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Abstract. Two years of altimetric data from the TOPEX/POSEIDON spacecraft
have been used to produce preliminary estimates of the space and time spectra of
global variability for both sea surface height and slope. The results are expressed
in terms of both degree variances from spherical harmonic expansions and in
along-track wavenumbers. Simple analytic approximations both in terms of piece-
wise power laws and Padé fractions are provided for comparison with independent
measurements and for easy use of the results. A number of uses of such spectra exist,
including the possibility of combining the altimetric data with other observations,
predictions of spatial coherences, and the estimation of the accuracy of apparent

secular trends in sea level.

1. Introduction

With more than 2 years of high quality sea sur-
face elevation measurements now available from the
TOPEX/POSEIDON altimetric spacecraft [Fu et al.,
1994; Stammer and Wunsch, 1994], it is possible to cal-
culate the global average absolute and time-dependent
elements of the global ocean circulation. From these
fields one can now estimate the corresponding three-
dimensional frequency/wavenumber spectra. Although
estimates representing the global average are not a sub-
stitute for detailed regional ones, the global average pro-
vides a reference against which to measure the myriad
of regional variations and is a fundamental element in
a description of the ocean circulation and its variabil-
ity. It also provides, among other possibilities, a sim-
ple average test of the skill of the current generation of
global-scale general circulation models. The availability
of a spectrum would permit the quantitative calculation
of the statistical significance of such important values
as estimates of global mean sea level and its rate of
change. The analogy to the widely useful internal wave
spectrum of Garrett and Munk [1972] will be apparent.

A number of one- and two-dimensional spectra from
GEOSAT are available [e.g., Wunsch, 1991; Stammer
and Béoning, 1992]. LeTraon et al. [1994], Stammer and
Boning, [1995] and A. Fabrikant et al. (Statistical anal-
ysis of spatio-temporal variations of sea surface height
observed by Topex altimeter, unpublished manuscript,
1995) have used TOPEX/POSEIDON data; but, with
the exception of Wunsch [1991], these results are mainly
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regional in character, and those from GEOSAT data are
intrinsically much less accurate than those it is now pos-
sible to obtain.

We will here produce a preliminary estimate
of the global frequency/wavenumber spectrum of
two years of global temporal variability as seen
by TOPEX/POSEIDON. At the present time, the
wavenumber content of the time mean and absolute
fields is dominated by uncertainty in the estimates of
the geoid (the gravitational equipotential describing the
sea surface shape of a resting ocean), and thus we con-
fine ourselves here to the time variability; that is, we
omit discussion of the wavenumber content of the time
average fields. The results are labeled “preliminary” for
a number of reasons: the much longer records expected
eventually to be available will improve both the fre-
quency resolution and the statistical reliability; and im-
provements are still being made in the data sets. How-
ever, we also will postpone to a later paper a discussion
of propagation in the spectrum, a discussion which is
much more complex than is required here.

The sea surface topography is related directly to the
potential energy of the circulation; from its horizon-
tal derivatives one can estimate the kinetic energy of
the circulation. A full discussion involves the partition-
ing within the water column of the motions reflected in
sea surface pressure fields, and that partitioning is inti-
mately related to the frequency/wavenumber spectrum
itself.

TOPEX/POSEIDON data were used from the period
December 11, 1992, to December 5, 1994 (repeat cycles
9-81; earlier cycles were omitted because of lingering
questions about pointing errors during that period. In
practice, analyses including cycles 2—-8 produced results
almost indistinguishable from the ones we will show.)
The data were edited and corrected as discussed by
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Stammer and Wunsch [1994] and King et ol [1994],
with the exception that the tide correction provided by
the University Texas/Center for Space Research Group
[Ma et al 1994] in their version 2.0 was substituted for
the one provided by the TOPEX/POSEIDON Project.
The spacecraft is in an orbit which repeats its trajectory
over the Earth with a period of 9.91 days (these will be
referred to, for brevity, as “10-day” repeat cycles). Each
10-day data set was averaged in 2°x 2° bins to produce
a map of estimated “absolute” sea surface topography,
5(6, A, t), relative to the geoid (8, A are colatitude and
longitude, respectively; and % labels the particular 10-
day interval). Plate 1 depicts the estimated anomaly
S'(6,2,t) = S(6,,t)—S5(8, A) as asingle, 10-day “snap-
shot” during the period March 10-20, 1993 (repeat 18),
relative to the 2 year mean. These temporal anomalies,
s (8, A, t), and the corresponding fields in the 72 other
10-day periods spanning the 2 years of data are the fo-
cus of this paper. (We assume that the 10-day repeat
cycle temporal sampling by TOPEX/POSEIDON with
the data then averaged in 2° x 2° bins is adequate to
depict the bulk of the low-frequency oceanic temporal
variability. The hypothesis cannot be correct in detail,
and the extent to which energetic fluctuations occur on
timescales short compared with 10 days has to be exam-
ined separately and is discussed below. Because of the
“diamond” pattern of sampling produced by an orbiting
spacecraft, the degree of averaging in each 2° x 2° bin is
not completely uniform. However, the results reported
below support the hypothesis that any residual spatial
or temporal aliasing from this inhomogeneity is likely
to be very small.) Although a complete error budget
for the measured variability is not yet available, a large
amount of internal evidence suggests that the data have
an absolute accuracy approaching 3 cm rms and a pre-
cision of about 2 ¢m rms; the mean-square variability
discussed here is approximately 92 cm?.

In pursuing a frequency/wavenumber description,
one immediately encounters the question of a represen-
tational basis. The most natural form is

SO,X8) =3 anm(t)Fam(8, 1), (1)

where anm(t) are time dependent coefficients and
Fnm(8,)) express the geographical dependence. In a
Cartesian system, ordinary sines and cosines in both
space and time would be used; on a water-covered globe,
spherical harmonics are the natural basis set for the
spatial coordinates. However, the Earth is not water-
covered, and there is no completely natural or obvi-
ous system of representation. At least four candidate
basis functions, F,m,(8,2), present themselves as fol-
lows. (1) One can adopt any basis orthogonalized over
the ocean, including a Gram-Schmidt orthogonaliza-
tion of the spherical harmonics (a version of this ap-
proach is discussed by Hwang [1993]). (2) The ordi-
nary associated Legendre functions of the first kind,
Prm(cosB),n, m integers, do not form a complete set
over a fraction of a sphere, and the associated Legendre
functions of the second kind, Qnm(cos8), are required
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too. Using both, one can find such a complete set (see
Thompson and Tait [1912], or Haines [1985], who con-
siders a hemispherical region). (3) The empirical or-
thogonal functions of either the altimetric data itself or
those of a reasonable dynamical model could be used.
(4) One can use the spherical harmonics, Y,,,(6, ),
based upon P,,, either by finding their coefficients by
least squares (the spherical harmonics lose their orthog-
onality over a domain restricted to the ocean) and ig-
nore the issue of completeness; or one can define nomi-
nal values over the continents and represent the global
domain including these artificial regions.

