His conclu-
sion was, in contrast, that while the test period appears
different from the earlier one, subsequently there was es-
sentially no evidence that the nature of the physics had
changed. The comparatively dramatic story of the origi-
nal authors is thus replaced by a much more ambiguous
and unexciting, but presumably more soundly-based,
description of the nature of ENSO.
Another example of simple pitfalls can be seen in

Fig. 3. Hurrell and van Loon (1997) inferred that the
apparent trend at the end of this record represented
another unprecedented shift in a climatologically im-
portant index that of the so-called North Atlantic Os-
cillation (NAO). Wunsch (1999) showed, however, that
such apparent trends were characteristic of ordinary red
noise processes and did not necessarily have any signif-
icance beyond that of a random walk. Subsequently,
Percival and Rothrock (2005) noted that the statistical
significance of such a trend, if calculated using ordi-
nary least-squares fits over the interval from 1965 to
the record end, could produce results differing by an
order of magnitude from the correct inference. The gist
of their argument was that the conventional tests do
not permit one to choose the interval for the test by vi-
sual examination–that has the effect of using posterior
knowledge (the region with an apparent trend) with a
statistical test that assumes no such knowledge. These
debates are related to those about “regime changes”
(Rudnick and Davis, 2003; Overland et al., 2006 and
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Figure 4. Example of a record that might be inferred
by visual inspection to have non-stationary behavior.
In practice, it is simply the cube of a stationary AR(1)
process, x (n) = 0.999x (n− 1) + θ (n− 1) , where θ (n)

are iid Gaussian pseudo-random. Small sample
determination of non-normal (which this is) as

distinguished from non-stationary behavior is difficult.

subsequent comments) and non-stationarity. For the
latter, consider Fig. 4 showing a record that many
would probably visually declare to be non-stationary,
the major event near time 1300 appearing out of char-
acter with the previous and later intervals. This record
is in fact stationary, having been generated as the cube
of an AR(1) process (Wunsch, 1999). Visual inspection
is quite misleading, and one would need to attempt to
distinguish the hypothesis of non-stationarity from non-
normal behavior of an autocorrelated process–a very
difficult problem with small sample sizes.

How Significant Must a Signal Be?

For most of the history of physical oceanography and
climate studies generally, the results were primarily of
interest world-wide to a handful of mainly academic sci-
entists. The stakes, from the point of view of the wider
community, were low, and no dire effects arose from
mistaken inferences. A commonly accepted measure of
significance was beyond one standard deviation (a 65%
confidence interval for Gaussian distributions), or 95%
confidence intervals or levels for Fourier analyses. One
might contrast that situation with e.g., a drug trial,
where one would like to be confident at the 99.9% level,
that a new drug does not generate excess mortality in
its users. In a world troubled by climate shifts, and the
tendency of the latest scientific results to make head-
line news, the impact of erroneous inferences in climate
and oceanography now can have enormous social con-
sequences (see e.g., Kerr, 2006; Chylek, 2007). Much of
the comfortable scientific obscurity has vanished.
A level-of-significance of 95% implies the expectation

of about 5% false positives. With one million indepen-
dent samples, there will be 50,000 false signals (large
sample fluctuation extremes become an issue e.g., in
David Thomson’s tests for true periodicities in geophys-
ical records; see Percival and Walden, 1993, P. 513, who

quote him as suggesting confidence levels above 1−1/N
where N is the number of samples.) In an interesting
paper, Seife (2000) discusses numerous physics signals
apparently significant at the five and six standard devi-
ation level that ultimately proved ephemeral or simply
incorrectly interpreted. The astronomer John Bahcall
is quoted as observing “Half of all three-sigma results
are wrong.” As discussed by Seife (2000), sometimes
the context is the wish to call a press conference so as
to forestall a competing high energy physics team from
announcing first and thus winning a Nobel Prize for a
new particle discovery. One can be desperately torn be-
tween being cautious, wanting a tighter error bar, and
the need to announce first–a trade-off between possi-
bly appearing quite foolish, and losing fame and for-
tune. Earth sciences, fortunately, rarely demands such
fraught statistical decisions!
In contrast, and in a different but related problem

worth mentioning, Lanzante (2005) makes note of the
tendency to compare overlaps of ordinary error bars as
a test of consistency of data sets. He notes that such
a comparison can be quite misleading–and overly con-
servative. Where feasible, one needs to use two-sample
rather than one-sample tests.
Being overly conservative is thus a major problem as

