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a b s t r a c t 

The tides of an ice-covered ocean are examined using a Cartesian representation of the elastic and fluid 

equations. Although unconstrained by any observations, the ocean tides of a Neoproterozoic “snowball”

Earth could have been significantly larger than they are today. Time-mean tidal-residual circulations 

would then have been set up that are competitive with the circulation driven by geothermal heating. 

In any realistic configuration, the snowball Earth would have had an ice cover that is in the thin shell 

limit, but by permitting the ice thickness to become large, more interesting ice tidal response can be 

found, ones conceivably of application to bodies in the outer Solar System or hypothetical exoplanets. 

Little can be said concerning a reduction in tidal dissipation necessary to avoid a crisis in the history of 

the lunar orbit. 

© 2016 Elsevier Inc. All rights reserved. 
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1 Bartlett and Stevenson (2015) have revived a suggestion of Holmberg (1952) , 
1. Introduction 

Several reasons exist for an exploration of the tides occurring in

and under ice sheets, whether floating or land-confined. One mo-

tive arises from evidence that approximately 600 million years ago,

during the Neoproterozoic, the entire Earth may have frozen, being

everywhere covered with ice. Over the ocean, a floating ice sheet

may have existed with an estimated thickness of several kilome-

ters (the “hard snowball Earth”). Discussion of the evidence, pri-

marily geological in nature, can be found in Hoffman and Schrag

(2002) . Ashkenazy et al. (2014 , hereafter, A14), describe a theo-

retical/modeling study of the oceanic circulation that might ex-

ist under an oceanic ice cover of order of several kilometers. The

forcing they assume is purely geothermal, at the average mod-

ern rate of roughly 0.1 W/m 

2 ( Davies, 2013; Pollack et al., 1993 ),

with some localized maxima over ridge-crests. They find an equa-

torially enhanced meridional overturning circulation, with trans-

ports up to 30 × 10 6 m 

3 /s (30 Sverdrups; Sv) with a nearly ho-

mogeneous ocean, both in temperature and salinity. Some account

is taken of the oceanic interaction with the overlying ice sheet.

Jansen (2016) has in turn suggested that the resulting flow would

be a turbulent one. 

Whether or not a complete snowball Earth actually existed, the

question of what the ocean might be like under such circum-
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tances is an interesting theoretical problem. A modern analogue

ay lie in the outer Solar System satellites Enceladus and Eu-

opa, which have been inferred to contain fluid oceans covered by

ulti-kilometer thick ice sheets. In contrast to the A14 solution,

iscussion of behavior of those oceans has centered on tidal forc-

ng (e.g., Beuthe, 2015; Greenberg, 1998; Tyler, 2008; Vance and

oodman, 2009 ). 

Another motivation arises from the known difficulties in ac-

ounting for the history of the lunar orbit. The existing rate of

idal dissipation, if constant through time, would have brought the

oon catastrophically close to the Earth about 1 billion years ago

e.g., Goldreich, 1966; Macdonald, 1964; Munk, 1968 ). Munk called

he catastrophe the “Gerstenkorn event,” and which is known not

o have occurred. The conventional interpretation is that lunar tidal

issipation must have been greatly reduced some hundreds of mil-

ions of years in the past (see Bills and Ray, 1999 for discussion).

hould tidal dissipation have been much reduced during the ap-

roximately 200MY of the Neoproterozoic, it would be a significant

ontribution to explaining how the reduction occurred. 1 

A comparatively large literature exists on tides induced in ice

heets by the oceanic tidal forcing at the outflow (e.g., Arbic et al.,
hat the principal atmospheric solar semi-diurnal tide—which today effectively ac- 

celerates the Earth’s rotation—was in a resonant steady-state through much of 

Earth’s history, terminating with the end of the Neoproterozoic. See Munk and Mac- 

Donald (1960) for a review of the atmospheric resonance theory, which dates back 

o Rayleigh’s work. Discussion of whether such a high degree of resonance existed 

nd whether it could have persisted through order 1 GY of Earth history is far be- 

yond the scope of the present paper. 

http://dx.doi.org/10.1016/j.icarus.2016.03.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/icarus
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Fig. 1. Defining geometry of an ice layer of thickness d̄ over an ocean of depth d . Below the ocean is an infinite, rigid, half-space. z is directed vertically upward from the 

ice–ocean interface. 
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008; Reeh et al., 2003; Thomas, 2007 ). These effects are of at least

angential interest here, but where the focus is instead on the di-

ectly driven tidal motions within the ice. Some of the parameter

anges used here are far beyond anything reasonable for the Earth.

erhaps they have some relevance for another planet or satellite. 

