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Towards determining uncertainties in global oceanic
mean values of heat, salt, and surface elevation

By CARL WUNSCH�, Department of Earth and Planetary Sciences, Harvard University, Cambridge,
MA, USA

(Manuscript received 20 October 2017; in final form 10 April 2018)

ABSTRACT
Lower-bounds on uncertainties in oceanic data and a model are calculated for the 20-year time means and
their temporal evolution for oceanic temperature, salinity, and sea surface height, during the data-dense
interval 1994–2013. The essential step of separating stochastic from systematic or deterministic elements of the
fields is explored by suppressing the globally correlated components of the fields. Justification lies in the
physics and the brevity of a 20-year estimate relative to the full oceanic adjustment time, and the inferred
near-linearity of response on short time intervals. Lower-bound uncertainties reflecting the only stochastic
elements of the state estimate are then calculated from bootstrap estimates. Trends are estimated as
2:26 0:2mm=y in elevation, 0.0011± 0.0001 �C/y, and (�2.825±0.17)� 10�5 for surface elevation,
temperature and salt, with formal 2-standard deviation uncertainties. The temperature change corresponds to
a 20-year average ocean heating rate of 0:4860:1W/m2 of which 0.1W/m2 arises from the geothermal forcing.
Systematic errors must be determined separately.

Keywords: elevation budgets, global ocean heat, model uncertainty, salt, uncertainty quantification

1. Introduction

Many papers have been directed at estimating multi-dec-
adal ocean heat uptake (Purkey and Johnson, 2010;
Lyman and Johnson, 2014), salinity change as an indica-
tor of fresh-water injection (Wadhams and Munk, 2004;
Boyer et al., 2005), and sea level (elevation) changes
(Nerem et al., 2006; Cazenave et al., 2014) or all together
(Levitus et al., 2005; Peltier 2009; Forget and Ponte,
2015). Many more such calculations have been published
than can be listed here. A great difficulty with most of
these estimates is the historical inhomogeneity in the vari-
ous data sets employed, and the consequent assumption
of nearly untestable statistical hypotheses used to extrapo-
late and interpolate into data sparse times and places
(Boyer et al., 2016 and Wunsch, 2016 for generic discus-
sions). A number of papers have claimed ‘closure’ of the
sea level change budget, but that is accomplished through
large and uncertain error budgets of the vari-
ous components.

Ocean general circulation models (GCMs) and coupled
climate models have also been used to calculate space-
and time-mean oceanic temperature ðTÞ; salinity ðSÞ, and

sea surface elevations ðgÞ. Most models, including the
ECCO system (Estimating the Circulation and Climate of
the Ocean; Wunsch and Heimbach, 2013; Forget et al.,
2015), compute the ocean state in a deterministic fashion.
Given initial conditions and time-varying meteorological
boundary conditions, the model time-steps the state
vector, as though the external fields, including initial con-
ditions, were fully known. Ensemble (Monte Carlo) meth-
ods attempt to estimate the uncertainties of the state at a
particular time, usually a forecast time, by computing
families of disturbed initial and/or boundary conditions.

A general discussion of the accuracy or precision of gen-
eral circulation and climate models does not appear to exist.
As in all systems, errors will always include systematic ones,
e.g. from lack of adequate resolution or improperly repre-
sented air-sea transfer processes, amongst many others.
Stochastic errors will arise from noisy initial and boundary
conditions, as well as rounding errors, and interior instabil-
ities of many types, both numerical and physical. Analysis
of systematic and stochastic errors requires completely dif-
ferent methods. (Henrion and Fischoff, 1986, and especially
their Fig. 1 reproduced in Wunsch 2015, p. 48.)

