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ABSTRACT

Small surface displacements appearing in tide gauge and altimetric records are used to detect hydrostatic

baroclinic modes in the ocean. Those deflections are a small fraction of the interior isopycnal vertical dis-

placements and are dependent directly upon the in situ stratification. Conversion of surface height to interior

amplitudes and energies encounters significant spatial and seasonal shifts that need to be accounted for in

quantitative use. This technical article analyzes the global-scale spatial variations in the relationship between

surface deflections and interior motions. Similar considerations make it possible to use altimetric data to

estimate the deep interior temperature variability as a function of position, calculations having a strong in-

fluence on abyssal trend determination in the presence of eddies.

1. Introduction

Altimetric measurements of baroclinic motions

have grown increasingly important over the past almost

20 years. Of particular interest have been studies of the

internal tides as seen in the Ocean Topography Experi-

ment (TOPEX)/Poseidon–Jason series satellites (Ray

andMitchum1997, andmany succeeding papers) but also

including geostrophic–balanced motions (e.g., Wunsch

1997; Xu et al. 2011), and the recent interest in so-called

surface quasigeostrophic (SQG) modes (LaCasce and

Mahadevan 2006; Isern-Fontanet et al. 2008).

The purpose of this article is to call attention to some

of the technical details of the way in which internal

baroclinic motions become visible from space, and to

suggest a bit of caution in the quantitative estimates

being made of, for example, energy gains and losses in

propagating modes. Although the dynamics are simple,

one is in the situation in which the entirety of an im-

portant observational system rests upon a very small

physical effect—one that is commonly suppressed as being

negligible. The phenomenon was exploited by Wunsch

and Gill (1976, hereafter WG) to demonstrate the exis-

tence of equatorially trapped waves in tide gauge data.

Rainville and Pinkel (2006) discuss many of the same

issues in the context of the internal tide, but similar

considerations apply generally to wavelike motions ob-

served in tide gauges and altimeters. Thus the greater

emphasis here is on balanced motions and on the pos-

sible pitfalls of inferring large interior vertical excur-

sions from truly minor surface expressions. Because the

dynamics are elementary, but detailed, much of the

development here is given in an appendix, with only

a summary in the main body of the present paper.

2. Some elementary theory

Textbooks show how for periodic, linear, Boussinesq,

hydrostatic limit motions and horizontally uniform strati-

fication, an assumption of separation of variables

[u(x, y, z,s), y(x, y, z,s)]5 [U(x, y,s),V(x, y,s)]F(z)

(1a)

w(x, y, z,s)5P(x, y,s)G(z) (1b)

p9(x, y, z,s)5 r0P(x, y,s)F(z) (1c)

r9(x, y, z,s)52
r0N(z)2

isg
P(x, y,s)G(z)

(1d)

leads in a resting, unforced ocean of mean density r0 to

two equivalent differential equations,

d2G(z)

dz2
1N2(z)g2G(z)5 0, (2)

Corresponding author address: Carl Wunsch, Department of

Earth, Atmospheric and Planetary Sciences, Massachusetts In-

stitute of Technology, Cambridge, MA 02139.

E-mail: cwunsch@mit.edu

140 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30

DOI: 10.1175/JTECH-D-12-00035.1

� 2013 American Meteorological Society



d

dz

�
1

N2(z)

dF

dz

�
1 g2F(z)5 0, (3)

subject to boundary conditions. HereN(z) is the buoyancy

frequency, p9 is the pressure perturbation about a resting

hydrostatic state, s is the radian frequency, and g2 is a

separation constant that must be determined. Horizontal

structures in U, V, and P are determined from horizontal

partial differential operators

Lq(q, x, y,s,g)5 0, (4)

where q is any of the dependent variables, u, y, w, p, or

r9, and the corresponding Lq in various limits describe

Rossby, equatorial, internal, Kelvin, and inertial waves.

In the hydrostatic limit used here, the vertical structures

are, in the unforced problem, independent of which of

these physical situations one is describing. Spherical

coordinates can be used in Lq if appropriate.

