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Abstract21

The World Ocean Circulation Experiment (WOCE) drove the development of estimates22

of the decadal scale time evolving general circulation that are dynamically and kinemati-23

cally consistent. A long time-scale, and a goal of estimation rather than prediction, preclude24

the use of meteorological methods called “data assimilation (DA).” Instead, “state estima-25

tion” methods are reviewed here and distinguished from DA. Results from the dynamically-26

consistent ECCO family of solutions based upon least-squares Lagrange multipliers (adjoints)27

are used to discuss the determination of the dominant elements of the circulation in the pe-28

riod since 1992—which marked the beginning of the satellite altimetric record.29

1 Introduction30

The goal of what we call “state estimates” of the oceans arose directly out of the plans for the31

World Ocean Circulation Experiment (WOCE). That program, out of necessity, employed in a32

pragmatic way observational tools of a very wide diversity of type—including classical hydrog-33

raphy, current meters, tracers, satellite altimeters, floats, and drifters. The designers of WOCE34

realized that to obtain a coherent picture of the global ocean circulation approaching a time-35

scale of a decade, they would require some form of synthesis method: one capable of combining36

very disparate observational types, but also having greatly differing space-time sampling, and37

geographical coverage.38

Numerical weather forecasting, in the form of what had become known as “data assimila-39

tion” (DA), was a known analogue of what was required: a collection of tools for combining the40

best available global numerical model representation of the ocean with any and all data, suit-41

ably weighted to account for both model and data errors (e.g., Talagrand, 1997; Kalnay, 2003;42

Evensen, 2009). Several major, and sometimes ignored, obstacles existed in employing meteoro-43

logical methods for the oceanic problem. These included the large infrastructure used to carry44

out DA within the national weather forecast centers—organizations for which no oceanographic45

equivalent existed or exists. DA had developed for the purposes of forecasting over time scales46

of hours to a few days, whereas the climate goals of WOCE were directed at time scales of years47

to decades with a goal of understanding and not forecasting. Another, more subtle, difficulty48

was the WOCE need for state estimates capable of being used for global-scale energy, heat, and49

water cycle budgets. Closed global budgets are of little concern to a weather forecaster—as their50

violation has no impact on short-range prediction skill, but they are crucial to the understanding51

of climate change. Construction of closed budgets is also rendered physically impossible by the52

forecasting goal: solutions “jump” towards the data at every analysis time, usually every six53

hours, introducing spurious sources and sinks of basic properties.54
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Because of these concerns, the widespread misunderstanding of what DA usually does, and55

what oceanographers actually require, the first part of this essay is devoted to a sketch of56

the basic principles of DA, and the contrast with methods required in practice for use for57

climate-relevant state estimates. More elaborate accounts can be found in Wunsch (2006),58

and Wunsch and Heimbach (2007) among others. Within the meteorological literature itself,59

numerous publications exist (e.g., Trenberth et al., 1995, 2001; Bengtsson et al., 2004; Bromwich60

and Fogt, 2004; Bromwich et al., 2004, 2007, 2011; Nicolas and Bromwich, 2011; Thorne, 2008)61

warning against the use of DA and the associated “reanalyses” for the study of climate change.62

These warnings have been widely disregarded.63

A theme of this Chapter is that both DA and state estimation can be understood from64

elementary principles, ones not going beyond beginning calculus. Those concepts must be dis-65

tinguished from the far more difficult numerical engineering problem of finding practical methods66

capable of coping with large volumes of data, large model state dimensions, and a variety of67

computer architectures. But one can understand and use an automobile without being expert68

in the manufacture of an internal combustion engine or of the chemistry of tire production.69

At the time of the writing of the first WOCE volume, Siedler et al. (2001), two types70

of large-scale synthesis existed: (1) the time-mean global inverse results of Macdonald (1998)71

based upon the pre-WOCE hydrography and that of Ganachaud (2003b) using the WOCE72

hydrographic sections. (2) Preliminary results from the first ECCO (Estimating the Circulation73

and Climate of the Ocean) synthesis (Stammer et al., 2002) were based upon a few years of data74

and comparatively coarse resolution models. Talley et al. (2001) summarized these estimates,75

but little time had been available for their digestion.76

In the intervening years, Lumpkin and Speer (2007) produced a revision of the Ganachaud77

results using somewhat different assumptions, but with similar results, and a handful of other78