The central purpose of this paper is to suggest a poten-
tially useful direction towards partially solving the*Corresponding author. e-mail: carl.wunsch@gmail.com
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problem of determining uncertainties in global-scale quan-
tities calculated with both observations and models.
Examples are produced for oceanic T;S; g values and
their variability from the nearly homogeneous (in the
observational network sense) data sets 1994–2013.
Specifically, a separation is attempted between the sto-
chastic and systematic errors inevitably present.
Stochastic errors are those often labeled as ‘formal’ and
are derived from estimates of random noise present.
Estimation of systematic errors involves a near line-by-
line discussion of the individual computer codes used to
calculate oceanic states. Errors will be different in calcula-
tions of the mean state, and in their temporal and spatial
changes. For reasons discussed below, as the duration of
a computation is extended, the distinction between sto-
chastic and systematic errors can no longer be made and
paradoxically, it is the comparatively short (20-year) time
interval of the state estimate that supports the method-
ology outlined.

The ECCO version 4 solution employed here represents
the output of an oceanic general circulation model whose
initial and boundary (including meteorological) conditions
and interior empirical coefficients have been adjusted in a
least-squares sense to fit 25 years of global data. All data
are assigned an error variance or covariance and the final
state is obtained from the free-running adjusted system.
For ‘state estimation’ as done in ECCO (Forget et al.,
2015; ECCO Consortium 2017a,b; Fukumori et al., 2018),
two major obstacles loom if Monte Carlo methods are to
be used: (1) the immense state and control vector dimen-
sions; (2) the absence of quantitative estimates (probabil-
ity distributions) of the stochastic contributions in the
initial/boundary conditions and stochastic structures gen-
erated by internal instability and turbulence. The same
obstacles to uncertainty calculation loom in any ocean or
coupled-climate model run for a long time whether or not
based upon combinations with data.

A number of methods exist for calculating uncertainties
in systems such as that of ECCO. To the extent that the
system is linearizable, the method-of-Lagrange-multi-
pliers/adjoint used there can be shown (Wunsch, 2006) to
have identical uncertainties to those obtained from
sequential estimates, such as the Rauch-Tung-Striebel
(RTS) smoother.1 This approach is very well understood
and is practical for small systems (Goodwin and Sin,
1984; Brogan, 1991; Wunsch, 2006). It involves calculated
covariance matrices that are square of the state vector
dimension and of the control vector dimension at any
time, t. For the ECCO version 4, state vector dimension
at each time step is approximately N¼ 11 million and
updating the state and its covariance requires running the
model Nþ 1 times at each time-step. Similar dimensions
and issues apply to the system control vector.

Other methods include calculation of inverse Hessians
(Kalmikov and Heimbach, 2014), sometimes using
Lanczos methods. Hypothetically, one could solve a
Fokker–Planck equation corresponding to the model
(Gardiner, 2004) and its initial/boundary condition, or the
prediction-particle filtering methods of Majda and Harlim
(2012). None of these methods is computationally prac-
tical for the global ocean or climate system with today’s
computers – although that should gradually change in
the future.

Nonetheless, some form of useful uncertainty estimate
is necessary for values calculated from models, whether
from ordinary forward calculations, or from a state esti-
mate. For example, as described by ECCO Consortium
(2017a), Fukumori et al. (2018), the 20-year average
ocean temperature is 3.5310 �C found from the N ¼
2:4� 106 volume weighted grid points of the adjusted
model (centers of cells). How reliable is that number? On
the one hand, it is extremely accurate up to the machine
precision of 2�64. A standard error might be calculated by
dividing the variance of the volume-weighted elements by
2:4� 106, but such a number is meaningless: (1) much of
the thermal structure of the ocean is deterministic on the
large-scale – and with other effectively permanent sub-
basin scale structures – stable over 20þ years. Treating
that structure as stochastic would be a major distortion.
(2) The distribution of values is very inhomogeneous over
the three-dimensional volume and any supposition of uni-
form probability densities or of near-Gaussian values
is incorrect.

Parts of the ocean structure and of the meteorological
forcing fields are deterministic processes over decades.
For example, the depth and properties of the main
thermocline, or of the dominant wind systems, do not
vary significantly over 20 years and the response times of
the global ocean extend to thousands of years and beyond
(Wunsch, 2015, p. 338). Superimposed upon the initial
and boundary conditions are noise fields best regarded, in
contrast, as stochastic – but which cannot build up glo-
bal-scale covarying structures in a restricted time period.