If themotion is periodic, with all variables proportional

to exp(2ist), F and G are connected by

is

N2(z)

dF

dz
5G(z) , (5a)

dG(z)

dz
52isg2F(z) . (5b)

and the references show that at the free surface, the

linearized dynamical boundary conditions are

gg2G(0)2
dG(0)

dz
5 0 (6)

or

F(0)1
g

N2(0)

dF(0)

dz
5 0, (7)

and at a rigid bottom, either

G(2h)5 0, (8)

if using G, or

dF(2h)

dz
5 0. (9)

Depending upon the particular problem, the sepa-

ration constant (as well as F, G) can be determined

either by Eqs. (2) or (3), and (6) or (7), as a vertical ei-

genvalue (Sturm–Liouville) problem, or from the hori-

zontal problem (4). In practice, the vertical deflection

GD(z) 5 G(z)/(2is) is often more convenient. Let zmax

be the depth of the maximum of jGD(z)j over the water

column, and set jGD(zmax)j 5 1, so that the dimensional

vertical deflection is BGD(z), where B is a constant.

Most authors analyzing altimetric data have used

some form of Eq. (2) or (3) with realistic estimates of N

(z), but have commonly employed a rigid-lid boundary

condition at z 5 0 instead of the dynamic boundary

condition of a free surface (e.g., Zhao et al. 2010). Thus,

(6) would becomeG(0)5 0, and (7) is then dF(0)/dz5 0.

The question raised here is whether this simplification,

which is known to be an excellent one and has no sig-

nificant influence on the dynamics (e.g., Pedlosky 1987,

p. 367), is of any importance to the observations that

are wholly dependent upon failure of the rigid-lid

approximation.1

a. Constant N

The simplest case is that of N 5 N0 5 constant and is

worked out in numerous textbooks for a free surface.

One finds the familiar requirement

tan(N0gh)5
N0

gg
, (10)

with multiple roots, gj, j5 0, 1, . . . . Excluding the lowest

root, g0 ’ 1/
ffiffiffiffiffiffi
gh

p
, corresponding to the barotropic mode,

gj 5 pj/N0h 1 Dj, and where Dj ’ N0/gpj � pj/N0h.

(Amore physically immediate variable is the ‘‘equivalent

depth,’’ h9j 5 1/gg2
j , having units of length, so that

h9j ’N2
0h

2/(gj2p2) � h, and is discussed below.) Then,

GD1(z)5B sin

��
p

h
1

N2
0

gp

�
(z1 h)

�

5B sin

��
p

h
1

N2
0

gp

�
(z1 h)

�
(11)

and

F1(z)5
N2

0h

gp
B cos

��
p

h
1

N2
0

gp

�
(z1 h)

�
, (12)

the latter having a zero crossing in the middle of the

water column where G1 is a maximum.

At z 5 0,

GD1(0)52B sin(D1)’2B
N2

0h

gp
6¼ 0. (13)

1 With the rigid lid, the barotropic mode is calculated separately.

The approximation is required also, for instance, to make the in-

ference,
Ð 0
2h F(z)dz5 0, identically, for baroclinic modes, a good

but not perfect equality.
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Notice theminus sign. For higher roots the corresponding

GDj(0) are proportionally reduced. In the rigid-lid ap-

proximation, this value is identically zero. The numerical

value of the surface displacement, h52BN2
0h/gp, is sen-

sitive to the choice of N0. Inversely, if one is attempting

to deduce the interior vertical amplitude, the amplifi-

cation factor from h is B52gph/N2
0h. With N0 5 3

cycles per hour (cph), and h 5 4000 m, then g 5 0.15,

h ’ 23.5 3 1023 m, and h91 ’ 4m, which would trans-

late into about a 3.5-cm surface depression for B 5
10 m. The value applies both to balanced and internal

waves.

A 1-m interior vertical displacement of an isopycnal

generates only a few millimeters of surface elevation

change. To the extent that the elevation signal is to be

used to infer propagation losses and gains in the in-

terior motions, the potential arises for sizeable errors,

particularly in quadratic quantities such as energies.