well–leading to rejection of a important new conclu-
sions. A conspicuous public example of such failure was
the rejection by NASA scientists of observations demon-
strating the ozone hole–the values seen by a spacecraft
were deemed so low as to be erroneous. It was only later,
with the detection of the ozone hole by ground-based
measurements, that the NASA data were resurrected,
and it was clear that the ozone hole could have been dis-
covered much earlier (see references in Solomon, 1999).
Fortunately, someone had the good sense to retain the
data. The history of science is filled with missed discov-
eries with conclusions rejected on the grounds that they
were “outliers.” One nice example is the failure of opti-
cal astronomers to realize that Mercury rotated 2/3 of a
revolution per orbit, not once/orbit as stated by all the
textbooks before about 1965, when a radar pulse was
bounced off the planet. Hindsight showed ample ob-
servations inconsistent with once/orbit revolution, but
that were not taken seriously.

Fourier Methods

Spectra
Fourier spectral density estimates are very powerful

analysis tools in many contexts. As a combination, how-
ever, of Fourier analysis and statistics, they are perhaps
unrivaled in the literature in giving rise to elementary
misconceptions. Consider for example, the spectral den-
sities displayed in Fig. 5 for the purpose of conveying
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Figure 5. From Vimieux et al. (2001) showing
spectral peaks in a proxy measured in an Antarctic ice
core and analyzed over different time intervals. Note
the linear power scale and the small frequency interval

displayed.

the importance of the so-called Milankovitch cycles in
ice core records. The peaks (here considered “extreme
events”) strongly suggest record dominance by the as-
tronomical forcing periods lying in the vicinity of 100,
41 and 21 thousand years. (Notice the absence of any
uncertainty estimates in these figures).
If one plots the power density spectral estimate over

the entire frequency band, not just that restricted part
visible in Fig. 5, and uses a logarithmic power scale (so
that the displayed 95% confidence interval is constant
with power), one infers a completely different picture
of the underlying time series: one in which the record
is described at zero-order as nearly red-noise, and in
which the apparent peaks at the astronomical frequen-
cies, while likely real, contain only a very small fraction
of the record variance (see Wunsch, 2004). Hundreds
of examples of such exaggerated display of “peaks” can
be found in the literature. Often the energy fraction
in the peak is so slight as to be of truly questionable
importance. (For example, see Wagner et al., 2001, for
the so-called solar DeVries cycle.)
Bivariate and Multivariate Correlation and Coher-

ence
Perhaps the most insidious issues lie with inferences

that two or more records are correlated. Indeed, much

Figure 6. Upper panel is from Brooks (1923) showing
the apparent correlation of Wolf sunspot numbers with
central African lake levels. Lower panel shows the
disappearance of the apparent sunspot cycle in the

lake levels (reproduced from Pittock, 1978).

of the paleoclimate literature indulges in what is can-
didly labelled “wiggle matching”. In that method, two
spatially distant records with uncertain time bases are
assumed to be related, the time axes being then shifted
to align the events in the records. Sometimes after shift-
ing, correlations are calculated and proclaimed to be
statistically significant (e.g., Bond et al., 1991). Fig. 6
displays a classical example of records apparently show-
ing compelling visual correlation, but that disappeared
when the record became long enough (see Pittock, 1978)

The possibility of excursions of any stationary Gauss-
ian time series far from the apparent mean value can be
considered in several ways, including the use of extreme
value statistics. Alternatively, the approach of Rice
(1945), summarized e.g. by Cartwright and Longuet-
Higgins (1956) or Vanmarcke (1983), provides consid-
erable insight. In that approach, it is shown that for
any time series with a known power spectral density
Φ (ω) , that the rate of threshold crossings (upward or
downward) depends only upon the low order spectral
moments,

λn =

Z π/2∆t

0

ωnΦ (ω) dω,

where ∆t is the sampling interval. Unless one can show
that some particular excursion is exceptional, no claim
can be made that anything unusual has transpired.
In other examples (e.g., Chapman and Shackleton,

1999), coherences between records are computed, some-
times properly, but at such low levels of no significance
(in that example, 80%) that the number of frequency
bands apparently related in the two records is so large
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Figure 7. Curry and McCartney (1996) in which the
red and blue curves are inferred to be causally related.
Note that the red curve has been shifted by six years
relative to the blue one. The number of statistical

degrees of freedom here is very small.