When integrated through a time-stepping fluid model,
the stochastic elements, even disturbances that are white
noise in space and/or time, will give rise to complex struc-
tured fields (Fig. B5 of Wunsch, 2002). A crux of the
uncertainty problem for model outputs then is to separate
the deterministic from the stochastic elements. Ensemble
methods, generated by stochastic perturbations of initial/
boundary conditions/parameters, face the same difficulty:
What are the appropriate joint probability distributions
to use in generating the ensembles (Evensen, 2009)?2 To
the extent that the stochastic influence can be regarded as
perturbations about a stable deterministic evolution, the
probability densities will be centered about deterministic
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fields, as in Eq. (3.5.9) of Gardiner (2004). Systematic
errors will remain as part of the deterministic compo-
nents, and must be dealt with separately. A literature on
systematic errors in numerical models does exist, much of
it directed at the accuracies of advection schemes and
other numerical approximations (Hecht et al., 1998). As
is always the case with real systems, the stochastic error
provides a lower bound on the true uncertainty.

What follows is largely heuristic and without any stat-
istical rigor. Methods for separation of deterministic from
stochastic elements in large volumes of numbers do not
appear to have been widely explored. (This issue should
not be confused with the problem of separating
‘deterministic chaos’ from true stochastic elements famil-
iar in dynamical systems theory; Strogatz, 2015).

2. Mean values

A start is made with time-mean three-dimensional fields,
which permits introducing the basic ideas while greatly
reducing the volume of numbers required. A supposition
is thus made that only the time average fields are available
and sampled, temporarily suppressing the information
contained in the time-variability. Suppression of the deter-
ministic component, so as to leave a stochastic field, is
required for both mean and time variations.

2.1. Temperature

Consider the problem of determining the 20-year global
ocean average temperature and its corresponding

uncertainty. A 20-year average, computed 50 years in the
future, might usefully be compared with the present
20-year average. Hourly values of the state estimate, aver-
aged over 20-years, 1994–2013, produce point-wise calcu-
lated mean potential temperatures, �T i at each grid point.
Mean temperature at one depth can be seen in Fig. 1, dis-
playing the classical large-scale features that are clearly
deterministic over 20 years with superimposed stochastic
elements. A histogram of the gridded mean temperatures
can be seen in Fig. 2 and its heavily skewed behavior
is apparent.

To form an average, the volume represented by each
grid point is accounted for by weighting each value �T i by
the relative volume contribution ai such that,

~m ¼
XN

1

ai �T i ¼ 3:53106? �C;

as quoted above. A histogram of the similarly skewed
weighted values can also be seen in Fig. 2. A standard
deviation computed from the volume weighted values has
no meaning as: (a) much of the field is effectively deter-
ministic and, (b) the probability density of the stochastic
elements is unknown.

Here the bootstrap and related jackknife methods in
the elementary sense described by Efron and Tibsharani
(1993), Mudelsee (2014), and others are used. The basic
assumption of the bootstrap is that the values making up
the subsampled population are independent, identically dis-
tributed (iid), values. Any assumptions that stochastic ele-
ments in cold, deep, temperatures are drawn from the

Fig. 1. Twenty-year mean temperature at 105m (�C). Inset shows the multi-modal histogram of values. The gyre structure is dominant
and regarded here as a deterministic element of the field (Fukumori et al., 2018).
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same population as the much warmer near-surface values,
or that this structure is dominantly stochastic, cannot
be correct.

An assumption is now made that the strongest globally
spatially varying structures represent the deterministic com-
ponent. As already alluded to, this assumption is based on
considerations of physics alone – and not upon any statis-
tical methodology: any three-dimensional, globally corre-
lated structure can only have been generated by very
long-term effectively systematic processes. If a process can
be rendered indistinguishable from white noise, then at
zero-order most covariance structure has been removed.3

Integration of stochastic fields does, of course, produce
globally correlated structures (Wunsch, 2002, Appendix
B) but these take many decades and longer to appear. To
the extent that the stochastic background has generated
large-scale covarying fields, the results here will be biassed
low. Experiments with simpler models (not shown) are
supportive of the assumption that over time intervals,
short compared to the full adjustment time of the system,
stochastic disturbances can be so evaluated.