Arguments can be made for any of these approaches
(and there may well be others), but none seems com-
pletely compelling. In this present attempt, for a num-
ber of reasons we have opted for (4), in the form of
zonal and time average altimetric values over the con-
tinents. With this approach the wavenumber content
of the basis function Fppn(6,2) = Yom(6, ) is read-
ily described in terms of the known behavior of these
functions; fast transform software for determining the
coefficients a,, is available; similar software is avail-
able for quasi-analytical computation of the derivatives
of S so as to determine the corresponding coeflicients of
the derived geostrophic velocity fields; the atmospheric
forcing fields occupy the entire spherical domain, and
for them the Y, are clearly the natural basis functions.
Apart from some normalization details, this represen-
tation is the one used by Wunsch [1991], but we make
no claim that we have made the best possible choice.

2. The Representation

Spherical harmonics are a maze of differing normal-
ization conventions (a standard reference is Hobson
[1955]). Here we will use the so-called fully normal-
ized version familiar in quantum mechanics. Jackson
[1962] provides a good discussion, and we roughly fol-
low his notation. To make unambiguous the notational
and normalization conventions used, the definitions are
written out explicitly in the appendix.

The complex coefficients in the representation (1)
were computed by defining land values as the time aver-
age of the zonal mean absolute topographies, 5(6, A, t),
of repeat cycles 9-81, as a means of minimizing the
Gibbs effects which would otherwise occur at the land-
ocean boundaries. Poleward of 66°, S was set to the
zonal average at 66°. Small along-track temporal gaps
over the ocean were filled with the time average at the
particular position. The result is a set of uniformly
gridded 2° x 2° values which were analyzed using the
software described by Swarztrauber and Adams [1987],
thus producing an expansion in each 10-day period of
the form (1) complete to degree n = 90. Note that
the expansion is of the absolute topography S, not S’.
The result is (90 + 1)> = 8281 separate time series
anm(t),—n < m < n,0 < n < 90 with nonzero means.
A simple check on the results was applied, confirming
satisfaction of the Parseval theorem,
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//S(G,A,t)zsinedad)\:io: zn: lenm ()%, (2)

n=0m=-n

with the two sides of this equation agreeing with dis-
crepancies less than 0.07% for allt. The along-track gap
filling and ‘use of land values are simple solutions which
are not claimed to be optimal; but comparisons of spec-
tra from along-track data (discussed below) with those
computed from the interpolated, gridded, partially land
data, show no discrepancies, suggesting that the proce-
dures do not introduce any significant distortions into
our results.

Because of the focus on the variability, the time av-
erage Gpnm, was removed from each of these time series,
producing a;m(t) = @nm(t)—@nm, and the mean square
was computed over time to produce the mean square
coefficients,

(3)

whose logarithm is displayed in Figure 1. Because S
and S’ are real, one has o], _,. = al.. (One could

equally well directly compute ol (t) from the gridded
anomalies; but for other purposes, we wished to have

m

-90 0
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the spherical harmonic analysis through time of the to-
tal field.) Most of the variability is concentrated at the
longest meridional scales (near n = 0) and at zonal
wavenumbers which are slightly smaller than n = m,
showing a tendency to isotropy, but with a longer zonal
than meridional scale at high wavenumbers. (The vari-
ous scales are most readily inferred from the asymptotic
form [Stegun, 1965, equation (8.10.7)],

Yom (6,2) =
@Cn+1)(n—m)! (n+m)! /7 . \"1/2
\/ 4r(n+m)! T(n+3/2) (Esme)
x cos[(n + 1/2)8 — 7/4 + mx/2]e™*
+0(n™") (4)

for 0 < m < n, that is, for large n the wavenumbers k,
represented by each degree n are approximately (up to
the factor (sin 6)_1/2) kn = v/n? + m?/a,, where a, is
the mean Earth radius. The range for fixedn is n/a, <
k, < \/in/ae.)

Each of the o;,,,(t) was Fourier analyzed to produce
the corresponding function in the frequency domain
&,,,(0) and the frequency periodogram,

®n(0) = G (@)

(5)

90
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Figure 1. Time average degree variances as a function of n,m : 1/N Ef;l lo, ()2 =7
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the field were strictly isotropic, the contours would run horizontally.
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The n = m = 0 term is the periodogram of the estimate
of global average sea level, whose behavior has been
discussed in detail by Nerem [this issue], and so we will
not dwell on it here, although it is included in our results
as simply another spherical harmonic coefficient.

The Parseval theorem, when applied to the anoma-
lies and the a,,,, was incompletely obeyed. The ex-
planation appears to be that given by Swartzirauber
[1979], whose algorithm we are using. In particular, he
demonstrates that the discrete spherical harmonic ex-
pansion on the sphere is not exact (in contrast to the
discrete Cartesian Fourier transform) but rather is a
least squares fit. The result is that the original field
need not be reproduced exactly by the inverse trans-
form, and there is some aliasing of wavenumbers. We
will show in the results below, however, that these prob-
lems appear insignificant.

The frequency-degree-order periodogram, (5), is a
three-dimensional stochastic surface and difficult to plot
and interpret. We will thus begin examining some sim-
pler results derived from it. Suppose that the field
S'(6, A, t) were homogeneous and isotropic on the sur-
face. It then follows in comparatively straightforward
fashion [Yaglom, 1961; Jones, 1963; Kaula, 1967] that
the coefficients satisfy

< a;nm(t)a;,’m’ (t) >= 0'31 (t)énn’ ‘Smm’ (6)
< &;.m(a')&:m’m’(o-)* >= Ia';z(o')lzﬁnn’ 6mm’ (7)

where the brackets denote a hypothetical ensemble av-
erage. The important point in (6) and (7) is that the co-
variance is independent of m, depending only upon the
degree n. Under these circumstances, if the expected
value of the periodogram (5) is summed on m,
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¥'(o,n) =< Z &, (o) >

m=—n

=< 3 |8hn(0) >= (2n+1)a2(c) (8)

m=—n

which are the frequency-dependent “degree variances”
shown in Figure 2a. (We will use the notation ¥ for
quantities derived from the periodogram & by sum-
ming over one or more of the three variables n,m,o,
and T; for quantities summed over two indices to pro-
duce one-dimensional degree variance Ty, frequency T,
or wavenumber I'; spectra. These symbols should not
be confused with that for the gamma function I'.) The
result in (8) can be shown to be independent of the
choice of coordinate system and in the present situa-
tion defines the spectrum of an equivalent homogeneous
and isotropic process. Plate 1 and Figure 1 show that
this description of the real ocean is very approximate.
The result in Figure 2a is “reddish” in both frequency
and wavenumber, with the weak highest peak associ-
ated with the annual variability. A second conspicuous
ridge occurs centered near a period of 60 days and is
a residual tidal model error of the semidiurnal tides,
aliased to this period by the 10-day sampling.