If N(z) and h were laterally constant, then compari-

sons of relative amplitudes and energies would be

simple, and independent of exactly how the sea surface

condition was employed. Thus global spatial maps of

the relationship between interior and surface deflec-

tions become of interest. See Rainville and Pinkel

(2006) for discussion of the Wentzel–Kramers–Brillouin–

Jeffreys (WKBJ) approximation specifically for internal

tides.

b. Compensation

Aphysical interpretation is helpful. Ifw. 0 within the

water column, the perturbation increases the density at

all depths, surface elevation h , 0 and vice versa—that

is, the vertical displacement overshoots 0 at the free sea

surface, producing a 1808 phase shift from the interior

vertical motion. The overshoot is readily understood

as providing, in this hydrostatic limit, that amount of

pressure anomaly from the elevation to just compensate

the density anomaly generated in the interior, so as to

produce a 0 pressure gradient and hence a ‘‘level of no

horizontal motion’’ at the first 0 crossing of F1(z). This

0 level is maintained throughout the entire wave period

as w reverses sign. (It is a level of maximum vertical

motion.)

Interpretation of the surface deflection is thus the one

conventionally associated with the dynamic method:

upwelling of cold water corresponds there to a negative

surface anomaly and downwelling of warm water to

a positive surface elevation, with magnitudes consistent

with a supposed level of no motion. Here such a level

does exist in the wave motion, and is required by the

dynamics. The magnitude of h is diminished for the

higher modes because they produce levels of no hori-

zontal motion ever closer to z 5 0, hence generating

smaller density anomalies needing compensation for

fixed maximum vertical displacements.

c. Comparison to rigid-lid approximations

A rigid-lid condition can be imposed for all solutions

by demanding G(0) 5 0 instead of the pressure conti-

nuity condition there. For small g, such a solution vio-

lates the dynamic free surface boundary condition, but

has little influence on the vertical structures except right

at the sea surface. A conventional approach to em-

ploying the approximation of a rigid lid is to calculate

the elevation hRL corresponding to the pressure exerted

on that hypothetical surface. Thus, in the present case,

p9RL(0)52
r0N

2
0h

p
B cos

�pz
h

�					
z50

5 r0ghRL

and

hRL 52
N2

0h

gp
B .

The full boundary condition produces [Eq. (12)]

h52
N2

0h

gp
B cos

�
N2

0h

gp

�
,

and which to order (N2
0h/gp)

2 is identical. Thus, in this

case the rigid-lid boundary condition approximation is

a good one. Unfortunately, it need not be so with re-

alistic profiles. The appendix compares the elevations

for a rigid lid and the free surface boundary condition,

using an exponentialN(z) profile. Factor of 2 differences

are found as a function of N(0). Chiswell (2006) found

factor of 2 discrepancies between altimetric and moor-

ing amplitudes—roughly consistent with the analytical

result—although he offers different explanations.

In some theories of propagation over topography

(e.g., Bobrovich and Reznik, 1999) and in observations

(Wortham, 2012), zero bottom pressure variation ap-

pears to be a better approximation (a bottom level of no

motion), and which is equivalent to postulating coupling

of the barotropic and baroclinic mode solutions and thus

is not a consequence of the Sturm–Liouville problem.

The behavior is easily analyzed for the N 5 constant

case. With a rigid lid, F1(z 5 2h) 5 cos(p), and forcing

a zero-bottom-pressure-perturbation doubles the sur-

face elevation from the basic solution. Bottom pressure

can be additive or subtractive to the surface pressure,

depending upon whether the mode number is even or

odd. For more complex profiles, various surface ampli-

tude possibilities emerge.
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d. Other analytical profiles

Analytical (closed form) solutions exist to Eqs. (2) and

(3) subject to various boundary conditions, including

constant N underlying a mixed layer (N 5 0) and the

exponential profile, as well as others. These are briefly

explored in the appendix, but to keep this note as short as

possible, attention is now turned to realistic profiles,N(z).

3. Observed N(z)

The N(z) used is taken from Estimating the Circula-

tion and Climate of the Ocean (ECCO) family of solu-

tions, version 3.73 (e.g., Wunsch et al. 2009), and is thus

a 16-yr average of a model fit by least squares to in situ

temperature and salinity plus a large variety of other

(e.g., satellite) data. A section for N(z) is displayed in

Fig. 1 along the meridian 1808, and Fig. 2 displays hori-

zontal maps of the estimated values. The horizontal

spatial gradients are of particular concern for comparing

propagation losses and gains. To the extent that changes

are abrupt relative to wavelengths, conventionalWKBJ-

like approximations will fail, although those phenomena

are not taken up here (see, e.g., Rainville and Pinkel

2006). However, wavelengths on the order of 100 km

come uncomfortably close to lateral distances over which

N(z) changes significantly, and the use of separation of

variables methods must be reexamined. Topographic

changes are even more rapid and the combination shows

up through the mapped values of h9i . Thus, depending
upon the analyst’s purposes, many useful approxima-

tions, generically related to index of refraction changes,

can become quantitatively doubtful. Present model res-

olution cannot show variations below a 100-km scale.