static global estimates (e.g., Schlitzer, 2007) appeared. The ECCO project greatly extended79

its capabilities and duration for time-dependent estimates. A number of regional, assumed80

steady-state, box inversions also exist (e.g., Macdonald et al., 2009).81

As part of his box inversions, Ganachaud (2003a) had shown that the dominant errors in82

trans-oceanic property transports of volume (mass), heat (enthalpy), salt, etc. arose from the83

temporal variability. Direct confirmation of that inference can be seen in the ECCO-based84

time-varying solutions, and from in situ measurements (Rayner et al., 2011). So-called synoptic85

sections spanning ocean basins and which had been the basis for most global circulation pictures86

at best produce “blurred” snapshots of transport properties. We are now well-past the time in87

which they can be labelled and interpreted as being the time-average. A major result of WOCE88

was to confirm the conviction that the ocean must be observed and treated as a fundamentally89
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time-varying system, especially for any property involving the flow field. Gross scalar proper-90

ties such as the temperature or nitrogen concentrations have long been known to be stable on91

the largest scales: that their distributions are nonetheless often dominated by intense temporal92

fluctuations, sometimes involving very high wavenumbers, represents a major change in under-93

standing of the classical ocean properties. That understanding inevitably drives one towards94

state estimation methods.95

2 Definition96

Consider any model of a physical system satisfying known equations, written generically in97

discrete time as,98

x (t) = L (x (t−∆t) ,q (t−∆t) ,u (t−∆t)) , 1 ≤ t ≤ tf = M∆t, (1) {model1}

where x (t) is the “state” at time t, discrete at intervals ∆t, and includes those prognostic99

or dependent variables usually computed by a model, such as temperature or salinity in an100

advection-diffusion equation or a stream function in a flow problem. q (t) denotes known forc-101

ings, sources, sinks, boundary and initial conditions, and internal model parameters, and u (t)102

is any such elements that are regarded as only partly or wholly unknown, hence subject to ad-103

justment and termed independent or control variables (or simply “controls”). L is an operator104

and can involve a large range of calculations, including derivatives, or integrals or any other105

mathematically defined function. In practice, it is usually a computer code working on arrays106

of numbers. (Notation is approximately that of Wunsch, 2006.) Time, t = m∆t, is assumed107

to be discrete, with m = 0, . . . ,M , as that is almost always true of models run on computers.1108

Note that the steady-state situation is a special case, in which one writes an additional rela-109

tionship, x (t) = x (t−∆t) and q,u are then time-independent. For computational efficiency,110

steady models are normally rewritten so that time does not appear at all, but that step is not111

necessary. Thus the static box inverse methods and their relatives such as the beta-spiral are112

special cases of the ocean estimation problem.113

Useful observations at time t are all functions of the state and, in almost all practical situa-114

tions, are a linear combination of one or more state vector elements,115

y (t) = E (t) x (t) + n (t) , 0 ≤ t ≤ tf , (2) {data1}

1An interesting mathematical literature surrounds state estimation carried out in continuous time and space in

formally infinite dimensional spaces. Most of it proves irrelevant for calculations on computers which are always

finite dimensional. Digression into functional analysis can be needlessly distracting.
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where n (t) is the inevitable noise in the observations and tf = M∆t. y (t) is a vector of116

whatever observations of whatever, diverse, type are available at t. (Uncertain initial conditions117

are included here at t = 0, representing them as noisy observations.) Standard matrix-vector118

notation is being used. In a steady-state formulation, parameter t would be suppressed. (On119

rare occasions, data are a nonlinear combination of the state vector: an example would be a120

speed measurement in terms of two components of the velocity, or a frequency spectrum for121

some variable is known. Methods exist, not discussed here, for dealing with such observations.122

Observations relating to the control vector may exist, and one easy approach to using them is123

to redefine elements of u (t) as being part of the state vector.) The “state estimation problem”2124

is defined as determining x̃ (t) , 0 ≤ t ≤ tf , ũ (t) , 0 ≤ t ≤ tf −∆t, exactly satisfying both Eqs.125

(1), and (2). Tildes here denote estimates to distinguish them from the true values.126