. A Cartesian configuration 

Because of all of the uncertainties of the physical setting of the

eoproterozoic Earth, the restricted goals here are to understand

he basic physics and to find orders of magnitude of the effects.

nly a two-dimensional Cartesian system, as in the Airy “canal

heory” of water tides ( Lamb, 1932 ), is used. Consider the situa-

ion in Fig. 1 , in which an ice sheet of uniform thickness d̄ overlies

n ocean of constant depth d ; on the Earth, d, d̄ would have an in-

erse relationship over time. Below the ocean is an infinite elastic

alf-space. The fluid motion is computed with the half-space not

oving, and the ocean tide is computed relative to the sea floor.

onceptually, as with ocean tides measured from tide gauges, tides

ithin the elastic half-space will produce a modified tidal poten-

ial, U = U 0 ( 1 + k L − h L ) , where U 0 is the gravitational disturbing

otential and k L , h L are the conventional Love numbers ( Lambeck,

988; Munk and MacDonald, 1960 ). The net tide generating poten-

ial will be assumed to be, 

 = gHe ikx −iσ t = gηEq , (1)

o that the fluid equilibrium height would be | ηEq | = H, but with

he half-space treated here as completely rigid (unmoving). 

.1. Equations of an elastic sheet 

Rheological properties of ice, whether on land or floating, are

ot simple—encompassing elastic, viscous, plastic and fracture flow

aws. MacAyeal and Sergienko (2013) proposed that for time-scales

f less than about 10 days, treating sea ice as elastic is appropriate

nd thus reasonable for describing ordinary semi-diurnal or diur-

al tides. ( Reeh et al., 2003 , conclude that incorporation of a land-

ased part of the glacier would require a viscoelastic rheology,

ut this bending-beam limit is not undertaken here.) Discussion

f long-period tides, including the orbital- rather than rotation-

ominated ones in outer-Solar System satellites, requires revisiting

he rheology and invoking all of viscoelastic, plastic, and fracture

echanisms. 

The ice is treated here as purely elastic with Lamé constants λ,

and the physical and mathematical structure of the problem cor- 
esponds to the free-mode analyses of Bromwich (1898) ; Greenhill

1886) ; Press and Ewing (1951) , and Ewing et al. (1957 , chap. 5),

ut in the presence of a periodic body-force of radian frequency σ .

he Cartesian system governing an elastic plate is 

¯
∂ 2 ū 

∂t 2 
= −σ 2 ρ̄ū = ( λ + μ) 

∂ 

∂x 

(
∂ ̄u 

∂x 
+ 

∂ w̄ 

∂z 

)
+ μ∇ 

2 ū + ρ̄
∂U 

∂x 
(2a) 

¯
∂ 2 w̄ 

∂t 2 
= −σ 2 ρ̄w̄ = ( λ + μ) 

∂ 

∂z 

(
∂ ̄u 

∂x 
+ 

∂ w̄ 

∂z 

)
+ μ∇ 

2 w̄ − g ̄ρ (2b) 

Variables ū , w̄ in the plate are displacements, not velocities.

arred variables will refer to displacements in the ice layer, un-

arred ones to corresponding velocities in the ocean. ρ̄ is the den-

ity of ice, U has no vertical dependence in the ocean or ice layers

nd no y −dependence is considered. The background gravity g pro-

uces a resting static pressure ρ̄g( ̄d − z) in the ice; the resulting

ompaction and induced gravity disturbance are neglected here. 

What follows is in the spirit of the paper by Bromwich

1898) and who, as in the papers of Rayleigh and Love, defined

he pressure as, 

p̄ ( x, z ) = −λ

(
∂ ̄u 

∂x 
+ 

∂ w̄ 

∂z 

)
, (3) 

aken as finite, but otherwise treated the medium as incompress-

ble with, 

∂ ̄u 

∂x 
+ 

∂ w̄ 

∂z 
= 0 , (4) 

nd implying λ → ∞ . One advantage of this system is that it in-

reases the resemblance between the elastic and fluid equations.

he sign of p̄ has been reversed here from the Bromwich defini-

ion, conventional in elasticity, in the interests of that analogy. 