Equations (5a) and (5b) readily lend themselves to

numerical solution by relaxation, subject here to the three

boundary conditions, G(2h) 5 0, dF(2h)/dz 5 0, and

F(0) 1 G(0)/(2is) 5 0, because g is unknown. Figure 3

shows the 34.58N forms of F1 and GD1 and in which

the near-surface intensification of F1 is particularly

striking as well as a less extreme case in the Southern

Ocean.

Values of g1, h, and the amplification factor 1/h along

the 1808 meridian are shown in Fig. 1. The separation

constant g2
1 varies on a global scale. It proves physically

more meaningful to map instead the equivalent depth,

h91 5 1/gg2
1, displayed in Fig. 4 as computed every 58 of

latitude and longitude. Equivalent depths control the

horizontal phase velocities of the corresponding modes

in the familiar combination,
ffiffiffiffiffiffiffiffi
gh91

p
, as well as the Rossby

radius of deformation, and are thus an important element

of descriptive oceanography. The value of h91 is generally
on the order of 1 m except at higher latitudes where it

becomes very small, corresponding there to the very slow

propagation velocity of linear baroclinic motions. Figure 5

shows the qualitatively important spatial changes in

FIG. 1. (a) Buoyancy frequency N(z) along the meridian 179.58E in cycles per hour (cph). (b) An expanded view of the top 500 m.

Maximum value is 11 cph and minimum is 0.09 cph. Vertical average values diminish toward high latitudes. In the deep Southern Ocean,

however, the abyssal stratification increases poleward. (c),(d) Values of h91 and h, respectively, as a function of latitude along 1808 lon-
gitude.Note thath can be interpreted as cm m21 of interior vertical displacement. (e)Values of 1/h, the amplification factor for converting

from h in centimeters into the maximum interior vertical displacement inmeters. The gap corresponds to the arcs associated with Samoa

and other island groups to the west in Fig. 2.
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surface displacement h in centimeters per 10 m of interior

vertical isopycnal displacement amplitude.

Its reciprocal—the amplifying factor (not shown)—has,

in the PacificOcean, a comparatively simple,mainly zonal,

structure. That ocean is often used for altimetric studies

because of its great expanse. Meridional gradients at

mid and low latitudes, although not qualitatively great,

are large enough to generate systematic, quantitative

changes with position (e.g., as one moves away from the

Hawaiian Islands). Strong zonal gradients exist in the

midlatitude Atlantic Ocean and which would raise ques-

tions about the interpretation, for example, ofwavenumber

spectra or energy propagation effects not explicitly dealt

with here.

Amplification relative to the interior values of the near-

surface horizontal currents is a near-universal character

of the global modes, but its degree does vary with loca-

tion, as can be seen in Fig. 6 displaying jF1(0)/F1(2h)j.
Because pressure perturbations are also proportional to

F1(z), Fig. 6 depicts the relationship between bottom

pressure and that seen at z5 0. Similarly, the depth zmax

tends to lie between about 1000 and 1500 m (not shown),

but with considerable expanse of exceptional regions at

high latitudes. Note that jBGD1(zmax)j is a measure of the

mesoscale signal induced in the deep and abyssal ocean

by variability visible at the surface. That in turn has

consequences for the ability to infer climate time scale

trends from sparse hydrographic samples. Temperature

disturbances implied by these modes, in the linearized

limit, are of the form

DT(z)5
›T

›z
GD1(z) , (14)

per unit displacement, where ›T/›z is the adiabatic

temperature gradient. The vertical displacement at zmax

can be estimated by using the RMS value of h obtained

FIG. 2. Buoyancy frequency (cph) from the ECCO estimate (top

to bottom) at 117.5, 847.5, and 3450.5 m. Considerable lateral

heterogeneity is apparent.