To render the assumption concrete, a residual popula-
tion, h0i ¼ ai �T ið Þ0; that is iid over the full water column
everywhere is generated by subtracting the globally corre-
lated structures. In particular, let the three-dimensional
matrix of volume-weighted temperatures be, N ki;/j; zk

� �
;

written with columns in longitude, latitude, and depths.
Setting temperatures to zero over land is the simplest
choice. One might, alternatively, mask out these regions
from the computation. Experiments (not shown) with the
mean temperature field, showed only very slight differen-
ces from those obtained with the zero assumption (apart
from weak structures appearing in the zero region, and
masked out here). The choice has the virtue that the same
method can be used in conjunction with coupled ocean-
atmosphere models, where land values must be specified.
Note too, that zeros are also assigned to regions below
the local water depth so that the vi vectors (defined
below) can capture the influence of topography over a
fixed interval of orthogonality.

To proceed, map this three-dimensional matrix
N ki;/j; zk
� �

into two dimensions by stacking the latitude
columns, to form N0 ra; zkð Þ, where ra is just a reordering
of longitude and latitude. Write N0 as its singular value
decomposition,

N0 ra; zkð Þ ¼ UKKKVT
K ;K � 50; (1)

where the vertical dimension is described by the K vec-
tors, vi, making up the columns of matrix VK : Columns
of Uk are denoted ui: K is the number of non-zero singu-
lar values and hence is the rank of N0. (UK ;VK contain
the first K columns, etc. and KK is a K�K diagonal

Fig. 2. (a) Histogram of temperature values occuring at each grid point in the 20-year average temperature. (b) Same as (a) except
each value is weighted by the fractional volume corresponding to the particular grid point. (c) Variance with depth of the weighted
temperatures in (b) before (solid line) and after (dashed line) removal of the lowest singular vector pair. (d) Cumulative sum of squared
singular vectors for time-mean temperature field. (e) Histogram of values in the residual after removal of the q¼ 1 singular value pair
and which is unimodal without a dominating skewness.
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matrix.) The fractional value of the squared singular val-
ues, ki ¼ diagðKKÞi; as the sum,

SsvdðJÞ ¼

XJ

j¼1

k2j

XK

j¼1

kj2

� 1; J ¼ 1; . . .;K (2)

is shown in Fig. 3 and representing the cumulative vari-
ance by singular vector pair. The first singular vector pair
u1; v1 accounts for over 90% of the variance (Fukumori
and Wunsch, 1991). A horizontal chart of u1 is displayed
in Fig. 3. Subtraction of q pairs,

N0
q ra; zkð Þ ¼ N0 � k1u1vT1 � k2u2vT2 � � � � � kquqvTq

¼
XK

j¼qþ1

kjujvTj ;
(3)

leaves a residual with a very much reduced spatially cor-
related structure. The variance with depth of both hi and
h0i (Fig. 2) shows that removal of the first pair alone
(q ¼ 1Þ leaves a variance much closer to being depth-inde-
pendent and with a histogram that is unimodal and not
heavily skewed, so that a standard deviation has some
simple meaning. (A chart of u2; not shown, shows it to
have a spatially complex structure with a plausibly sto-
chastic behavior, which could be tested in turn.)

The crux of the statistical problem is in the decision
about how many pairs, q, should be removed? A rigorous
answer to this question is not provided here. Three basic
criteria are used: (1) the residual should be unimodal; (2)
the residual variance should not show a major depth
dependence; (3) the dominant singular value should
account for no less than 30% of the total variance. The
criteria permit use of the estimated variance as a useful
uncertainty parameter, and support for the iid assump-
tion. A statistically rigorous result requires a method for
use analogous to the use of the AIC (Akaike Information
Criterion) or BIC (Bayesian Information Criterion) in lin-
ear regression analyses (Priestley, 1981).