In any realistically ice-covered Earth-like ocean, the ice sheet

hickness would be a very small fraction of the tidal wavelength,

uggesting the use of equilibrium thin-plate theory (e.g., Greenhill,

886; Landau and Lifshits, 1970; Turcotte and Schubert, 2002 ) in-

tead of the dynamical wave equations. That course is not followed

o as to make it possible to include the interesting situation in

hich much thicker ice sheets are disturbed by tides, a config-

ration perhaps existing in theory in the outer Solar System or

mong exoplanets. The “thin-shell” fluid ocean, which gives rise

o the Laplace Tidal Equations used here (Cartesian limit), is likely

nappropriate for outer Solar System satellites, for which a non-

ydrostatic, fully spherical coordinate system would be required—

s in the Earth’s core ( Melchior, 1983 , chap. 6; Harrison, 1985 ). 
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2.2. Equations of a simple ocean 

Any realistic Earth ocean has a depth, d , far less than the tidal

forcing wavelength, and a hydrostatic system is adequate, but it

proves convenient to consider the more general case. In a non-

rotating, constant density, ρ , ocean, −d ≤ z ≤ 0 , and using the fa-

miliar coordinate system with u, w being velocities in the positive

x and z directions, 

−iσρu = −∂ p 

∂x 
+ ρg 

∂U 

∂x 
, (5a)

−iσw = −∂ p 

∂z 
− gρ, (5b)

∂u 

∂x 
+ 

∂w 

∂z 
= 0 , (5c)

and p is the pressure. 

2.3. Boundary conditions 

Several boundary conditions must be considered. At the rigid

sea floor, z = −d, 

w ( −d ) = 0 . 

At the ice–water interface, z = η, continuity of vertical displace-

ment requires, 

w̄ ( 0 ) = w ( 0 ) / ( −iσ ) = η, 

and which has been linearized about z = 0 as done in conventional

wave theories. The usual water-wave dynamic boundary condition

(linearized Bernoulli equation) at a free surface becomes one of

continuity of normal stress, 

−p̄ ( 0 ) + 2 μ
∂ w̄ ( 0 ) 

∂z 
+ g ̄ρw̄ ( 0 ) = −p ( 0 ) . 

At the ice–water interface, an inviscid flow does not support any

tangential stress, and so in the ice, 

∂ ̄u ( 0 ) 

∂z 
+ 

∂ w̄ ( 0 ) 

∂x 
= 0 . (6)

At the top of the ice-layer, at z = d̄ , the tangential stress must

also vanish, 

∂ ̄u ( d̄ ) 

∂z 
+ 

∂ w̄ ( d̄ ) 

∂x 
= 0 , 

again linearized about z = d̄ . Normal stress must vanish there

also, 

−p̄ ( d̄ ) + 2 μ
∂ w̄ ( d̄ ) 

∂z 
+ g ̄ρw̄ ( d̄ ) = 0 . 

2.4. Non-dimensional system 

Equations 

With many dimensional quantities defining the system

( d, d̄ , ρ, ρ̄, μ, σ, k, g) , it proves convenient to non-dimensionalize.

A system equally useful in both the fluid and elastic media is

not, however, obvious. The one chosen here is based upon the

conventional time and space scales of ordinary water waves in a

homogeneous fluid. Let all primed quantities be non-dimensional

and, 

T = 1 / 
√ 

gk , L = 1 /k, 

Ū = g ̄ρHU 

′ , p̄ = ρ̄gH ̄p ′ , d = Ld ′ , d̄ = L d̄ ′ , 

σ = σ ′ √ 

g/L , k ′ = 1 

(u, w ) = 

H √ 

g/L 

(
u 

′ , w 

′ ), p = ρgHp ′ , ( ̄u , w̄ ) = H 

(
ū 

′ , w̄ 

′ ). 
he non-dimensional elastic equations become, 

∂ 2 ū 

′ 
∂t ′ 2 = −∂ p̄ ′ 

∂x ′ + β2 
1 

(
∂ 2 ū 

′ 
∂x ′ 2 + 

∂ 2 ū 

′ 
∂z ′ 2 

)
+ 

∂e ik 
′ x ′ 

∂x ′ , (7a)

∂ 2 w̄ 

′ 
∂t ′ 2 = −∂ p̄ ′ 

∂x ′ + β2 
1 

(
∂ 2 w̄ 

′ 
∂x ′ 2 + 

∂ 2 w̄ 

′ 
∂z ′ 2 

)
− 1 , (7b)

∂ ̄u 

′ 
∂x 

+ 

∂ w̄ 

′ 
∂z 

= 0 , (7c)

ith β2 
1 = μ/g ̄ρL = c 2 s /gL, and c s = 

√ 

μ/ ̄ρ, is the shear wave-speed

n the ice, and 

√ 

gL = 

√ 

g/k is the ordinary water gravity wave

hase speed. Although k ′ = 1 , it is generally displayed as a useful

arker. 