Important Note: “exact” satisfaction of Eq. (1) must be understood as meaning the model127

after adjustment by ũ (t). Because u (t) can represent, if necessary, very complex, nonlinear,128

and large changes to the original model, which is usually defined with u (t) = 0, the adjusted129

model can be very different from the initial version. But the adjusted model is known, fully130

specified, and exactly satisfied, and is what is used for discussion of the physics or chemistry,131

etc. It thus differs in a fundamental way from other types of estimate rendered discontinuous132

by “data injection,” or forcing to data, during the final forward calculation.133

Typically, one must also have some knowledge of the statistics of the controls, u (t) , and

observation noise, n (t), commonly as the first and second-order moments,

〈u (t)〉 = 0,
〈
u (t) u

(
t′
)T〉

= Q (t) δtt′ 0 ≤ t ≤ tf −∆t = (M − 1) ∆t, (3a) {stat1}

〈n (t)〉 = 0,
〈
n (t) n

(
t′
)T〉

= R (t) δtt′ 0 ≤ t ≤ tf = M∆t (3b) {stat2}

The brackets denote expected values and superscript T is the vector or matrix transpose.134

In generic terms, the problem is one of constrained estimation/optimization, in which, usually,135

one seeks to minimize both the normalized quadratic model-data differences,136 〈
(y (t)−E (t) x (t))T R−1 (t) (y (t)−E (t) x (t))

〉
(4)

and the normalized independent variables (“controls”),137 〈
u (t)T Q−1 (t) u (t)

〉
. (5)

— subject to the exact satisfaction of the adjusted model in Eq. (1).138

2A terminology borrowed from control theory (e.g., Gelb, 1974).
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For data sets and controls that are Gaussian or nearly so, the problem as stated is equivalent

to weighted least-squares minimization of the scalar,

J =
M∑

m=0

(y (t)−E (t) x̃ (t))T R−1 (t) (y (t)−E (t) x̃ (t)) + (6) {data3}

M−1∑
m=0

ũ (t)T Q−1 (t) ũ (t) , t = m∆t,

subject to Eq. (1). It is a PDE-constrained least-squares problem, and nonlinear if the model139

or the observations are nonlinear. The uncertain initial conditions, contained implicitly in Eq.140

(6), are readily written out separately if desired.141

In comparing the solutions to DA, note that the latter problem is different. It seeks to142

minimize,143

diag
〈

(x̃ (tnow + τ)− x (tnow + τ)) (x̃ (tnow + τ)− x (tnow + τ))T
〉
, (7) {varmin}

that is the variance of the state about the true value at some time future to tnow. Brackets again144

denote the expected value. The role of the model is to make the forecast, by setting u (t) = 0,145

tnow + ∆t ≤ t ≤ tnow + τ, because it is unknown, and starting with the most recent estimate146

x̃ (tnow) at tnow. Eq. (7) is itself equivalent to a requirement of minimum square deviation at147

tnow + τ . A bit more will be said about this relationship below.148

Model error deserves an extended discussion by itself. A consequence of exact satisfaction of149

the model equations is that we assume the discretized version of Eq. (1) to be error-free. Model150

errors comes in roughly three flavors: (a) the equations are incomplete or an approximated form151

of the real system; (b) errors are incurred in their discretization (e.g., numerical diffusion); (c)152

sub-grid scale parameterizations are incomplete, and/or their parameter choices sub-optimal.153

Methods exist to quantify these errors in an estimation framework. For example, an explicit154

error term may be introduced in Eq. (1) and whose estimation would become part of the least-155

squares optimization. Problems arise in practice when observational coverage is insufficient to156

achieve adequate partition of errors between those in the explicit error terms and those in the157

initial and boundary conditions. Furthermore, the error terms are effectively source terms in158

the tendency equations that violate dynamic and kinematic consistency. The approach taken in159

ECCO is to move toward estimating three-dimensional fields for the most important parameters160

as part of the gradient-based optimization (e.g., Ferreira et al., 2005; Stammer, 2005), thus161

rendering the problem one of combined state and parameter estimation. Adjustments required162

to compensate for model errors may be projected into the parameter estimates.163

Most of the fundamental principles of practical state estimation and of DA can be understood164

from the common school problem of the least-squares fitting of lines and curves to data in one165
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dimension. The central point is that the concepts of state estimation and data assimilation are166

very simple; but it is equally simple to surround them with an aura of mystery and complexity167

that is needless for anyone who wishes primarily to understand the meaning of the results.168