To produce some statistical stability in this result,
values in frequency were averaged over five neighboring
components to produce an approximate 10 degrees-of-
freedom power spectral density estimate ¥/(o, n) (Fig-
ure 2b) (no wavenumber averaging was done, however).
The excess energy corresponding to the semidiurnal
tides was removed prior to the averaging in Figure 2b.
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Plate 1. Example of a 10-day “snapshot” (from repeat cycle 18, March 10, 1993, to March
20, 1993) of the deviation of surface topography from the 2-year mean of TOPEX/POSEIDON
data.The sequence of 10-day maps represents the ocean variability as analyzed here using spherical
harmonics. The eye is attracted to the smaller scales which dominate the slope spectrum. Scale

is in centimeters.
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Power (cm2)

CYCLES/DAY

Figure 2a. Periodogram of the degree variances
an(0)?(2n + 1) = 37 __|&,,.(0)]?. The ridge of ex-
cess energy, attributed to errors in the semidiurnal tide
models, is apparent near a period of 60 days.

3. The Frequency and Wavenumber
Spectra

The Frequency Spectrum

Figures 2a and 2b are still fairly complex. To fur-
ther elucidate their structure, they were summed over
all degrees n to produce the frequency power density
spectrum estimate,

Lio) = 1= 3 ¥(o,m) (9)

in Figure 3a. (The factor 1/47 has been introduced to
produce a power density spectrum numerically equiva-
lent to that obtainable from analysis of the time series
at one or more geographical locations. It arises because
the fully normalized spherical harmonics integrate to 1
over the unit sphere, whose area is 47.) The maximum
value in I'; occurs at the annual period. The version of
Figure 2a computed by Wunsch [1991] from GEOSAT
data is qualitatively consistent with it, accounting for
normalization differences and the presence of a strong
orbital error peak in that earlier result. A slight upturn
in estimated energy density is visible in Fig. 3a at the
shortest period (20 days), which is apparently associ-
ated with a small residual error in correcting the weak
semidiurnal constituents Ly pa.

A representative, approximate 95% confidence in-
terval is shown, computed under the assumption that
¥'(0,n) is a x2 variate with v = 2 x (2n + 1) degrees
of freedom (the sum on m in (8) of the |&,,,(0)[?, as-
sumed uncorrelated and with each composed of an un-

correlated real and imaginary part). Formally, the sum

on n then produces 2 x 220:0(217,4- 1) = 2x 8281 degrees

of freedom if one had spatial white noise over a complete
sphere. The use of land values produces dependencies
among the spherical harmonic coefficients, and the field
is not white. Consequently, a rigorous determination
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Power (cm?2)
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Figure 2b. Power density (smoothed in frequency
alone) estimate of the degree variances as a function
of frequency. The tidal energy was removed by inter-
polating across the 60-day band. To avoid edge effects,
the two highest and lowest frequencies were dropped.

of the confidence limits has not been possible, and we
have assumed that the induced dependencies reduce the
degrees of freedom to about 1/3 the hypothetical max-
imum value. The result may be optimistic, but note
that much of the small-scale structure visible is actu-
ally residual aliased tidal lines.
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Figure 3a. Frequency power density spectrum com-
puted by summing figure 2a over all degrees (wavenum-
bers) n, with conversion to a power per unit frequency
band (solid line). Also shown (dashed line) is the fre-
quency power density spectrum computed as an aver-
age of the periodograms of sea level at several thousand
subsatellite points, each treated as an ordinary time se-
ries. The semidiurnal tidal error is conspicuous in both.
Gridding of the data accounts for the reduced energy as
seen by the spherical harmonic analysis. Also shown, as
a dash-dotted line, is the interpolation across the tidal
alias band. Other weak aliased tides produce some of
the remaining small peaks, e.g., near 20 days. An ap-
proximate 95% confidence interval for the along-track
spectrum is +3% of the displayed spectral values (see
text).
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Also shown in Figure 3a is the frequency power den-
sity spectrum estimated by computing the average pe-
riodograms from time series of sea level variability at
each of about 58,215 points at fixed locations every 60
km along the subsatellite track. If these time series
were independent (they are not), we would have about
2 x 58,215 degrees of freedom. In practice, the number
of degrees of freedom was assumed to be the same as
in the spherical harmonic result. The energy level is
higher across the entire frequency band from the fixed-
location time series than from the spherical harmonics.
The energy difference corresponds to that removed by
the gridding onto the 2° x 2° grid for an rms differ-
ence of 6.6 cm. The peak centered near a period of 60
days in both spectra are the aliased semidiurnal tidal
components M, and Sy, incompletely removed from the
results by the tidal model. The peak corresponds to an
rms value of 1.3 cm, relative to the background contin-
uum. (All displayed one-dimensional spectral densities
have been “normalized so that when multiplied by the
bandwidth, the resulting power from any unit ampli-
tude sinusoid present would be 1/2, producing an rms
amplitude of 1/2/2; but owing to tapering of the various
time series, the resulting value is reduced by an approx-
imate factor of 1/1.1. The rms amplitudes quoted here
have been multiplied by 1.1 for a slightly more accurate
estimate.) The residual background continuum after re-
moval of the apparent tidal peak has a value of about
1.1 cm rms (in a bandwidth of 1 cycle/yr) and repre-
sents energy which should not be included in any tidal
model. In Figure 2b and in all results based upon the
spherical harmonic analysis, the values of &, (¢) were
linearly interpolated across the 60-day tidal band to re-
move the excess tidal energy. The background contin-
uum is higher near 60 days than it is near 12 hours, ren-
dering the tidal determination from an altimeter more
difficult, in this particular sense, than it is from a tide
gauge sampling at a typical rate of once per hour.