FIG. 3. Values of (a) G1 and (b) F1 for the realistic N(z) at 34.58N, 1808E. Note the very strong near-surface

amplification in F1 relative to its bottom value. This behavior is almost universal, but the degree of amplification

varies considerably as can be seen in the right panels. (c),(d) As in (a),(b), but for the SouthernOcean at 65.58S, 4.58E
(note change in depth).
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from altimetry (e.g., Fig. 7) and assuming that roughly

half the variance (Wunsch 1997) is in the first baroclinic

mode. The result is displayed in Fig. 8. Open ocean

values are on the order of a few tenths of a degree, with

far larger values in the regions of intense variability on

the western sides of the ocean.

Ponte (2012)mapped the abyssal steric height changes

from an eddy-permitting ECCO estimate, with patterns

similar to those seen in Fig. 8, as one would expect from

a model constrained to the altimetry. The space–time

structure, that is, the mesoscale signal, is the noise back-

ground for abyssal trend determination, which will then

depend upon the frequency–wavenumber spectrum of

the altimetric variability. The problem is discussed else-

where (Wunsch 2010).

4. Energetics: The internal wave band

For frequencies f , s , N, thus omitting the beta-

plane complexities at and near the inertial frequency,

and the minor nonhydrostatic complications as s / N,

the Cartesian f-plane version of Eq. (4) in P is

=2
hP1

s22 f 2

gh9j
P(x, y)5 0, (15)

describing long internal waves with the meaning of h9j
made apparent: corresponding to the ordinary water

depth of a constant density ocean, albeit of magnitude

on the order of 1 m. A large literature exists on the

forced version of this limit, much of it through studies

of sources sustaining the Garrett and Munk (1972)

spectrum (e.g., Thorpe 2005). The much-studied in-

ternal tides with fixed frequencies span the complete

range in this equation of s22 f 2, as the latitude changes,

as well as depending upon the variations in h9j .
A number of authors (e.g., Nash et al. 2005) have

discussed internal wave energetics. To give one example

FIG. 4. Equivalent depth h91 5 1/gg2
1 (m), which depends upon both N(z) and h. Values vary from greater than 1 m at low latitudes to

about 10 cm in subpolar regions. Note that the Rossby radii are readily computed from Rj 5
ffiffiffiffiffiffiffi
gh9j

p
/f (not shown). Compare to the map of

M2 tide group velocity in Rainville and Pinkel (2006).

FIG. 5. The surface deflection corresponding to the eigenvalues

in Fig. 4 in centimeters for a 10-m maximum isopycnal deflection

within the water column.

FIG. 6. Ratio of the horizontal current at the surface and bottom,

jF(0)/F(2h)j, which is a simple measure of the surface in-

tensification. The same ratio corresponds to that of surface and

bottom pressure perturbations.
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of the importance of the surface boundary condition

values, consider the potential energy (PE) of an internal

wave [Gill 1982, Eq. (6.7.13), inserting a missing integral

sign]

PE5
1

4
[r0(0)gh

21B2

ð0
2h

r0N(z)2GD(z)
2 dz] (16)

in the present notation and where the horizontal space–

time dependence is a propagating exponential. Note

that h is also proportional to B. As in Gill (1982),

the PE is made of two parts, one owing to the sur-

face elevation and the other to the interior vertical

displacements.

For simplicity, the present discussion is confined to the

potential energy, because unlike the kinetic energy, it can

be calculated from the vertical displacement alone and

is not dependent upon the horizontal wavelengths (e.g.,

LeBlond and Mysak 1978; Phillips 1980; Gill 1982).

Studies of, for example, the complete internal tide ener-

getics from altimeters thus require calculations employing

solutions to Eq. (15) or equivalent, and are beyond the

present intentions of this paper (but see, e.g., Rainville and

Pinkel 2006).

For realistic values of the parameters, the second term

in Eq. (16) is about two orders ofmagnitude greater than

the first. The second term declines by a factor of 3–5

from the tropics toward the poles for a fixed vertical

displacement amplitude, B (not shown). Thus a wave

conserving potential energy while traveling poleward

would have to increase its observed squared surface

amplitude by a corresponding amount.

a. Balanced motion band

At the low-frequency limit, s � f, there exist a few

interesting issues, some of them arising because of the

recent extended discussion of the so-called surface

quasigeostrophic approximation. Here we only sketch

this idea, roughly following the development of LaCasce

(2012).