3 Data Assimilation and the Reanalyses169

Despite the technical complexities of the numerical engineering practice, DA and what are

called “reanalyses” should be understood as approximate methods for obtaining a solution of

a least-squares problem. Using the same notation as in Eq. (7), consider again an analysis

time, tnow = tana + τ, when data have become available, and where tana is the previous analysis

time, τ > 0, typically 6 hours earlier. The weather forecaster’s model has been run forward

to make a prediction, x̃ (tnow,−) , with the minus sign denoting that newer observations have

not yet been used. The new observations are E (tnow) x (tnow) + n (tnow) = y (tnow) . With some

understanding of the quality of the forecast, expressed in the form of an uncertainty matrix (2nd

moments about the truth) called P (tnow,−) , and of the covariance matrix of the observational

noise, R (tnow) , the best combination in the L2-norm of the information of the model and the

data is the minimum of,

J1 = (x̃ (tnow)−x̃ (tnow,−))T P (tnow,−)−1 (x̃ (tnow)−x̃ (tnow,−)) + (8) {kalman2}

(y (tnow)−E (tnow) x (tnow))T R (tnow)−1 (y (tnow)−E (tnow) x (tnow)) ,

and whose least-squares minimum for a linear model is given rigorously by the Kalman filter. In170

DA practice, only some very rough approximation to that minimum is sought and obtained. True171

Kalman filters are never used for prediction in real geophysical fluid flow problems as they are172

computationally overwhelming (for more detail, see e.g., Wunsch, 2006). Notice that J1 assumes173

that a summation of errors is appropriate, even in the presence of strong nonlinearities.174

A brief excursion into meteorological “reanalyses” is worthwhile here for several reasons:175

(1) They are often used as an atmospheric “truth” to drive ocean, ice, chemical, and biological176

models. (2) A number of ocean circulation estimates have followed their numerical engineering177

methodology. (3) With the long history of the atmospheric data assimilation effort, many have178

been unwilling to believe that any alternatives exist.179

Note that the “analysis” consists of an operational weather model run in conventional pre-180

diction mode, analogous to the simple form described in the previous section, adjusted, and181

thus displaying discontinuities at the analysis times, by attempts to approximately minimize182

J1. Because of the operational/real-time requirements, only a fraction of the global operational183

meteorological observations are relayed and quality-controlled in time to be available at the184
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time of analysis. Furthermore, because models have changed so much over the years, the stored185

analyses are inhomogeneous in the underlying physics3 and model codes. Oceanographers have186

no such products at this time; “analyses” in the meteorological sense do not exist, and thus the187

jargon “reanalysis” for ocean state estimates is inappropriate.188

Meteorological reanalysis is the recomputation, using the same prediction methodology as189

previously used in the analysis, but with the differences that (1) the model code and combination190

methodology are held fixed over the complete time duration of the calculation (e.g., over 50 years)191

thus eliminating artificial changes in the state from model or method improvements and, (2)192

including many data that arrived too late to be incorporated into the real-time analysis (see193

Kalnay, 2003; Evensen, 2009).194

Estimated states still have the same discontinuties at the analysis times when the model is195

forced towards the data. Of even greater significance for oceanographic and climatic studies196

are the temporal shifts induced in the estimates by the major changes that have taken place in197

the observational system over several decades—most notably, but not solely, the appearance of198

meteorological satellites. Finally, no use is made of the information content in the observations199

of the future evolution of the state.200

Although as already noted above, clear warnings have appeared in the literature—that spu-201

rious trends and values are artifacts of changing observation systems (and see for example,202

Marshall, et al., 2002; Elliott and Gaffen, 1992; Thompson et al., 2008)—the reanalyses are203

rarely used appropriately, meaning with the recognition that they are subject to large errors.204

In Fig. 1 for example, the jump in precipitation minus evaporation (P − E) with the advent205

of the polar orbiting satellites implies either that the unspecified error estimates prior to that206

time must, at a minimum, encompass the jump, and/or that computation has been erroneous,207

or that a remarkable coincidence has occurred. But even the smaller transitions in P −E, e.g.,208

over the more recent period 1992 onward, are likely too large to be physical; see Table 1.209