Figure 3b displays I':(c), interpolated across the tidal
alias band and extended to frequencies above the 1
cycle in 20 days cutoff of the altimetric results, by
using estimates from the Honolulu and Bermuda tide
gauge records corrected for atmospheric load fluctua-
tions. Apart from the annual peak the spectrum is
“red,” obeying an approximate relationship of

(o) =
1‘1(0') =

21.3071,1.4%x 1073 <o <5 x 1072
1.06072,56x 1072 <o

(10)
shown in Figure 3b (o is in circular, not radian, units
of cycles per day, and I'; is in square centimeters per
cycle per day.) The annual peak is about 2.8 cm rms,
relative to the background continuum of about 3.0 cm
rms (which was estimated from the energy density at
the next higher and lower frequencies in the spectral
estimate). A weak semiannual peak is present, proba-
bly somewhat contaminated by residual error from the
aliased K; tide. The total rms variability between 2
years and 20 days, exclusive of the 60-day band semid-
ijurnal tidal error but including the annual period, is
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Figure 3b. Frequency power density from the along-
track data in Figure 3a, but interpolated across the tidal
band and showing a high-frequency extension. The ex-
tension was obtained from the Bermuda [ Wunsch, 1972]
and Honolulu [Munk and Cartwright, 1966] tide gauges
corrected for a static atmospheric load and should be
regarded only as a rough schematic of the actual, un-
known form. The 95% confidence limit on the solid
curve is again about +3% of the value shown.

about 9.7 cm rms (27 cm peak to trough). The high-
frequency extension of (10) shown in Figure 3b is sim-
ply a plausible suggestion based upon tide gauge results
(Munk and Cartwright [1966] for Hawaii and Wunsch
[1972] for Bermuda) but is intended only as a crude
placeholder; a global analysis of pressure-corrected tide
gauge records will be required to produce a more ac-
curate version, and even then, the spatial coverage will
undoubtedly prove less than desirable.

Because the assumption of homogeneity is a fiction
convenient as a reference state, it is important to exam-
ine the variability in the space as well as the wavenum-
ber domains. Plate 2 shows the rms sea surface height
variability (in centimeters) during the 2 year period and
after averaging in 2° x 2° geographical areas. The
computation was done using the along-track, rather
than the gridded data to retain the complete spectrum
of wavenumbers. Similar figures have been published
before; using the higher quality TOPEX/POSEIDON
data, however, leads to a decrease in the ambient vari-
ability in the bulk of the quiescent subtropical oceans
and reveals variability associated with major currents
with better spatial coherence. The extreme quiescence
of the South Atlantic and eastern South Pacific in the
latitude band from about 20°-30°S is remarkable.

Oceanic variability is broadband, including seasonal
and interannual variability as well as the mesoscale, and
so Plate 2 is not simple to interpret. To obtain some
insight into the timescales involved, we band-pass fil-
tered the (local) TOPEX/POSEIDON time series to
form separate maps for the variability on timescales
shorter than 150 days, the timescale of the oceanic
mesoscale [Richman et al., 1977], and longer. Plates 3a
and b display the rms variability in the so-called eddy-
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Plate 2. Root-mean-square sea surface variability (in centimeters) about the temporal mean
as a function of position from the 2 years of data (repeat cycles 9-81, December 11, 1992, to
December 5, 1994) computed from the along-track data. Note large regions of very small values.
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containing band and for the periods longer than 150
days in the so-called interannual band (including the
seasonal changes). The percentage contribution of the
eddy-containing band to the total variance is shown in
Plate 3c. Globally, about half of the variance lies in pe-
riods longer than those of the eddy-containing band. In
particular, the subtropical gyres and frontal structures
such as the Azores Current are dominated by variability
on the longer periods and not by the mesoscale. Plate
3b (see also Stammer and Béning [1995]) shows that
most of the variability in the intense current systems
occurs on short timescales. Enhanced eddy variabil-
ity is visible along many boundaries; for example, the
Madagascar Current, the Agulhas Retroflection system,
and the Benguela Current are all associated with in-
tense short-period variability. In addition, a distinct
geographical pattern of enhanced eddy activity can be
found which, e.g., in the Atlantic Ocean, leads to an in-
teresting pattern in Plate 3c, almost symmetric about
the equator with a high percentage along the North and
South Equatorial Currents and on the equator. Vari-
ability on increasingly short timescales is present in
high latitudes. The Pacific has a similar distribution,
although not as distinct as in the Atlantic.

The Degree Variance Spectrum
The sum over all frequencies in Figure 2a defines the
total degree variances,

Ty(n) =) ¥(o,n),1<n <90 (11)

depicted in Figure 4 (solid line) in units of square cen-
timeter. The minor low-degree peaks are not statisti-
cally significant, and the result is similar to but much
more accurate than that of Wunsch [1991], who plot-
ted the equivalent of 42 = Iy(n)/(2n + 1). Otherwise,
the general character of I'y(n) is a nearly white spec-
trum from the largest scale (40,000 km wavelength) to

the high-degree (high wavenumber) cutoff near wave-
lengths of about 400 km. Here, for descriptive purposes,
wavelength is taken to be 2ra./n a2 40,000km/n. The
high-wavenumber extension (dashed curve) in Figure 4
is discussed below.

One-Dimensional Spatial Spectrum

The degree variance spectrum is somewhat unfamil-
iar, and there is reason, in any case, to seek an esti-
mate of the wavenumber power density spectrum of sea
level along linear tracks. To proceed, we continue to
examine an equivalent homogeneous and isotropic field.
Under this assumption the wavenumber spectrum com-
puted from along-track data from all great circles on
the sphere will be statistically identical. In particular,
the equator, § = 7/2, is such a great circle, and we can
therefore evaluate

S(7/2,2) =Y enmYnm(7/2,3)
_ Z Zanm (2n+1)(n— m)!an(O)eimA;

4m(n 4+ m)!

(12)

but [Stegun, 1965],

_T((n+m+1)/2) 2m s
P,n(0) = N(n—m)2+1) /5 cos[g(n +m)] (13)

for m > 0, and

Pan(®) = ()PP R0 ()

for m < 0, so that using ¢! = T'(q + 1), (this T is the
gamma function) and the definition of the Y;,,,,



24,902 WUNSCH AND STAMMER: GLOBAL FREQUENCY-WAVENUMBER SPECTRUM

T/P rms ssh variablility, rep 9-72 LP (em)

120°E 150°E 180°W 150°W 120°wW 20°W 60°W 30°wW 0w 30%E 60°E 90°%E 120°E
. i . " s L . . . s 5

90°N ¢ : . - - : - : : 4~ 90°N
60°N 60°N
30°N 30°N
0°N 0°N
30°s . 30°s
60°S 60°s
0°s 90°s
120° 150°%E 180°%E 210°E 240° 270°E 300°% 330°% 360°E 30°E 60°E 90°E 120°E

Plate 3a. Root-mean-square sea surface height variability as a function of position for timescales
(periods) exceeding 150 days (in centimeters).
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Plate 3b. Root-mean-square sea surface height variability (in centimeters) as a function of
position for timescales less than 150 days.
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Plate 3c. Percentage of the total 2 year variance represented by the eddy-containing band, i.e.,
the relative proportion represented by Plate 3b.
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Figure 4. Degree variance power spectrum (not power
density) computed by summing Figure 2a over all tem-
poral frequencies (solid line). Dashed line shows the in-
ferred extension from the along-track wavenumber spec-
tra (Figures 5a and 5b), using (17). The upturn at the
highest values of n in the solid curve is an artifact of
truncating the wavenumber spectrum (see text). Some
representative approximate 95% confidence limits were
calculated by assuming 2 x (2n + 1) degrees of freedom
for each value n but that the sum over the 37 frequency
estimates produces only about another factor of 4 de-
grees of freedom owing to the power law dependence of
the frequency spectrum.