The corresponding non-dimensional fluid equations are then, 

∂u 

′ 
∂t ′ = −∂ p ′ 

∂x ′ + H 

′ ∂e ik 
′ x ′ 

∂x ′ , (8a)

∂w 

′ 
∂t ′ = −∂ p ′ 

∂z ′ − 1 , (8b)

∂u 

′ 
∂x 

+ 

∂w 

′ 
∂z ′ = 0 . (8c)

oundary conditions 

Non-dimensionalizing as in the equations of motion, 

 = w 

′ (−d ′ ) , (9a)

¯
 

′ (0) = η′ / (−iσ ′ ) , (9b)

p̄ ′ ( 0 ) + 2 β2 
1 

∂ w̄ 

′ ( 0 ) 

∂z ′ + w̄ 

′ ( 0 ) = −p ′ , (9c)

∂ ̄u 

′ ( d̄ ) 
∂z ′ + 

∂ w̄ 

′ ( d̄ ) 
∂x ′ = 0 , (9d)

p̄ ′ ( d̄ ) + 2 β2 
1 

∂ w̄ 

′ ( d̄ ) 
∂z ′ + w 

′ ( d̄ ) = 0 (9e)

The simplification ρ = ρ̄ has been used. From here on, the

rimes will be dropped, and unless otherwise stated, all variables

re non-dimensional. 

. Ice alone 

Consider an elastic ice sheet subject to tidal forcing in

hich both upper and lower boundaries are free. Absent any

 - dependence—as is being assumed here—the non-dimensional

isplacements in the ice can be written generally as, 

¯
 = 

∂ ϕ̄ 

∂x 
+ 

∂ ψ̄ 

∂z 
, w̄ = 

∂ ϕ̄ 

∂z 
− ∂ ψ̄ 

∂x 

hat is as the gradient of a potential and the curl of a stream func-

ion and whose solutions are coupled through the boundary con-

itions. By Eq. (7c) , 

 

2 ϕ̄ = 0 . (10)

q. (10) is the seismological P - (compressional, acoustic) wave

quation in the limit as the P - wave speed becomes infinite. 

Assume all variables are now proportional to exp ( −iσ t + ikx ) .

ubstituting ψ̄ in the two momentum equations, dropping the

orcing term, and cross-differentiating to eliminate the pressure

roduces, 

 

2 

(
∇ 

2 ψ̄ + 

σ 2 

β2 
1 

ψ̄ 

)
= 0 , 
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Fig. 2. Solution as a function of non-dimensional kz for an ice sheet of thickness d̄ = 20 0 0 m, with free–free boundaries subject to a unit amplitude body tide at the M 2 

frequency. Re ( ̄u ) , Im ( ̄w ) are shown (b), as well (a) as the shear stress as a function of depth, and the normal stress (c). Depth is normalized by k . 
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r integrating 

∇ 

2 ψ̄ + 

σ 2 

β2 
1 

ψ̄ 

)
= M ( x, z ) , (11) 

here M is an harmonic function that will be set to zero. The so-

ution then to Eq. (11) is, 

¯
 ( x, z ) = e ikx 

(
Ae imz + Be −imz 

)
, m = 

√ 

σ 2 

β2 
1 

− k 2 , 

nd the corresponding velocities are 

¯
 

ψ ( x, z ) = ime ikx 
(
Ae imz − Be −imz 

)
, w̄ 

ψ ( x, z ) 

= −ike ikx 
(
Ae imz + Be −imz 

)
. 

ubstituting back into the homogeneous momentum equations

roduces p̄ ψ = 0 , p̄ ψ being the pressure associated with the

tream function. 

Let the solution to Eq. (10) be 

¯ ( x, z ) = e ikx 
(
Ce kz + De −kz 

)
ubstituting ϕ̄ into the non-dimensional momentum equations

roduces, 

∂ 2 

∂t 2 
∂ ϕ̄ 

∂x 
= −∂ p̄ 

∂x 
+ 

∂e ikx 

∂x 
, 

∂ 2 

∂t 2 
∂ ϕ̄ 

∂z 
= −∂ p̄ 

∂z 

hich leads to 

p̄ ( x, z ) = e ikx (12) 

The boundary conditions are no normal or shear stress on both

 = 0 , d̄ , and are, 

2 β2 
1 km − ik 

)
A + (−2 β2 

1 km − ik ) B + 

(
2 β2 

1 k 
2 + k 

)
C + 

(
2 β2 

1 k 
2 − k 

)
D = 1 

no normal stress, z=0 

(13a) 

(−m 

2 + k 2 ) A + (−m 

2 + k 2 ) B + 2 ik 2 C − 2 ik 2 D = 0 

no shear stress, z=0 

(13b) 
k 2 − m 

2 
)
e im ̄d A + 

(
k 2 + m 

2 
)
e −im ̄d B + 2 ik 2 e k ̄d C − 2 ik 2 e −k ̄d D = 0 

no shear stress , z= ̄d 
(13c) 