Figure 2 and other, similar ones, are further disquieting, showing that reanalyses using es-210

sentially the same data, and models that have been intercompared over decades, have significant211

qualitative disagreements on climate time scales. Differences in the reanalyses in the northern212

hemisphere are not so large, and are generally agreed to be the result of a much greater data213

density. They remain, nevertheless, significant, as evidenced in the discussion of analysis in-214

crements over the Arctic by Cullather and Bosilovich (2012). Evidently, considerations of data215

density and types dominate the reanalyses, with the models being of secondary importance.216

For climate studies, another major concern is the failure of the reanalyses to satisfy basic217

global conservation requirements. So for example, Table 1 shows the global imbalances on a218

3We employ “physics” in its conventional meaning as encompassing all of dynamics and thermodynamics.
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Figure 1: Mean annual precipitation minus evaporation over the Antartctic as a function of time in the

ECMWF reanalysis ERA-40 showing the impact of new observations, in this case, the arrival of the polar

orbitting satellites (from Bromwich et al., 2007). Different curves are for different elevations. The only

simple inference is that the uncertainties must exceed the size of the rapid transition seen in the late

1970s. L and R identify whether the left or right axis is to be used for that curve. {bromwich_etal_jgr2007_era40precip.jpg}

per year basis of several reanalysis products in apparent heating of the oceans and in the net219

freshwater flux from the atmosphere. Such imbalances can arise either because global constraints220

are not implied by the model equations, and/or because biassed data have not been properly221

handled, or most likely, some combination of these effects is present. Trenberth and Solomon222

(1994) for example, note that the NCEP/NCAR reanalysis implies a meridional heat transport223

within continental land masses. “User beware” is the best advice we can give.224

State estimation as defined in the ECCO context is a much more robust and tractable prob-225

lem than is, for example, prediction of future climate states. As is well known even to beginning226

scientists, extrapolation of very simple models can be extremely unstable, with interpolation 4,227

4The commonplace term “interpolation,” is used in numerical analysis to imply that fitted curves pass exactly

through data points—an inappropriate requirement here.
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Figure 2: Calculated trends (meters/second/year) in the 10meter zonal wind fields at high southern

latitudes from four different atmospheric reanalyses (D. Bromwich and J. P. Nicolas, of Ohio State

University, private communication, 2010). Note particularly the different patterns in the Indian Ocean

and the generally discrepant amplitudes. Because of the commonality of data sets, forecast models,

and methodologies, the differences here must be lower bounds on the true uncertainties of trends. See

Bromwich et al. (2011) for a description of the four different estimates. {bromwich&nicolas_map_trends_wspd10_1989-2009_notitle.eps}

or curve-fitting, remaining robust. (A classical example is the use of a cubic polynomial to fit228

some noisy data, and which can be very effective. But one is advised never to use such a fit to229

extrapolate the curve; see Fig. 3). The ECCO process is effectively a temporal curve-fit of the230

WOCE-era data sets by a model and which, with some care to avoid data blunders, produces231

a robust result. It is the interpolating (“smoothing”) character, coupled with the expectation232
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Figure 3: A textbook example of the robust interpolation of noisy data by a cubic polynomial and

its gross instability when used to extrapolate. This analogue is a very simplified representation of the

problem of extrapolating a GCM state into unobserved time spans. {cubic_fit.eps}

of thermal wind balance over most of the domain, that produces confidence in the basic system233

products. As is well-known, least-squares methods tend to generate meaningless structures in234

unconstrained parts of the domain. Some regions of spatial extrapolation do exist here, depend-235

ing upon the time-varying distribution of observations, and although they tend to be limited in236

both space and time, detailed values there should be regarded skeptically.237

Terminological Note. The observational community has lost control of the word “data,”238

and which has come to be used, confusingly, for the output of models, rather than having any239

direct relationship to instrumental values. In the context of reanalyses and state estimates240

involving both measurements and computer codes, the word generally no longer conveys any241

information. For purposes of this essay, “data” always represents instrumental values of some242

sort, and anything coming out of a GCM is a “model-value” or “model-datum,” or similar label.243

We recognize that models are involved in all real observations, even in such familiar values244

as those coming from e.g., a mercury thermometer, in which a measured length is converted245

to a temperature. Most readers can recognize the qualitative difference between conventional246

observations and the output of a 100,000+ line computer code.247
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4 Ocean State Estimates248