as to vitiate the entire test. Another example, shown
in Fig. 7, was clearly intended to convince the reader
by visual inspection that the two records were causally
related,.and that the time-lag of six years introduced
in the time shift was justified by the crosscorrelation
also displayed. It is left to the reader to judge whether
these two records are convincingly connected. A few
more examples are discussed by Wunsch (2006).
A common practice in the geophysical sciences is to

combine theory with empiricism and to relax even the
usual weak tests of statistical significance. One ex-
ample, in which I was directly involved, concerns the
so-called pole tide. The Earth’s rotation axis wob-
bles about the geographical north pole with a period
of approximately 14 months (see Munk and Macdon-
ald, 1960). This motion induces a changing centrifugal
force at all locations, and which acts dynamically as a
broadband tide.
Analysis of periodograms and spectral density esti-

mates of long tide gauge records showed (see Fig. 8)
excess energy in this band only in the North Sea re-
gion, increasing eastward into the Baltic Sea. The ap-
parent amplitude was several times that expected for
so-called “equilibrium tide”. A formal analytical the-
ory explaining this phenomenon was offered (Wunsch,
1986). Subsequently, attempts to reproduce the phe-
nomenon with numerical models proved negative; fur-
thermore, as the record length subsequently grew, the
apparent pole tide strongly diminished with time. It
now appears (Wunsch, 2001 and the references there)
that the signal was nothing but the random fluctuation

Figure 8. From Miller and Wunsch (1973) showing
the growth of periodogram amplitudes with distance
into the North Sea. The period of excess energy

coincides with that known from the Chandler Wobble
and was inferred to represent a non-equilibrium “pole
tide”. With hindsight, the simplest explanation is just
a random fluctuation in the periodograms in this

region.
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of energy in the meteorological forcing, coincidentally
in the pole tide frequency band, and that the entire
oceanographic literature on this subject was directed at
a will-o’-the-wisp. As this topic has been of interest to
a tiny scientific community, no great harm was done.
It does strongly suggest, however, that one should use
more formal Bayesian methods (e.g., Gauch, 2003) in
combining a priori theoretical knowledge with observa-
tions (although precisely what was prior and what was
posterior in such situations is not completely obvious).

Patterns and Formulas

The so-called Titius-Bode Law, providing a formula
for the spacing of the planets (including Pluto), has
been known for hundreds of years. It says, in one
form, that the spacing (in astronomical units) is d =
0.4+0.3× 2j where j is the j-th planet (see Fig. 9 and
Murray and Dermott, 1999). Work over hundreds of
years has been devoted by physicists and astronomers
to the derivation of this formula as a physical law–to
no avail. The futility leads to the question of whether it
is not simply a statistical accident, as convincing as the
results in the Table might be. The statistician Good
(1969) concluded that there was only one chance in 130
that it was a statistical fluke. But another well-known
statistician (Efron, 1971) inferred that the probability
was about 50% that it was indeed a statistical acci-
dent. Without attempting to analyze the remarkable
difference between these two conclusions (it appears to
lie with differing null-hypotheses–see Huybers, 2004),
it stands as an example both of the treachery of cer-
tain kinds of statistical inference, but also the ability of
nature to provide intriguing patterns that are indistin-
guishable from chance.
A somewhat different form of pattern was the focus

of attention by the well-known British physicist A. Ed-
dington whose book (1946) described a number of seem-
ingly important expressions for the fundamental con-
stants of nature. For example, Lenz (1951) noted that
the ratio of the proton to electron mass ratio was nearly
μp/μe = 6π

5. Or (Wyler, 1969), the fine structure con-
stant by observation is α−1 = 137.03611±0.00021. One
then finds,

α−1 =
¡
9/8π4

¢ ¡
π5/245!

¢
= 137.03608245, (1)

which appears to call for explanation. But it turns out
(e.g. Roskies, 1971) that there exists an infinite num-
ber of such formulae in small integers and π, e, and
expressions such as Eq. (1) have no apparent physical
significance, intriguing as they are.

Figure 9. The Titius-Bode Law of planetary
separation in AU (Murray and Dermott, 1999) where j

is the planet number. Is the rule coincidence?

Interesting Classroom Examples

In teaching it helps to suggest some of the pitfalls
of superficial, non-objective, inference. Here are some
examples intended to make a class think a bit.

• Consider Fig. 10 which resembles many star
charts. Are these dots structured? From the ear-
liest days of astronomy, people have been find-
ing patterns in such pictures (viz., the constel-
lations). The particular pattern shown is com-
pletely random, but one’s eye is attracted to vari-
ous clusters and one might even generate a theory
of these patterns. Ability to recognize patterns
has a clear evolutionary advantage, with false pos-
itives commonly being less dire than false nega-
tives (failure to detect the tiger in the jungle).
For this reason, astronomers have long been con-
cerned about the inference of spurious patterns
(see Julesz, 1981; Barrow and Bhavsavar, 1987;
Newman et al., 1994). Fig. 11 compares the pat-
terns seen by eye on Mars in the late nineteenth
and early twentieth centuries, with a Hubble tele-
scope image of the same part of the planet.