−2 β2 
1 imk −ik ) e im ̄d A + (2 β2 

1 imk − ik ) e −im ̄d B + (2 β2 
1 k 

2 + k ) e k ̄d + (2 β2 
1 k 

2 − k ) e −k ̄d = 1
no normal stress, z= ̄d 

(13d) 

Taking μ = 2.3 × 10 9 ( Squire et al., 1995 ), β2 
1 

= 0 . 23 , Fig. 2

hows the response of 2 km thick ice to a unit amplitude tidal

orcing at the M 2 period. ū , w̄ and the normal stress are constant

ith depth in this thin ice sheet, while the shear stress reaches

 maximum at mid-depth vanishing as necessary at the two

oundaries. 

Fig. 3 shows an extreme case of an ice sheet with thickness

f the radius of the Earth, and the vertical structure that emerges

ithin the ice from the tidal forcing. This situation could only arise

n a hypothetical giant planet. 

Much interest exists in the determination of the boundary con-

itions at the base of continental ice sheets—a generally inacces-

ible place. The surface response of a continental ice sheet does

epend upon those lower boundary conditions and thus the tidal

esponse to a land-fast ice sheet in theory can be used to deter-

ine the coupling of ice and land. A useful approach is likely to be

he extension to the tidally forced problem of MacAyeal ’s 1992 ice

tream basal stress distribution calculation, but which is not fur-

her pursued here. 

. Ocean alone 

With tidal potentials having no curl, the water velocity can be

ritten 

 = 

∂φ

∂x 
, w = 

∂φ

∂z 
, (14)

nd the boundary condition at z = −d is satisfied by taking 

= F cosh ( k ( z + d ) ) . (15) 
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Fig. 3. Same as Fig. 2 except for d̄ = 2 π/k, the radius of the Earth. 
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The linearized non-dimensional Bernoulli equation is 

p = −φ + 

1 

σ 2 

∂φ

∂z 
− 1 

iσ
(16)

where the last term arises from the tidal potential. Evaluating Eq.

(16) at z = 0 , produces 

F 

{
iσ cosh ( kd ) + 

k 

iσ
sinh ( kd ) 

}
= 1 (17)

and which would be resonant if, 

σ 2 = k tanh ( kd ) , (18)

the conventional non-dimensional dispersion relationship for wa-

ter waves. The surface elevation is then 

η = 

F k 

iσ
sinh ( kd ) (19)

5. Coupled ice and ocean 

Using Eq. (15) to satisfy the boundary condition at z = −d, the

non-dimensional system of boundary conditions can be written, 

−ikA − ikB + kC + kD + 

k 

iσ
sinh ( kd ) E = 0 , 

cont. vert. displ., z=0 

(20a)

(
β2 

1 km − ik 
)
A + 

(
−β2 

1 km − ik 
)
B + 

(
2 β2 

1 k 
2 + k 

)
C + 

(
2 β2 

1 k 
2 − k 

)
D +

(
iσ cosh kd + 

k 

iσ
sinh kd 

)
E = 0 , 

cont. normal stress, z=0 

(20b)

(
−m 

2 + k 2 
)
A + 

(
−m 

2 + k 2 
)
B + 2 ik 2 C − 2 ik 2 D + 0 E = 0 

no shear stress, z=0 

, (20c)
u  
−m 

2 + k 2 
)
Ae im ̄d + 

(
−m 

2 + k 2 
)
Be −im ̄d + 2 ik 2 Ce k ̄d − 2 ik 2 De −k ̄d + 0 E = 0 

no shear stress, z= ̄d 
, (20d)

2 β2 
1 km − ik 

)
e im ̄d A + 

(
−2 β2 

1 km − ik 
)
e −im ̄d B + 

(
2 β2 

1 + k 
)
e k ̄d C+ 

2 β2 
1 − k 

)
e −k ̄d D + 0 E = 1 

no normal stress, z= ̄d 
(20e)

ith the last two equations unchanged from those for ice-alone.

etting ρ̄/ρ = 1 is again a useful approximation in Eq. (20b) . In

his paper, the frequency is fixed at that corresponding to the M 2 

ide of 12.42 h period. Only quantitative change occurs if the fre-

uency is shifted to that of S 1 at 24 h period. 

If the response is calculated for an ice sheet of 2200 m thick-

ess, leaving about 20 0 0 m of water, the system is near resonance

or an ordinary long gravity wave in the ocean alone. Just above

esonance, a −77 m (inverted tide) is reduced by the ice sheet to

55 m. 