For temperature, removal of only the first pair, q ¼ 1;
reduces the temperature norm of N0

q ra; zkð Þ by over 90%
and the histogram of volume weighted values (Fig. 2) is
now unimodal. Over 20 years, the response of the ocean
is dominantly linear, producing a normal stochastic field
that is supported, e.g. by the discussion of Gebbie and
Huybers (2018), and the known physics of short-time
scale adjustment. With the risk of over-estimating the
uncertainty, q¼ 1 is chosen, and the elements of N0

q ra; zkð Þ
are assumed to be iid and thus suitable for computing a
bootstrap mean and standard error. Fifty samples of
bootstrap reconstruction produces a two-standard devi-
ation uncertainty of 1.9� 10�3 �C owing to the stochastic
elements or hTi ¼ 3:53160:002 �C, the ‘formal’ error.

Fig. 3. Chart of the values of singular vector u1 for volume weighted time mean temperatures ai �T i as a function of position
(multiplied by 1000). All contours shown are negative. Lower left inset displays (solid curve) the corresponding value with depth of v1
(solid curve) along with v2 (dashed) and v3 (dotted). Note that v1 < 0 almost everywhere so that the product, u1vT1 is almost everywhere a
positive volume weighted temperature. Upper left inset is the histogram of values and which is far from unimodal.
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(For a Gaussian process, two-standard deviations is
approximately 95% confidence interval.)

Much structure exists both in the suppressed and
retained singular vector pairs, which ultimately need
examination and physical explanation.

2.2. Salinity

The time mean salinity, (34.727, dimensionless on the
practical scale), determined from the volume-weighted
values aiSi has the histograms shown in Fig. 4.4 Taking
now q ¼ 2; aiSi, removes about 94% of the variance, and
two standard deviations of the bootstrapped residual pro-
duces 34.72± 0.02. The variance with depth is rendered
much more nearly uniform, albeit imperfectly so, and as
for temperature, the residual histogram of aiSi is now
unimodal. That q¼ 2 for salinity rather than q¼ 1 for
temperanture is likely explained by the much smaller devi-
ations of S about its volumetric mean, but for present
purposes that is immaterial.

For reference, under the assumption that total oceanic
salt content remains unchanged, Dh�� h0DS=S0 where
h0, S0 are the mean values of mean depth and salinity
(Munk, 2003) ignoring the density change to salinity5 and
the contribution of melting sea ice, the uncertainty DS ¼
60:02 corresponds to a sea level change uncertainty of

about Dh ¼±2.2m. This value may seem surprisingly
large, but it simply says that the salinity data permits
inference of the total amount of freshwater of about
Dh ¼ 2:2m out of a total average depth of about
h¼ 3800 m, or about 0:06%; which by most standards is
remarkable accuracy. One can hope that a comparison
50 years hence will not find changes in Dh, which are sig-
nificantly different from zero! The formal uncertainty in
the present state is sufficiently small in determining sys-
tematic errors, care must be taken over the definition/cali-
bration changes that may take place in the future as they
have in the past; see Millero et al. (2008) for a discussion
of systematic changes in definitions.

2.3. Sea surface height/dynamic topography

Mean sea surface height, g; the ‘dynamic topography’ in
the present ocean state, can in principle be compared to
its value determined as a 20-year average, 50 years, or
any other time interval into the future. Values in the
ECCO version 4 state estimate are determined relative to
the best available geoid known today (Reigber et al.,
2005). The dynamical variables are the horizontal gradi-
ent elements and thus if in the future, a different geoid is
used, offset by a constant from the one used in ECCO,
that change would be of no significance. On the other

Fig. 4. (a) Histogram of salinity values, �Si (dimensionless) on each model grid point. (b) Same as (a) except each salinity value is
weighted by its corresponding fractional volume represented (aiSiÞ. (c) Variance of (aiSiÞ with depth (solid curve) and after removing
q¼ 2 pairs of singular vectors. (d) Normalized accumulating sum of singular values of aiSi. (e) Histogram of volume weighted residuals
after removing q¼ 2 singular vector pairs.
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hand, care would be needed in the future to accommodate
changed geoids, for example, with higher spatial reso-
lution, temporal changes, and with significant regional
implications. Because dynamics respond only to horizon-
tal gradients in g; the result is most directly connected to
the altimeter, gravity, and hydrographic data.