S(m/2,A,t)
_ (2n + 1)I‘(n—m+ 1)
- r;)m,z— Gnm 47(n + m)!
I[(n+m+1)/2] 2™ T im
X T+ m)/2 4 1] ﬁ cos[i(n + m)le

(2n+ 1)T'(n — |m|+ 1)
4xT(n + |m|+ 1)

90 -1
+ Z Z Cnm

_0::_; Im] T '
« F[( + I l + 1)/2] 2_(_1)m COS[E("L + |m|)]eZmA

Pl(n+ |ml)/2+1] v7
(15)

which, if Fourier transformed around the Earth, gives

S(w/2,k,t)
_ 2 & 2n+1)T(n—m+1)
B nz:%mX::Oanm 4rT(n+m+1)
I{(n+m+1)/2] 2™ s
X T[(n+ m)/2 + 1]—\—/—7?cos[5(n+m)]6(k —m)

(2n+ 1)I'(n — |m| + 1)
47l (n + |m| + 1)

90 -1
T2 D enm

n=0m=-n

l(n + | + 1)/21 2
[(n+ Iml)/2+ 1] v/x

X cos[ (n + |m|)]é(k — m)
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and the one-dimensional wavenumber spectrum is

Ts(k) < S(r/2,k,t)8(x/2, k,t)* >
B . T(n—m+1)
= Z“ (2n+1) 22047r1“(n+m+1)
T[(n+m+1)/2] 2™ 2
" {r[( DR sl ml} b m)

P(n—|m|+1)
t)(2 1
+ Zan( n+1) Z 47T (n+ |m| + 1)

T[(n+ m|+ 1)/2] 2™ 2
x { T(nt /2 + 1] v }
X {cos[f(n+|m|)]} 8(k — m)

= Za t)(2n+l)z Ln—k+1)

47rI‘n—|—k+1)
% {r[(n+k+1)/z1zc
I“[( —k)/2+ 1y

-1

- Za )(2n+1) Z

{ [(n+ |k 4 1)/2] 2!*!
T[(n+[k))/2+1] /7

os[ T (n + k)]}2

T'(n— |k|+ 1)
47T (n + |k|+ 1)

21 coslZ(n -+ 8D
(a7)

with the terms in the summation vanishing except for
n + k even. Equation (17) is the one-dimensional spec-
trum consistent with the observed degree variances.
(Wagner and Colombo [1979] provide a related expres-
sion.) The “equator” for which (17) is valid is not
the physical equator; rather, it is the equator of the
sphere on which the hypothetical isotropic, homoge-
neous stochastic field would exist. The result in units of
square centimeter per cycle per kilometer is displayed
in Figure b5a.

It is desirable to extend the spherical harmonic along-
track wavenumber spectrum in figure 5a to higher
wavenumbers, and this extension is possible because
the along-track spatial sampling is at approximately 6
km, yielding a Nyquist cutoff near wavelengths of 12
km. The dashed line in figure 5a displays the global
average, one-dimensional wavenumber spectral density
from a large number of long arcs around the world and
averaged both over arcs and over time. Although the
subsatellite tracks are not actually great circles, the
wavenumber spectra from true great circles probably do
not significantly differ from those in Figure 5a. There is
excellent agreement between the directly computed one-
dimensional wavenumber spectrum and that inferred
from the degree variances in the band of overlapping
wavenumbers from about 107* — 1072 cycles/kilometer
(wavelengths of 1000~10,000 km). Obtaining this agree-
ment is a severe test of a consistent set of normalizations
throughout and shows that the approximate global av-
erage isotropy assumption is qualitatively correct. (The
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Figure 5a. One-dimensional wavenumber spectral
density of the variability computed from periodograms
along a set of long (12,700 km), globally distributed
arcs and then averaged (dashed line). The solid line at
low wavenumbers is value of the one-dimensional spec-
trum deduced from (17). See text for a discussion of the
deviations of the two curves. The normalization is such
that a deterministic unit amplitude sinusoid would pro-
duce a power of 1/2. The conventional spectrum used
to infer the extension was not corrected for the remain-
ing tidal energy. The high-wavenumber end has been
shaded to indicate uncertainty over the relative noise
contribution.

result from (17) was a uniform factor of 1.2 higher than
that from the along-track values; the discrepancy is be-
lieved to be the aliasing, described above, of the spher-
ical harmonic fit.) Note that the along-arc estimates
were not corrected for residual tidal errors and under-
sample the intense boundary current regions because
few long tracks are available in the western boundary
areas.

The values inferred from the degree variances drop
below those from the along-track values near 500-km
wavelengths and shorter owing to the absence in the
gridded data of the energy removed by averaging over
2° of latitude and longitude. (Note that spectral com-
ponents of n higher than 90 contribute energy at all
values of |m| < n to the degree variances. These contri-
butions are missing in Figure 5a, leading to the observed
drop, but which is apparent only at high wavenumbers
because there is a very rapid loss in energy at short
scales.)

An approximate analytic fit to the combined
wavenumber spectrum shown in Figure 5b is

Ts(k) =
487k~ Y2, 25 x 1075 < k< 2.4x 1073,
2.6x 107352 24x 1073 <k <1.0x 1072,
0.59k %3 1.0 x 1072 < k < 1/12, (18)
and whose integral corresponds to about 8.5 cm rms
(the annual cycle energy is partially missed by the fit,

accounting for the slight reduction from the total vari-
ance of the frequency spectrum). The power laws in
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(18) and (10) were chosen to be simple and suggestive;
But it would be a mistake to attach any great signifi-
cance to them except, perhaps, in the lowest wavenum-
ber band. These rules represent a great variety of phys-
ically disparate regions with varying physics, and it is
unlikely that the power laws can be associated with any
specific physical cascade mechanism. It is easy to gen-
erate a variety of slopes out of ratios of small integers.
The validity of the spectrum at the high wavenumber
end, approximately proportional to k=%/3, is not clear
to us and is further discussed below.