In this low-frequency limit where motions are nearly

in quasigeostrophic balance, Eq. (4) reduces to the

statement of linear conservation of potential vorticity

(Pedlosky 1987, p. 367), and which is for P, after the

separation of variables and the assumption of periodic

motions,

=2
hP1

b

is

›P

›x
2

f 2

gh9i
P5 0. (17)

For free motions subject to the top and bottom bound-

ary conditions analyzed above, no novel features appear

[worked out again explicitly by Wunsch and Stammer

(1997, hereafter WS) among other places].

In the conventional unforced SQG discussion (e.g.,

LaCasce 2012), the b term is dropped and a new surface

boundary condition is imposed in which the surface

density anomaly, r9(x, y, z 5 0, s), is regarded as

known—and is to be used to infer the interior motions.2

Dropping b implies that sufficiently small scales (sub-

mesoscale) motions are being discussed (failure of hy-

drostatic balance could become a concern). In the

present context, its main consequence is that h9i , 0,

always. Retaining b does not introduce a fundamen-

tally new mathematics, although permitting ranges of

positive h9i .
Density anomalies r9(x, y, z 5 0, s) at the sea surface

can be prescribed as long as there is nomixed layer, but the

dynamical boundary condition at z 5 0 must still be satis-

fied. Let r9(x, y, z5 0, s)5A0GD(0) exp(ikx1 ily2 ist),

and P(x, y, s)5 B0 exp(ikx 1 ily 2 ist). h9i (or g2
i ) is de-

termined from Eq. (17). From Eq. (1d),

FIG. 7. RMS value of h (cm) from the along-track TOPEX/

Poseidon–Jason altimetric data. Contouring is incomplete in the

western boundary current maximum areas.

FIG. 8. RMS temperature perturbation (8C) from the RMS al-

timetric values of h, at the depth of the maximum vertical dis-

placement in GD1. Contouring is incomplete in the boundary

current regions. These values are an estimate of the noise, dom-

inantly that of mesoscale eddies, that would appear in abyssal

hydrography.

2 The existence of surface density anomalies dependent upon

temperature perturbations will induce an atmospheric interaction.

Whether these motions should be regarded as truly unforced be-

comes a semantic matter.
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B05
A0g

r0N(0)2
.

By setting, arbitrarily,GD(0)5 1,A0 fixes themagnitude

of the free surface movement, and the dynamic bound-

ary condition [Eq. (6)] requires

dGD(0)

dz
5 gg2 , (18)

and one can solve Eq. (2) for G(z), for example. The

magnitude of P(x, y, s) is set by B0 and then Eq. (1b)

produces

h(x, y,s)5
w(0)

2is
5

A0g

r0N(0)2
exp(ikx1 ily2 ist) . (19)

These results will be susceptible to spatial variations in

N(0), and in particular, to the appearance of mixed

layers, perhaps seasonally, and requiring care in the

limit as N(0) / 0 and thus influence inferences from

altimetric data. In real mixed layers, there exist lateral

gradients in density, but these preclude the use of the

separation of variables approach.

The above results apply directly only to modes, that

is, free waves—those satisfying homogeneous top and

bottom boundary conditions. The more interesting

situation is when the motion is forced, perhaps at the

free surface, with k, l, and s set by the forcing. Then

the separation constant g2 or its equivalent, h9i , is de-
termined through the requirement that Eq. (17) must

be satisfied. As various textbook discussions make

clear, h9i can become negative in certain ranges of k, l,

and s, rendering the corresponding solutions in the

vertical to Eq. (2) or (3) exponential rather than si-

nusoidal. (But recall that conventionally, a ‘‘mode’’ is

an unforced, dissipationless, free oscillation of a sys-

tem with a characteristic frequency.) Forced linear

responses bring a necessary attention to detail that

has a long history, probably starting with the inves-

tigations of atmospheric load response in the nine-

teenth century (see the review by WS). Interest

greatly increased after the discovery of the mesoscale,

as described in papers by Philander (1978), Müller and

Frankignoul (1981), and others. For the forced prob-

lem, Moore and Philander (1977) discuss the sensi-

tivity of mode selection as a function of mixed layer

depth. WS examine the sometimes intricate response

to pressure loading, which moves the sea surface di-

rectly. Wind stress fluctuations at all frequencies will

drive the dominant forced response, but that subject is

not pursued here.