The assumption used so far, that globally covarying
fields over 20 years can be interpreted as the deterministic
components, is physically sensible for temperature and
salinity. For g, however, the ability of the ocean to trans-
mit barotropic (depth independent) signals globally within
a few days, makes the assumption dubious. Nonetheless,
with this caveat, the global time-mean value of g and an
estimate of its accuracy is calculated within the model
context. Because of the complexities of geoid error and
the rapid achievement of barotropic motion equilibrium,
only the time differences of the mean surface height are
discussed. For the record, the area weighted mean of the
values in Fig. 5 is 8.48 ± 0.13 cm with the error based
upon q ¼ 3; but no more discussion is provided here.

3. Time changes: difference of last and
first years

Time changes, represented for now by the difference
between two yearly-averages, years t1, t2, should largely
remove the deterministic components contained in the ini-
tial/boundary conditions. A trend, e.g. in exchange of
heat between ocean and atmosphere as a part of the glo-
bal warming signal and part of the surface boundary

conditions, might be regarded as deterministic. But, as
has been noted in numerous publications (Oca~na et al.,
2016), with a 20-year record, the duration is far too short
to distinguish a true deterministic trend from the long-
term stochastic shifts characteristic of red-noise processes.
Thus, any trend present is treated as though arising from
a stochastic process. Discussion of temporal changes is
done in two ways: (1) the value of the differences of the
first and last years (20-year difference), and which makes
no assumptions about the nature of the trend. (2) The
bootstrapped or jackknifed estimate of the trends,
assumed to be linear ones using all of the intermediate
year averages.

3.1. Temperature/heat content

One interesting example is the difference between the
mean ocean temperature in 2013 and what it was in 1994
(shown for two depths in figs. 6–7) – as a constraint on
the rates of global warming. This difference is again a
static field and can be analyzed in the same fashion as the
time-mean was treated. The spatial pattern of warming
and cooling is a complicated one with large-scale struc-
tures corresponding to known physical regimes, e.g. the
eastern tropical Pacific, the near-Gulf Stream system/sub-
polar gyre, the Southern Ocean. As one might expect,
temperature difference variances are much larger near the
surface than they are in the abyss and the gridded tem-
perature field itself is far from having an iid. One can
proceed as above, subtracting the appropriate three-

Fig. 5. Time mean elevation (dynamic height) corrected for ice cover weight (Fukumori et al. 2018). Values are multimodal.
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dimensional singular vector pairs. To shorten the discus-
sion, the temperature differences are here integrated in
the vertical to different depths, including the bottom. The
top-to-bottom area-weighted integrals and their histogram
distribution are shown in Fig. 8.

Note that the two yearly estimates are not independent
ones – they are connected through the time-evolving
equations of motion. To the extent that any systematic
error in the ECCO system is time-independent, it will be
subtractive in the time-difference. The vertical integral,

top-to-bottom has no dominant singular vector pair, with
the largest squared singular value accounting for less than
30% of the variance. Proceeding under the assumption
that the 20-year time-difference has a vertical integral that
is close to iid (q ¼ 0Þ, the bootstrap produces a tempera-
ture change of 0:02066 6:7ð Þ � 10�4 �C (two standard
deviations). The underlying ECCO GCM uses a
constant heat capacity of cp ¼ 3994 J=�C=kg, so that with
an ocean mass of 1:37� 1021 kg; 0:02 �C corresponds to
a net heat change of ð1:16 0:37Þ � 1023 J. Over 20 years,

Fig. 7. Temperature difference (oCÞ at 1000 m between 2013 and 1994.