In the limit as d̄ → 0 , Eqs. (20e) minus ( 20 a) reduces to the

rdinary ocean tide response. Similarly, ( 20 c,d) become identical

mplying no shear stress in the ice at all. Care must be taken with

his numerical limit as the equations become singular. 

Fig. 4 shows the response η/ ηanal as a function of k ̄d for three

alues of d . The resonance frequency of the ice-free ocean re-

ains essentially unchanged, although the amplitude of the re-

ponse η diminishes, as expected, as the ice thickens, k ̄d becoming

ery large. The resonance appearing when d is dimensionally about

200 m is close to that for water alone, when σ = k 
√ 

gd . Greenhill

1886) discussed the free periods of a coupled fluid and ice-layer

ver a rigid half-space, but the values of k ̄d at the resonance here

s likely beyond the thin plate approximation. On Earth, physically

ermissible thicknesses leave the ocean tidal response essentially

nchanged. However, the oceanic tidal response will generate high
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Fig. 4. (Lower panel) η as a function of k ̄d for the combined ocean-ice case, for 3 different values of d at the M 2 tidal frequency. (Upper panel ) η/ ηequil as a function of k ̄d 

for three different values of d . Largest value of d̄ corresponds to a dimensional ice thickness of 20 0,0 0 0 m. 
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avenumber flows near topography. Because d̄ ′ = k ̄d , Fig. 4 can be

nterpreted as the reduced response as the ice thickens relative to

he wavelength in water and the amplitude suppression becomes

ignificant at short oceanic scales. This impedance change can lead

o a reflection of oceanic waves as they approach shallow water,

reventing the propagation of energy into highly dissipative shal-

ow regions. Note, however, that the body force in the ocean and

ce would then be absent there as a significant contributor. 

An aside—the Laplace solution 

Laplace showed that for a strictly diurnal tide on a water-

overed sphere (aquaplanet), σ = �, η = 0 , ( � is the rotation rate

f the Earth; see Lamb, 1932 , Section 219), that is the oceanic re-

ponse was a pure oscillating current system with no elevation

hange, η = 0 

 = −i 
gH 

�a 
exp (iσ t + iϕ) , (21a) 

 = 

gH 

�a 
cos θ exp (iσ t + iϕ) , (21b) 

n dimensional form with θ , ϕ being the colatitude and longi-

ude, with velocities v, u respectively. The solution would imply

hat the presence of ice was irrelevant (apart from viscous effects) .

n the other hand, it is not difficult to show that no unforced
ero-elevation solution exists: any homogeneous solutions required

o satisfy a lateral boundary condition would necessarily produce

� = 0, and the ice cover would again have to be accounted for. 

. Snowball Earth–ocean 

The conclusions from the previous section support the idea that

he presence of a global ocean ice cover of thickness of several

ilometers does not lead to a significant reduction in tidal ampli-

udes relative to today. The reduction in water depth, and the likely

arallel reduction of tidal motions in highly dissipative shallow

ater (continental margins) in practice, suggest an increase in tidal

mplitudes. For the Earth, the straightforward inference is that or-

inary tides of the Neoproterozoic will be at least as large, and

robably somewhat larger, than they are today. Near-resonant be-

avior, such as that seen in some parts of the modern ocean would

e expected at that time, but placement, and degree of resonance

ould all depend sensitively on the continental configuration and

he oceanic bottom topography, both of which at the present time

re speculative. 

The question, raised above, concerning removal of the catas-

rophic Gerstenkorn event reduction in the lunar orbital radius

annot be addressed without far more detailed information.

ndeed, the tidal dissipation rate could conceivably have been
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even higher under ice. We can however ask order-of-magnitude

questions concerning the possible influence of tides in generating

a time-mean general circulation in a snowball-Earth-like envi-

ronment. In the modern ocean, tides are believed to provide a

significant fraction of the energy required to sustain the observed

three-dimensional circulation ( Munk and Wunsch, 1998 ), roughly

about 50%, with much of the energy used to provide the vertical

mixing. Almost all of the rest comes from the wind-field—assumed

absent in an ice-covered world—with some uncertainty remaining

from ambiguities of the response to surface buoyancy forcing. 

6.1. Influence on the circulation 

Consider the energetics of a snowball Earth ocean. The A14

thermal forcing of 0.1 W/m 

2 corresponds to a net power input

of 3.6 × 10 13 W, (36 terrawatts, TW), an impressive amount of

energy compared to estimates of the energy required to main-

tain the modern ocean circulation of roughly 2 TW. On the other

hand, the A14 solutions depict a circulation with a very small ther-

mal range of about 0.4 °C, and so the Carnot efficiency would

be about 0.4/273 = 0 . 0015 , reducing the usable power to about

50 GW. This value is probably an upper bound on the efficiency

(e.g., Peixoto and Oort, 1992 ). Is it possible that the tides of such

an ocean would be energetically competitive in sustaining a time-

mean flow? Tidal forcing, in contrast, is a direct mechanical driver

of kinetic energy; but whether a significant large-scale time-mean

circulation is generated in practice has to be separated from the

question of overall energy input and dissipation. 