The half-power point in the spectrum (18) lies near
k = 1/890 km; that is, about half the variability in
surface potential energy occurs on wavelengths longer
than about 1000 km. Although superficially different,
the high-wavenumber behavior in Figures 5a and 5b
is consistent with results from regional analyses (e.g.,
D. Stammer, Regional characteristics of oceanic vari-
ability estimated from TOPEX/POSEIDON altimeter
measurements, manuscript in preparation, 1995), whose
spectra have high-wavenumber slopes ranging from k=3
to k=5 in low- and high-energy areas, respectively. As
discussed by Stammer and Bdning [1992], the distinct
dependence on latitude of the shortest important scale
leads to a “filling in” of the spectrum by the regions of
high energy.

For some purposes, the piecewise rule (18), with its
discontinuous first derivatives, is awkward. Another ap-
proximation to the spectrum is the Padé form (in units
of square centimeter per cycle per kilometer)

ap — (Ilk + a2k2 (19)
14 b1k — bak? + bzk® + bykt’

for the wavenumber range 2.5 x 1075 < k < 1/12 cy-
cle/kilometer. In (19), ap = 1.1 x 10°%, a; = 2.8 x 107,
az = 2.1 x 10°, and by = 7.0 x 103, b, = 2.3 x 10,
bz = 41.6 x 108, and by = 1.8 x 10°. (The specific num-
bers appearing in these Padé fits are very sensitive both
to the order chosen and the way in which the fitting was
weighted. The general shapes are, however, stable.)
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Figure 5b. Composite wavenumber spectrum and the
piecewise constant power laws in (18). Again, the high-
wavenumber end is of uncertain validity.
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A geographical depiction of the wavenumber distribu-
tion of the variability analogous to that shown in Plates
3a and 3b for the frequency distribution is not rigor-
ously possible because Parseval’s theorem in wavenum-

ber space applies only on the global average, not at any -

particular point. That is, the temporal variance at a
fixed location is not the sum of the variances in differ-
ent wavenumber bands, rather, it is the variance of the
sum of those bands. Nonetheless, a qualitative under-
standing of the wavelength distribution of the variabil-
ity in geographical coordinates can be obtained. Plate
4a depicts the variance geographically, when the fields
S(6, A, t) are reconstructed from the expansion to de-
gree 40 only, all wavelengths shorter than about 1000
km being removed. The pattern is similar to the ampli-
tude of the seasonal cycle as depicted by Stammer and
Wunsch [1994, Plate 4], suggesting that much of the
long-wavelength variability (at least on periods shorter
than 2 years) lies in the annual cycle, and much of
which is local steric effects. Extended patches of low-
wavenumber variability in the tropics are also evident.
The corresponding estimate of high-wavenumber vari-
ability (wavelengths shorter than about 1000 km) was
obtained by subtracting the variance shown in Plate
4a from those in Plate 2, so that the high wavenum-
bers present in the along-track variability are retained,
and is shown in Plate 4b. In comparison to the total
in Plate 2, the areas of minimum eddy variability now
show amplitudes barely exceeding 3 cm rms. High eddy
variability generally remains associated with the major
current systems, with the Circumpolar Current emerg-
ing more clearly as a region of short-scale variability.
Plate 4c shows the fraction of high-wavenumber vari-
ability, relative to the total variability. The most con-
spicuous feature is the contrast between the tropics and
the higher latitudes, with the short-scale dominance in
the southern hemisphere being consistent with the very
weak annual cycle there.

Features such as the high-wavenumber extension of
the Gulf Stream/North Atlantic Current system are as-
sociated with long timescales (Plate 4c), consistent with
dominantly baroclinic motions. A similar behavior ap-
pears to be associated with the Kuroshio Extension.
In contrast, the high-latitude North Pacific and some
other areas show a dominance of low wavenumbers at
high frequencies, suggestive of barotropic motions. A
discussion such as this clearly leads one into a series of
interesting regional issues, in which inferences can be
made about the internal oceanic motions; but as our
goal here is primarily to focus on the global averages,
we will leave the regional discussion to future work.

The spectrum of the surface slope obtained by multi-
plying the results of Figure 5 by k? is shown in Figure 6.
The energetic part of the spectrum has a weak bimodal
character; one peak exists near 400-km wavelength
(scale near 100 km, if it is defined as 1/4 of a wave-
length) and a second peak near the high-wavenumber
cutoff around 20 km wavelength which is a consequence
of the —4/3 power law regime in (18). The longer-
wavelength peak occurs near the break in the elevation
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spectrum from the —1/2 to —5/2 power laws, while the
significance of the increase in energy toward the highest
resolved wavenumber is unclear. In a regional study, ex-
tending the results of this paper, Stammer (manuscript
in preparation, 1995) shows that this peak is associated,
at least in part, with small-scale energy in the intense
boundary currents and high latitudes, while part of it
is probably system noise. Numerical experiments [e.g.,
McWilliams and Chow, 1981] indicate that the kinetic
energy spectrum should decay monotonically from the
scale at which energy is input to variability by baroclinic
instability; but those models do not contain the equiv-
alent of the intense boundary currents, which contain
much of the short spatial-scale variability seen in Plate
4b and tend to have viscous cutoffs at high wavenum-
bers. So the rise toward the high-wavenumber cutoff
could be real nearly geostrophic motions. Note that
the total sea level variability in this band is only 2.2 cm
rms.

On the other hand, Rodriguez and Martin [1994] show
that the standard data reduction algorithm is likely re-
moving real energy in the highest-wavenumber band
(wavelengths 6-60 km) by improper handling of the de-
tails of the returning radar pulse within the altimeter.
According to their estimates, the energy at the shortest
wavelengths in Figure 6 is about 40% too low. Apply-
ing their correction renders the —4/3 region closer to
the spectrum of white noise but remaining somewhat
red in character. Were the spectrum actually white in
this wavenumber band, we would normally claim that
the “least count” noise of the system had been reached
and that no signal could be perceived. Another compli-
cating possibility is residual aliasing of high-frequency
motions, such as internal waves, not normally regarded
as an element in sea surface variability. At the 2-cm
level, movement of the sea surface by internal waves can
be significant, and these motions occur on wavelengths
of about 150 km and shorter. (Wunsch and Gill [1976]
estimate that in the tropical thermocline a first vertical
mode internal wave displacement of about 8 m produces
a l-cm vertical movement of the sea surface.) Because
the interpretation of this —4/3 regime is at present so
obscure, we have shaded the k=%/3 portion of the sur-
face variability spectrum and the corresponding area of
the slope spectrum to indicate our uncertainty.