b. Band confusion

The focus in altimetric studies of the internal wave

band has been on the internal tides (Ray and Mitchum

1997). Because of the sampling characteristics of alti-

metric missions, the principal lunar tide appears, for

instance, in the TOPEX/Poseidon–Jason missions data

as an alias near 60 days, with other tidal constituents

distributed over the whole spectrumwithin the balanced

band. Inmany records, however, the tidal bands are only

a fraction, sometimes a small one, of the total energy

lying in frequencies f # s # N, and these will all alias

into periods longer than 20 days, periods normally as-

sociated with the balanced motion band.

Current meter spectra in Ferrari and Wunsch (2009)

and in other papers typically show semidiurnal tides

having less than 50% of the internal wave kinetic energy,

and sometimes much less. The extent to which aliased

broadband internal wave energy is mistakenly attributed

to balanced flows will depend upon the vertical scales (or

mode numbers) of the ambient internal waves. It is pos-

sible, but not pursued here, that a significant fraction of the

apparent energy being interpreted as geostrophic is aliased

energy of the gravity wave band—and is a further reason

for care in using measurements of h. Dynamical coupling

of the bands, particularly through topographic interaction,

is another large subject not taken up here.

5. Discussion

This study is incomplete in several respects. In partic-

ular, one must keep in mind that the spatial changes

mapped here are likely to be quantitatively useful only in

aWKBJ sense, with amplification factors changing slowly

over the large regions depicted in the figures. Regions of

rapid horizontal gradients that are apparent, but likely

underestimated, in many of the figures will, in contrast,

generate lateral structures of the type appearing in any

wave motion encountering sharp index of refraction

changes. None of those possibilities is explored here.

The near-surface structures of N(z) will in practice

undergo changes with season, over climate time scales,

and over shorter periods depending upon the large-scale

background oceanography and complex modulations

from the eddy field. Very large seasonal changes in

mixed layer depth do occur at high latitudes, and their

quantitative effects on inferences there from altimetry

have not been dealt with. [Seasonal cycle effects in the

balanced limit were described by Wunsch (1997), and

Ray and Zaron (2011, their Fig. 3) showed a seasonal

phase change in the internal tide.]

If the altimetric variability is used to constrain realistic

general circulation or internal tide models [as in Egbert
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andRay (2003) for the latter andWunsch et al. (2009) for

the former], adaptation of the model to the space- and

time-varying values of N(z, x, y, t) and thus of the ele-

vation h, is ‘‘automatic’’ and one need not resort to the

modal structures as employed here. Such calculations are

to be preferred, as they also account for the nonseparable

effects of varying bottom topography, h(x, y), as well as

major complications including the presence of lower-

frequency ‘‘mean’’ current systems. On the other hand,

the simple, approximate, modal description produces

insight into the underlying physics, and its understanding

is probably essential to interpreting the model results.
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APPENDIX

Vertical Modes

a. Mixed layer over constant N

One can compute h for an infinite number of analytic

profiles, but the point of diminishing returns rapidly sets

in. Gaining some understanding of the presence of

a mixed layer is, however, useful. Lighthill (1969)

and Gill (1975) considered a three-layer model, with

N(z 5 0), 2hm # z # 0, N 5 N0, 2h # z # 2hm, N 5
N0, and 2‘ # z # 2h—that is, a mixed layer overly-

ing a uniformly stratified layer, in turn overlying

an infinitely deep unstratified one. In the infinitely

thick layer, horizontal velocities become vanishingly

small and one has a slightly simplified problem from

removal of the bottom boundary condition. Here,

we impose the rigid boundary condition at z 5 2h, lead-

ing to the values of h as a function of hm shown in

Fig. A1a.