A considerable literature discusses the rectification of tidal and

other oscillatory oceanic flows. Of particular interest in the present

context are the papers of Huthnance (1981) ; Loder (1980) ; Maier-

Reimer (1977) ; Zimmerman (1978) , for homogeneous fluids, and

the numerous references found there. Baroclinic flows have been

considered by Brink (2011) ; Grisouard and Bühler (2012) ; King

et al. (2009) ; Xing et al. (2011) , and others. As made particularly

clear by Huthnance (1981) , the magnitude of time-mean flows

depends strongly on details of the nature and magnitude of the

dissipation and the topographic configuration. Because large-scale

time-mean flows will be geostrophically balanced, the inviscid am-

biguity of geostrophy ( Moore, 1970 ) has to be properly accounted

for via the frictional (or other) mechanisms; see for example,

Visser (1994) . 

Any discussion of the tide-induced mean circulation in the

Neoproterozoic ocean is necessarily pure speculation, and no de-

tailed calculation seems justified. An order of magnitude estimate

is perhaps reasonable. Here, following Huthnance (1981) and ig-

noring any interaction with the flow driven geothermally as in

A14, his Eqs. (5.3), (5.4) for one-dimensional analysis gives rise to

a geostrophic mean flow, with linear friction at the sea bottom

and/or at the water-ice boundary, 

〈 v 〉 ≈ −2� cos θ

〈(v tide 

σ

)2 
〉

1 

d 

∂d 

∂x 
(22)

Here θ is again the colatitude, and x is any coordinate perpendic-

ular to the topographic contours, where d = d ( x ) . A coast is sup-

posed to exist to support the geostrophic pressure gradient (but

see Huthnance’s Eq. (5.5)). v tide / σ is the magnitude of the hori-

zontal excursion in the oscillating tide. For an order of magnitude,

suppose the excursion is about 100 m (a bit less than implied by

Eqs. (21) ), that the latitude is 30 °, and that the slope, 1 /d ∂d /∂x =
0 . 01 . Then 〈 v 〉 ≈ 0.01 m/s. A barotropic flow of this magnitude in

40 0 0 m of water produces a transport of about 40 m 

2 /s. In a sec-

tion half-spanning the Pacific Ocean (circa 50 0 0 km) the merid-

ional transport is about 200 Sv as compared to 30 Sv zonal max-

imum near the equator estimated by A14 for the geothermal re-

sponse. Lots of scope is available in Eq. (22) for changing this value,
oth upward and downward, including the change with colatitude,

ocusing on shallow water, regions of steep slope etc. But the sub-

ect is left here as apparently being an observationally untestable

ne. 

.2. More realism 

Tides of the modern realistic ocean are considerably more com-

lex, involving rotation, interaction with boundaries, dissipation,

opography, and stratification. Some properties even of the non-

otating canal theory do remain robust in the presence of all of

hese complications as the barotropic solutions (no stratification)

emain governed by gravity-wave physics even where rotation is

mportant. Near-resonances still appear, although they can also be

enerated by the presence of sidewalls and not just from traveling-

ave version seen here; dissipation and nonlinearity enter. Par-

icle velocities are strongly influenced by rotation, as would the

oundary-layer between the ocean and the base of the ice sheet.

 Hendershott, 1981 , is a useful review of the physics of modern

cean tides.) 

In a non-rotating ocean, an important mechanical boundary

ayer scale would be ( A / σ ) 1/2 , becoming with finite rotation,

(A/ 
√ 

σ 2 − f 2 ) 1 / 2 , where f = 2� sin φ, and φ the latitude and A is

 hypothetical eddy-viscosity. At latitudes where σ ≈ f (the “in-

rtial latitude”), the boundary layer physics are distinct. For semi-

iurnal tide constituents, that occurs only poleward of about 70 °
atitude, but for diurnals it is at about 30 °. See Le Bars et al.

2015) for further discussion. 