Fig. 6. Temperature difference at 105 m between 2013 and 1994 (�C). Values are unimodal.
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the heating rate is approximately 0.48 ± 0.16W/m2 includ-
ing 0.095W/m2 from geothermal heating (ECCO
Consortium, 2017a). As a rough comparison, Levitus
et al. (2012), estimated a change of 2:46 0:19ð Þ � 1023 J,
but to 2000m and in the interval 1955–2010 for a rate of
0.4W/m2, and using an entirely different basis for the
uncertainty estimate.

With all the results here, these values represent lower
bounds on the uncertainty. Geothermal heating itself has
uncertainties, which should be separately analyzed, and
the dependence of heat capacity and density on tempera-
ture, salinity, and pressure will introduce system-
atic errors.

3.2. Salinity/freshwater

The pattern of vertically integrated differences of salinity
between 1994 and 2013 (Fig. 9) is already visually some-
what stochastic in character and thus no further structure
is removed (the largest singular value corresponds to only
20% of the variance). The mean salinity change between
the two years is (�5.4± 0.84)� 10�4 from the bootstrap
estimate with q¼ 0. Using the above expression for the
addition of freshwater, the net increase in water depth is
0:066 0:01m, or 3.0± 0.5mm/y.

3.3. Surface height

The difference in height over 20 years (Fig. 10) is
6.37± 0.3 cm, or an average change of 3.2 ± 0.015mm/y

where the standard error is obtained from the bootstrap
with q ¼ 2: Nerem et al. (2006) quote a rate from altim-
eter data alone, as 3.1± 0.4mm/y. Although the estimates
are not independent – the state estimate uses all the altim-
eter data – and the altimeter data do not extend over the
ice-covered region – the results are approximately consist-
ent. (See Lanzante, 2005, for the interpretation of over-
lapping uncertainty estimates.)

g is calculated in the model using the full equation of
state, thus accounting for the addition of freshwater, the
thermal expansion from external heating, and any interior
redistribution of heat and salt as functions of position
and depth. The change in elevation over 20 years of
6.4± 0.3 cm is crudely then about 5–6 cm from the add-
ition of freshwater, with any remainder attributable to
thermal expansion.

4. Estimated linear trends

A generalization for both temperature and salinity is that
the top 100m are noisy year-to-year, but that integrals to
700m are much cleaner and visually very close to linear.
In both fields, the abyssal region, defined as the levels
below 3600m, shows a counter-trend to that of the water-
column total.

4.1. Temperature/heat content

The integrated temperature to various depths is shown
in Fig. 11. The best fitting, assumed linear, trend over

Fig. 8. Vertical integral, top-to-bottom, of the temperature difference between 2014 and 1993 and area weighted (106 �C). The result is
treated as fully stochastic, which may somewhat overestimate the formal uncertainty (q ¼ 0Þ. Histogram is again unimodal. Spatial
complexity here is indicative of the difficult oceanic sampling problem.
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20 years is sought, whether deterministic or a red-noise
random walk is immaterial at this stage. The least-squares
fit mean slope for the top-to-bottom change is
0:00116 6:9� 10�5 �C/y. Standard error is computed
from a bootstrap of the full field, under the assumption
that the time differences are basically stochastic – and

which likely slightly overestimates the uncertainty.
(A jackknife estimate was identical.) The mean slope
implies a change over 20 years of 0.0213± 0.0014 �C and
which differs only slightly from the value computed
between first and last years as might have been inferred
from Fig. 11.

Fig. 9. Vertically integrated salinity difference 2013–1994, top-to-bottom.

Fig. 10. Annual mean anomaly of surface elevation (m) relative to the 20-year mean in Fig. 5 over 20 years (upper panel). Error
estimates are from a bootstrap of the spatial distribution of the anomaly field in each year, with q¼ 0. Lower panel shows the simple
year-to-year difference of the values in the upper panel with the uncertainty estimates between each year treated as independent.
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4.2. Salinity trends

Integrated salt anomalies are displayed for each year to
several depths in Fig. 12. An overall freshening, top-to-
bottom is evident, including a slight increase in salinity at
and below 3600m. This abyssal change accompanies the
general cooling seen below 3600m in Fig. 11, but this
physics is not further described here.