The slope spectrum is very similar to spectra of
geostrophic velocity which were computed but are not
displayed here because such spectra cannot be simply
carried across the equatorial region. The slope spec-
trum is a good indicator of the visual structures cap-
tured by the eye in Plate 1.

If the high-wavenumber extension to the one-
dimensional spectrum shown in Figures 5a and 5b is
assumed correct, (17) can be used in the opposite sense
to infer the degree variances I'4(n) above n = 90. To
produce these estimates, I'; (k) was taken from the val-
ues shown in Figures 5a and 5b, resulting in the dashed
curve in Figure 4, which now represents an estimate
of the global variability degree variances ranging from
40,000- to about 40-km wavelength. The estimate was
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Plate 4a. The rms variability of surface topography when all wavelengths shorter than about
1000 km are removed. Scale is cm.
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Plate 4b. RMS variability of surface topography when the variance corresponding to Plate
4a is subtracted from the variance in Plate 2 to produce an approximate estimate of the high-
wavenumber contributions.
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Plate 4c. Fraction of the variance corresponding to Plate 4b, relative to the total variance.
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Figure 6. Surface slope spectra inferred from the com-
posite spectrum shown in Figure 5b (solid line) and
the piecewise constant power laws consistent with (18)
(dashed line). The validity of the final increase at the
highest wavenumbers is not clear with the dashed line
possibly being more accurate. Area is shaded to indi-
cate the uncertainty here.

not carried all the way to the hypothetically possible
limit of about 12-km because in addition to the uncer-
tainty of the validity of the spectrum there, a 12 km
wavelength corresponds to spherical harmonic degree
greater than 3300, thus leading to a set of simultane-
ous equations for the degree variances which was too
large for an ordinary workstation computer. The up-
turn at the highest values of n is an artifact of the high-
wavenumber cutoff in the along-track spectrum used;
but it is a reasonable inference that simple extrapola-
tion of the straight line portion of the curve in Figure
4 is a good approximation at the very high degrees.
An approximate analytic expression for the degree vari-
ances is

a,i x(2n+1) =
19.1 — 8.9 x 10720 + 2.2 x 10~ %n?

1+9.4x 10"2n — 1.1 x 10-%n? + 4.3 x 10-n?
(20)

(There is some sensitivity in inverting the wavenum-
ber spectrum for degree variances. When the estimate
shown in Figure 4 was calculated not from the numeri-
cal values but from the piecewise analytical expression
(18) for I';(k), the result was a curve with cusps, ap-
parently connected with the slope discontinuities in the
one-dimensional expression, and a negative degree vari-
ance for n = 0. These cusps and negative values dis-
appeared when (19) was used instead. The uncertainty
noted above about the actual slope at the very highest
wavenumbers in Figure 6 is negligible here, as so little
energy is present in those scales.)

The Frequency-Wavenumber Spectrum

Equation (17) was applied above to the total degree
variances; but it can be applied also to the degree vari-
ances as a function of frequency, thus producing a two-
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dimensional frequency-wavenumber spectrum where the
spatial coordinate is once again measured along track,
with the result depicted in Figure 7a. The spectrum
was cut off at wavelengths shorter than about 500 km
because of the removal of energy beyond that owing to
the gridding. The annual peak is again conspicuous.

A reasonable analytic fit to the figure can be obtained
from the products of the proposed separate frequency
and wavenumber spectra. Because of the piecewise form
in which TI';(0),Ts(k) have been written, there are six
separate regimes, and the result can be written in a
number of ways, one of which is

U(k,0) =29 x 1077
x{o71,0<0<5x107%0.46072,5x 1072 < o}
B2 25%x 1075 <k <24x1073,
x{ 53x107%5/224%x1073<k<1.0x 1072,
1.2x107%k~%43,1.0 x 1072 < k < 1/12,
(21)

where units are cm? cycle ! d~! cycle™* km~*. The
result is shown in Figure 7b. The fit is inadequate at
the annual peak, and a quantitative description of that
structure and the spectrum at longer periods awaits a
longer record.

4. Spatial Covariance

For some purposes, e.g., surface mapping and spatial
correlation calculations, it is useful to have the spatial
covariance function C. Define

C(8, AG, AM, 1)
= < SO+AA+ANL)S(O, A1) >

= DD 2 Y <anm(t)ap,(t) >

n=0m=—-np=0g¢=—p

X Yom(6+ A6, X+ AX)Y,,(0,A)"

= > al(t) i Yo (8 + 80,1 4+ A))

X Yam(6,A)" (22)

N
)

o
L

(em2/cycle /'day / cycle /km )
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Figure 7a. Frequency-wavenumber power density
spectrum of the global ocean as inferred from the spher-
ical harmonic fit converted to along-track coordinates.
(No averaging was done.) The annual peak is the most
conspicuous feature.
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But the addition theorem of spherical harmonics [e.g.,
Jackson, 1962, p. 68) asserts that

47
2n+1

P,(cos7) = D Yam(0+48, A+ AN Yo (6, A)"

(23)
where cosy = cos 0 cos(6+ Af)+sin 8 sin(0+AB) cos AX.
Hence (22) can be written, using the lack of dependence
on m of the coeflicients,

90
1
C(G,AO,AA,t):E:aZ(t)2T;+ Po(cosy)  (24)
vis
n=0

If this function is in turn expanded in Y,,,, to produce
a “spectrum,” one uses

2n+1
47

YnO(’Yv ¢) = Pn(COS 7) (25)

and

the power in each degree will be a2(t)y/(2n + 1)/4w.

Setting A6 = AX = 0,cosy = 1, and hence the mean
square value is

< 5(6,X,£)5(6, A\, t)" >
90

2n+1
= nE___Oaz(t) . Pn(cos 0)
90
2n+1
= 2 t =
7?:0; an(t)—;— = C(6,0,1) (26)

independent, in this homogeneous isotropic regime, of
position. From the “Fourier” form (12), the mean-
square value for any A is,

< S(m/2,\,1)S(7/2, A, t)" >

9 n 90 p
Do 20D ). <anmap,>

n=0m=-np=0g=—p

X Yam(7/2,A)Ypq(7/2, A)*

= Z Z ai(t)|Ynm(0,)\) |2

n=0m=—n

2n+1

n=0

(27)

where the last step uses the addition theorem (23) with
7 =0, P,(1) = 1. Equation (27) is necessarily the same
as (26). Because of the special role of the poles in spheri-
cal coordinates, C(6, A, A),t) depends upon 6, in con-
trast to the situation for a homogeneous process on the
plane.