Numerous studies exist of the boundary layer flows under ice

n the Arctic (e.g., Cole et al., 2014; McPhee, 2002 ) where ro-

ation tends to be important or dominant. For obvious reasons,

o modern observations exist of low-latitude, small f , sea ice–

cean boundary layer interactions. Under-ice topography can be

ery rough, and how to model the fluid interactions at low lati-

udes is also not so clear. A reasonable inference is that dissipa-

ion at the sea ice–water boundary would be at least as important

s tidal dissipation over the bottom on abyssal plains today, and

robably considerably greater. 

Of central concern in discussing a snowball Earth is the topo-

raphic change: modern-day tides have a substantial fraction of

heir dissipation occurring in the shallow regions of the continen-

al margins ( Egbert and Ray, 2001 ). Tidal response in shallow wa-

er, d ′ � d , is largely a “co-oscillation” forced by the incoming tide

rom deeper water, instead of being a direct response to the local

orcing. In an ice-covered ocean with shallow margins, the deep

ater tide would tend to undergo reflection as the ice-lid becomes

ver-more effective with vanishing d ′ / ̄d , and it is a reasonable sur-

ise that continental margin dissipation would be greatly reduced

elative to today’s values ( Fig. 4 ). 

The second major tidal dissipation mechanism in the modern

cean is through the baroclinic conversion from the stratification

nd the presence of topography (e.g., Egbert and Ray, 20 0 0 ). This

hysics requires a stratified fluid, and as the A14 ocean is nearly

nstratified, the role of tidal mixing is far from obvious. If the

nowball ocean is nearly unstratified, baroclinic conversion would

lso be much reduced. Thus both major dissipation mechanisms

ay have been weaker, and the perhaps paradoxical inference is

hat tides of an ocean with an ice-lid are potentially considerably

tronger than they are today. An important caveat is that proximity

o resonance is a sensitive function of the continental configuration

nd which will have changed greatly through millions of years. 

. Other processes 

None of the present results as applied to the snowball Earth

re definitive, and many unknowns and complications intervene.
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mong other intriguing complications not discussed here are the

ole of the changed Earth rotation rate and length of the month

t times approaching −1 GY when the day was probably about

2 h long, and with about 13 synodic months in the year ( Bills

nd Ray, 1999; Williams, 20 0 0 ). These changes are consequences

f tidal friction and the resulting braking of Earth-spin over time. 

If the modern ocean depth is reduced by half, and assuming

hat 600 million years ago that the salt amount in the ocean was

imilar to today, salinity would have roughly doubled to about 7%

f the water mass. A salty fluid, heated from below, can be un-

table to double-diffusive processes (see e.g., Brandt and Fernando,

995; Radko, 2013; Turner, 1973 ) forming a layered circulation.

hether over millions of years that possibility persists, and what

ould be the consequences of any annual cycling at low latitudes

n the ice-cover, has not been discussed. If some stratification does

ersist, then baroclinic tidal conversion can occur, a spatially de-

endent mixing would arise, and a whole suite of further theoret-

cal problems can be defined including the baroclinic mean flows

lready alluded to above. Because observational tests of solutions

n such interesting configurations appear safely unlikely, we leave

he problem here as one of near-total speculation. The outer Solar

ystem bodies may eventually become more accessible to observa-

ion than is the Neoproterozoic ocean. 

Considerable debate exists about the possibility that the near-

quatorial ocean remained ice-free during the Neoproterozoic—

uch of the argument concerning the ability of multi-celled life

o survive a complete hard snowball (e.g., Hyde et al., 20 0 0 ). De-

ermining the tidal response in such a configuration represents

nother potentially interesting theoretical calculation probably not

ustified at present. 

. Summary comments 

From “canal-theory”-like calculations, the ordinary semi-diurnal

nd diurnal tides of a snowball-Earth are found likely to be at least

s strong as those in the modern ocean. As with modern tides, de-

ails depend sensitively on bottom topography, continental config-

rations, dissipation mechanisms, and overall water depths. Con-

equently, tidal motions, and in particular rectified mean values,

re not obviously negligible in the discussion of the oceanic gen-

ral circulation at that time. Similarly, no conclusion can be drawn

bout changes in tidal dissipation with its consequences for the

istory of the lunar orbit. 

In extending the present results to outer Solar System satellites

nd exoplanets, the basic methodology can be maintained. Changes

re required for the rheology of ice (even if dominantly water-ice,

iscoelastic, plastic and fracture mechanisms can come into play).

or satellites or planets locked in spin–orbit coupling, the long-

eriod tides will dominate rather than the semi-diurnal or diurnal

omponents focused on here. The thin-shell limit of the Laplace

idal Equations can also become too inaccurate. 

The possibility of paleo-observations shedding light on the de-

ails of the tides in the Earth’s history appears remote. Oceans on

uter satellites of the Solar System or on exoplanets may in the

ong-term be more observationally accessible. 
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