As with temperature, the best fitting least-squares
straight line differs slightly from the calculation using
only the first and last years, producing a value of
�2:82560:137ð Þ � 10�5=y for a net change over 20 years
of �5:656 0:274ð Þ � 10�4 (For comparison, Boyer et al.,
2005, estimated the trend as �5:4� 10�4=y from a much
longer and much more inhomogeneous data set. No
uncertainty was specified.)

4.3. g Trends

Fig. 10 displays the annual spatial average anomaly
values of g and the first differences in each year. The spa-
tial patterns do not show a single dominant singular value
(10 of them are required to account for 90% of
the variance).

An estimate of the trend is 2:2� 10�361:5� 10�4 m=y,
again from a bootstrap average (with q ¼ 0), of about
2mm/y. The corresponding mean surface height change is

then 4.4± 0.15 cm over the 20 years. Attribution of the
combined heating and salinity change into an equivalent
sea level trend is a complex matter, that must include
gravity field changes (see Church et al. 2010; Pugh and
Woodworth 2014; and Forget and Ponte 2015) for com-
plete discussion.

5. Discussion

Although quantitative 20-year time-means and changes in
the global average oceanic heat, salt, and dynamic topog-
raphy (sea surface height) have been estimated, the main
goal here is not those numbers per se: the intention is to
begin the discussion of the separation of random and sys-
tematic errors in model property estimates. Results here
are almost entirely heuristic, but the approach using
resampling (bootstrap) methods applied to spatially
decorrelated fields can perhaps be made rigorous. In par-
ticular, methods for separating deterministic and stochas-
tic elements of the three-dimensional, time-dependent
fields, in the absence of real knowledge of the probability
distributions, should be explored. Formal errors here are
sufficiently small that a reasonable expectation is that sys-
tematic ones dominate, but that is only surmise.
Attention must then turn to the issue of systematic errors
in the model and state estimate. These will never be zero,
but because of the data-fitting in the state estimation

Fig. 11. Annual mean temperature anomalies integrated to different depths including the bottom in �C. Two standard deviation bars
are derived from bootstrapping the full temperature difference field each year. Ttot is integrated top-to-bottom; T100m, T700m, T3600m
are integrated to 100, 700, and 3600m, respectively. Tabyss is integrated from 3600m to the bottom. Cooling in the region below 3600m
was discussed by Wunsch and Heimbach (2014) and Gebbie and Huybers (2018).
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process, they are expected to be much-reduced compared
to those found in unadjusted climate models.

A full discussion of the structures and causes of the
various fields appearing in the means and in the heating/
cooling, salinification/freshening, elevation increases/
decreases in time and space requires a specialized study of
each field separately and is not attempted here.
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Notes

1. The RTS smoother employs the Kalman filter as a sub-
component in the numerical algorithm. Kalman filters are
predictors and should not be confused with general
smoothing estimators. In any case, true Kalman filters,
which require continual updating of the covariance
matrices, are never used with realistic large-scale fluid
problems – the dimensionality is overwhelming. In practice,
the prediction numerics are usually approximated forms of
Wiener filters, which employ temporally fixed, guessed,
covariances.

2. Computationally practical ensemble dimensions remain
orders of magnitude smaller than any reasonable estimate
of the number of degrees-of-freedom.

3. An alternative, not used here, would be a spectral
expansion in spherical harmonics and a choice of vertical
basis functions, and the exploitation of the non-random
character of the coefficients of the deterministic elements.

4. Worthington’s (1981) value for temperature was 3.51 �C
and for salinity was 34.72 g/kg on the older salinity scale,
again with no stated uncertainty. Both are very close to the
present estimated values, although pertaining to the
historical period prior to about 1977.

5. The 20-year difference in global mean density is
��0.0038 kg/m3 including the thermal and salinity effects.
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