• A couple has two children. One of them is a girl.
What is the probability that the other child is a
boy?2

• Consider the game of Peter and Paul in which a
true coin is flipped sequentially. Every time the

2Two-thirds. See Gauch (2003).
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Figure 10. A “star-chart” generated by determining
horizontal and vertical positions by drawing two

numbers from uniform distributions in [0, 1] . The eye
seeks non-existent patterns.

Figure 11. On the left is a view of Mars drawn in
1894 by Giovanni Virginio Schiaparelli and on the
right is from the Hubbell Telescope (from NASA

website).

coin comes up heads, Peter pays Paul $1, and
Paul pays Peter the same amount if the coin is
tails. Draw a picture example of Paul’s winnings
through time.3

• In a game, 20 marbles are distributed randomly
among 5 players. Two example outcomes are:

Player: A B C D E
Game 1: 4 4 5 4 3 Type I outcome (non-uniform)
Game 2: 4 4 4 4 4 Type II outcome (uniform)
Which is more probable in the long run?4 (Related to

the so-called law of small numbers–the common expec-
tation that small samples should display the statistical
properties of a large-sample.).

• Basketball player A tends on average to make 30%
of his shots. Player B averages 35%. Player A has
just made 8 shots in a row. Player B has missed
his last two. Should you bet on player A or player
B?5

• Cause and effect inference confounded by ten-
dency of regression toward the mean: Anecdote
of pilot school–instructors find that when giving
praise for a good landing, the next time out, the
student seems often to do worse. But when, in-
stead, a bad performance is harshly criticized, the
next time out, the student does better. Pedagog-
ical conclusion is that one should not praise, only
criticize! A statistical test shows the difference is
no greater than expected from chance.6

• A population of women is known to have a prob-
ability of 1 in 100 of having breast cancer. One
woman has a mammogram which shows a lump,
believed malignant. It is known that when a
tumor is present, the test has an 80% accuracy
(that is, shows as malignant). When no tumor is
present, the test shows a false positive 10% of the
time. What is the probability that the woman has
cancer?7

• The Monte Hall Game–more formally known as
Bertrand’s (1889) paradox. Named for the host

3Feller (1957)
4The second is more probable. Kahneman et al., (1982) P. 36
5A run of eight shots in a row must occur by chance. Em-

pirically, the idea of a “hot hand” in basketball cannot be dis-
tinguished from happenstance and on average one is advised to
nonetheless bet on player B.

6Kahneman et al. (1982). It was suggested at the Aha that
one should criticize successful landings and applaud bad ones.
Presumably that experiment has not been conducted.

7Eddy (1992). From Bayes’s theorem, the correct answer is
8%.
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of the television quiz show “Let’s Make a Deal.”
Contestant is faced with three doors. She is told
that behind one door is a car, and behind the
other two doors are goats. Contestant is asked
to pick a door–which is not opened. Host (who
knows where the car is) then opens one of the
two remaining doors to show a goat. Contestant
is then asked if she wishes to switch her original
choice to the remaining closed door. Should she
switch?8

Discussion

I have omitted here discussion of the interesting phe-
nomenon of “pathological science” (see Park, 2000).
Misuse or misinterpretation of statistics and probabil-
ity is only one way for scientists to get into trouble.
Wishful thinking and general self-delusion are not un-
known. The moral of the story is that statistical and
probabilistic inference needs to be done carefully, with
as many of the assumptions the investigator is aware
of being made plain and explicit (National Research
Council, 2006). There are many ways to go astray, but
in general, careful use of existing statistical methods,
transparency, and lingering skepticism are safe harbors
for the scientific investigator. Statisticians sometimes
remind people of the words of Oliver Cromwell to the
Church of Scotland (J. Kadane, private communication,
2007): “I beseech you, in the bowels of Christ, think it
possible you may be wrong” (Bartlett, 1968). Locale
aside, it seems like good advice for scientists.

Acknowledgments. Supported in part by the Na-
tional Ocean Partnership Program (NOPP) and the Na-
tional Aeronautics and Space Administration through
the ECCO-GODAE consortium. Comments at the Aha
Huliko’a were very helpful in formulating this written
version of my remarks.

8She should switch, assuming the contestant prefers a car to a
goat, as there is a 2/3 chance that the car is behind the other door,
as opposed to the 1/3 probability that it is behind the first choice.
See http://math.ucsd.edu/~crypto/Monty/montybg.html. Also
Wikipedia which has an extended discussion.
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