For fixed ¢, (24), along with the analytical approxi-
mation (20), can be used, e.g., for objective mapping.
It can also be readily generalized to account for tempo-
ral lags as well as spatial separations, but we will omit
displaying the formal expression here, as it is implicit
in the formulas already given.
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Figure 7b. Analytical form of Figure 7a, as expressed
in (21) .

Similarly, all of the along-track spectra correspond
to spatial (and/or temporal) covariances, computable
as the cosine transforms of the one-dimensional spec-
tra. Of particular interest is the covariance of the slope
spectrum in Figure 6. For present purposes we assume
that the k~5/2 region of I';(k) extends to k = oo, pos-
sibly underestimating the high wavenumber energy and
thus slightly distorting the covariance at small lags. De-
fine

. (o]
C(r) = 2/ k’T, (k) cos(2mkT)dk. (28)
o

The result is expressible in terms of Fresnel integrals,
but we display only its graph in Figure 8. The infinity
at zero lag is integrable; there is a first zero crossing
near 54 km and a decaying sinusoid beyond. Large-lag
oscillations are generated by the abrupt change in slope
in Ts(k) at 400 km. This result should be close to the
one-dimensional global average transverse geostrophic
velocity covariance.

5. Using the Results

The results are best regarded as basic descriptive
physical oceanography, raising fundamental dynamical
and theoretical issues of why these particular spectral
forms are displayed by the ocean. Apart from such the-
oretical issues, the results can be exploited in a number
of ways. Although their use is mainly left to future
papers, we offer three examples.

1. Ordinary tide gauges represent an entirely differ-
ent method for observing sea level variability. One seeks
to compare and to combine these measurements. This
recipe was carried out by Wunsch [1991] for GEOSAT
measurements, but the work was hindered by the diffi-
culties in determining how well the pointwise measure-
ments at the tide gauges should agree with the spatially
averaged altimetric ones. Expression (18) now permits
an answer to that question in the global average: in-
tegrating (18) from k = 1/200 km (approximating a
2° average) to k = 1/12 km produces about (3 cm)? as
an estimate of the mean square energy removed by the
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Figure 8. Spatial covariance, normalized to unity, of
the along-track slope spectrum; modified to omit the
high wavenumber increase and which should be nearly
proportional to the transverse geostrophic velocity. The
nearly white character of the slope spectrum gener-
ates the near-delta function at the origin. Approximate
mean square geostrophic kinetic energy is 500 cm/s?,
which sets the scale for the figure.

averaging. For any particular gauge, deviations from
this value are to be expected; but this value provides

a default a priori value which would then be modified

in a simple adaptive method which tracked the actual
altimeter —tide gauge differences through time, a calcu-
lation to be presented in a subsequent paper.

2. The sampling properties of altimetric satellites
must be understood in the context of oceanic variabil-
ity [e.g., Wunsch , 1989]. Some debate has occurred
concerning the desirability of orbits such as that occu-
pied by GEOSAT, in which the ground track repeated
every 17 days versus that of TOPEX/POSEIDON re-
peating every 10 days. We can now answer the question
of how much energy in the global average is aliased by
the 17-day repeat relative to the 10-day repeat; it is

s=1/20d
/ Ti(s)ds ~ (1.9)% cm? (29)

=1/34d

which is not insignificant and which will be much higher
in certain regions. (The 10-day TOPEX/POSEIDON
repeat cycle was chosen in part because it appeared
that at periods shorter than about 20 days, the spec-
tral drop-off in sea level variability became quite steep,
thus minimizing the aliasing from shorter periods; but
some residual temporal aliasing is inevitable.) The 17-
day repeat ground track is denser on the surface than
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is the 10-day one, permitting contemplation of the re-
moval of the aliased energy by wavenumber filtering;
although this is a difficult problem, given the irregu-
lar data distributions. However, with knowledge of the
full-frequency wavenumber spectra, such filters could,
in principle, be designed.

3. Brown et al. [1975] and Fillouz et al. [1991] have
reported estimated spectral densities from seafloor pres-
sure gauges; the former from southwest of Bermuda
and the latter from north of Hawaii. In the band of
timescales that overlap their estimates with ours, from
about 20 to 100 days, their results suggest that the en-
ergy levels on the seafloor are approximately the same
as seen from the altimeter on the global average; sug-
gesting that at these rather short periods in these par-
ticular locations, the motions are largely barotropic; as
theory implies high-frequency forced motions should be.
(The pressure records were too short to make estimates
at longer periods.)

6. Final Comments

There is much more to be done along the lines out-
lined here, work which will be described in future pub-
lications. As an example, one seeks to extract direc-
tional properties from the data, i.e., a determination of
the fraction of the energy propagating westward, north-
ward, etc. The problem of the vertical partitioning of
the energy can be understood, both through the fre-
quency structure of the spectra at fixed wavenumber
and through the comparison with in situ observations,
such as those of Fillouz et al. [1991] and Brown et al.
[1975]. Comparison of the regional variations of the
spectra to the global means is a determinant of local
physics, and a regionalized version of these results is in
preparation. Through comparisons and combinations
with the tide gauge results, a much tighter bound on the
accuracy of present estimates of global secular trends
should become possible. The frequency/wavenumber
spectrum implies coherence scales between physically
separated measurements as a function of frequency, and
these predictions need to be tested directly against ob-
servations.

The close agreement between the spectra derived
from the spherical harmonic analysis of the gridded
data and that from the “raw” along-track values gives
us confidence in the results and suggests there are no
obvious problems of aliasing of the gridded values by
high-wavenumber variability, nor of serious anisotropy
aliasing the along-track analyses. The one-dimensional
analyses of the raw data are far simpler than use of the
spherical harmonics and will probably be the focus of
most future work; but the spherical harmonic approach
better lends itself to global-scale three-dimensional (fre-
quency/wavenumber) analysis and will continue to play
a role.

Appendix A: The Spherical Harmonics
Define the degree n Legendre functions as
1 4"

2nn! dzn

P.(z) = (22— 1) (A1)
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(Rodrigues’s formula) with the associated Legendre
functions defined as

Ban(a) = (- A B() (A2)

for 0 < m < n, and
Pon(z) = (—pyimi 22Dt p (A3
nm(2) ( ) (n+ [m|)! nlml( ) )

for —n < m < —1. Then the spherical harmonics are

(2n+ 1)(n — m)!
47w (n + m)!

Yom(6,A) = Prm(cos G)eimA (A4)

for 0 < m < n, and

Yoam(6,3) = (=1)I™1Y,5) (6, 2) (A5)

for —n < m < —1. The result is fully normalized over
the sphere

2m
/ dx / $i00Y (6, 1) V.3, 1 (6, M)d8 = 6106yms (AB)
0
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