In this situation, competition exists between the

presence of a mixed layer, which reduces the amount of

vertically displaced heavy water when w . 0, thus re-

ducing the value of h required for compensation, and the

deepening of the position where w reaches its maximum

value (at the level of no horizontal motion) and which

increases the mass of denser water (Fig. A2). In this

parameter range, the deepening effect is larger, and h

increases slowly with the mixed layer depth.

b. Exponential N(z)

Constant N is too Procrustean a representation to be

applied easily to the real ocean. A useful compromise

FIG. A1. (a) The quantity h as a function of the mixed layer depth hm for a unit maximum

interior vertical displacement and constant N. (b) The value of h in centimeters for a 1-m

maximum vertical displacement in the interior as a function of N0 in an ocean of depth h 5
4000 m for the exponential profile (solid curve). The result produces millimeters of elevation

per meter of interior vertical displacement. Dotted line shows the same calculation but made

using the rigid-lid boundary condition and the associated surface pressure field. (c) De-

pendence upon the relative amplitude of the free-surface displacement as a function of the

water depth for an ocean with N0 corresponding to a 20-min period in the exponential profile.
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between a fully realistic profile and the constant one is

the exponential

N(z)5N0e
lz , (20)

which has been widely used, for example by Garrett and

Munk (1972),WG, andmany others.WGused the profile

to explain the occurrence in tropical tide gauge data of

internal wave branch first baroclinic mode equatorially

trapped waves and we take that calculation as a starting

point. Solutions to Eq. (2) are now

G(z)5A1J0

�
gN0

l
elz

�
1A2Y0

�
gN0

l
elz

�
, (21)

where J0 and Y0 are the Bessel functions.

WG set the effective lower boundary at z 5 2‘ and

put A2 5 0 to prevent an exponential singularity in Y0.

Equation (6) then requires

J1

�
N0g

l

�
2

gg

N0

J0

�
N0g

l

�
5 0, (22)

exploiting the identity J90 52J1 , and which can be solved

numerically for g (this equation is misprinted in WG).

With an infinitely deep ocean, the use of the Jn Bessel

functions can be questioned, as they represent standing

wave solutions. One might suspect that the downward

radiating Hankel function, H
(1)
0 [(gN0/l)e

lz] is more

appropriate. A standing wave solution is possible in this

situation, even with infinite depth, because N(z) ulti-

mately becomes smaller than any possible frequency, s,

trapping the waves between the depth where s 5 N(z)

and the sea surface. Although using a finite depth makes

little change to the surface motions, the WG calculation

is here reformulated with a finite value of h, retaining

both Bessel functions.

The bottom boundary condition is

A1J0(De
2lh)1A2Y0(De

2lh)5 0, (23)

with D 5 gN0/l, and the surface one is

gg

N0

[A1J0(D)1A2Y0(D)]2 [A1J90(D)1A2Y90(D)]5 0

(24)

for two equations whose vanishing determinant is solved

for D and g. The vertical displacement is, for the first

vertical mode,

G1(z)5A

(
J0

�
N0g1
l

elz
�
2

J0[(N0g1/l)e
2lh]

Y0[(N0g1/l)e
2lh]

3Y0

�
N0g1
l

elz
�)

, (25)

using Eq. (23), with surface displacement again h 5
GD1(0). Choosing A so that the maximum value of GD1

FIG. A2. Values of (a) F1 and (b) GD1 in an ocean of constant N with h 5 4000 m, overlaid by a mixed layer of

500 m (dashed lines) as compared to one that is exponential everywhere (solid lines), showing (a) horizontal and (b)

vertical displacements. (c) The overshoot in the vertical displacement in the top 5 m.
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in the water column is 1 m, Fig. 9b displays the value of h

as a function of N0 in an ocean with h 5 4000 m. Thus

a 10-m vertical displacement within the water columnwill

move the sea surface by about 1–2 cm, consistent with the

WG value. The solution exhibits a strong dependence

uponN0, particularly for high values ofN0. Figure 9b also

displays the results obtained by computing h from the

rigid-lid pressure, as discussed in the main text.

Figure 9c shows the dependence of h on h for an ocean

with a fixed value of N0 5 0.0052 s21 (about a 20-min

period). As the water shoals, the column average value

ofN(z) increases, and thus the productNh is to a degree

self-compensating. Fennel and Lass (1989) formulate

the problem of a mixed layer over an exponential N(z),

but no new phenomena appear.
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