The remainder of this paper is primarily devoted to a summary description and discussion of249

some results of the Estimating the Circulation and Climate of the Ocean (ECCO) groups which,250

beginning with Stammer et al. (2002), were directed at decadal and longer state estimates251

satisfying known equations and using as much of the WOCE-era-and-beyond data as possible.252

No claim is made that these estimates are definitive, nor that the discussion is comprehensive.253

A number of other, superficially similar, estimates exist (Carton et al. 2000; Martin et al.,254

2007; Hurlburt et al., 2009), but these generally have had different goals e.g., a fast approxi-255

mate estimate primarily of the upper ocean, or prediction of the mesoscales over ocean basins.256

Some weather forecasting centers have undertaken “operational oceanography” products closely257

resembling atmospheric weather forecasts. To our knowledge, however, the ECCO estimates258

are today the only ones specifically directed at physically continuous, dynamically consistent,259

top-to-bottom estimates from a comprehensive data set.260

A number of review papers exist that attempt to compare different such solutions (e.g.,261

Carton and Santorelli, 2008; Lee et al., 2010) as though they were equivalent. But as the above262

discussion tries to make clear, estimates are not equally reliable for all purposes and comparisons263

make no sense unless their individual purposes are well understood. Although one could compare264

a crop-dusting airplane to a jet fighter, and both have their uses, few would regard that effort265

as helpful except as a vehicle for discussion of the highly diverse applications of aero-physics.266

Thus a numerical scheme directed primarily at mesoscale prediction, and using a model not267

conserving energy, may well be a useful tool for forecasting the trajectory of the Gulf Stream268

over a few weeks, but it would be unsuited to a discussion of global ocean heat transports—a269

useful model of which is, in turn, unsuitable for mesoscale interests. These other applications270

are discussed in this volume by Schiller et al. (2012).271

Originally, ECCO was meant primarily to be a demonstration of the practicality of its272

approach to finding the oceanic state. When the first ECCO estimates did become available273

(Stammer et al., 2002) they proved sufficiently useful even with that short duration and coarse274

resolution, that a decision was made to continue with a gradually improving data set and275

computer power. This review summarizes mainly what has been published thus far, but as276

optimization is an asymptotic process, the reader should be aware that newer, and likely better,277

solutions are being prepared continuously and the specific results here will have been refined in278

the intervals between writing, publishing, and reading.279
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4.1 Basic Notions280

As described above, most state estimation problems in practice are generically those of con-281

strained least-squares, in which one seeks to minimize objective or cost or misfit functions282

similar to Eq. (6) subject to the solution (including both the estimated state x (t), and the con-283

trols, u (t)) of the model-time stepping equations.5 One approach, among many, to solving such284

problems is the method of Lagrange multipliers (MLM) dating back 200 years. This method is285

discussed at length in Wunsch (2006) and the references there. In a very brief summary, one286

“adjoins” the model equations using vectors of Lagrange multipliers, µ (t) , to produce a new287

objective function,288

J ′ =
M∑

m=0

(y (t)−E (t) x (t))T R (t)−1 (y (t)−E (t) x (t)) (9) {Jp}

+
M−1∑
m=0

u (t)T Q (t)−1 u (t)

− 2
M−1∑
m=1

µ (t)T [x (t)− Lx (t−∆t) ,Bq (t−∆t) ,Γu (t−∆t)] ,

t = m∆t, m = 0, . . . ,M

Textbooks explain that the problem can now be treated as a conventional, unconstrained289

least-squares problem in which the µ (t) are part of the solution. In principle, one simply does290

vector differentiation with respect to all of x (t) , u (t) , µ (t) , sets the results to zero, and solves291

the resulting “normal equations” (they are written out in Wunsch, 2006). J and J ′ are very292

general, and one easily adds e.g., internal model parameters such as mixing coefficients, water293

depths, etc. as further parameters to be calculated, thus rendering the problem one of combined294

state and parameter estimation.295

The entire problem of state estimation thus reduces to finding the stationary values of J ′.296

The large literature on what is commonly called the “adjoint method” (“4DVAR” in weather297

forecasting, where it is used only incrementally over short time-spans) reduces to coping with298

a very large set of simultaneous equations (and some are nonlinear). But as an even larger299

literature deals with solving linear and nonlinear simultaneous equations by many methods,300

ranging from direct solution, to downhill search, to Monte Carlo, etc., most of the discussion301

5Advantages exist to using norms other than L2 including those such as one and infinity norms commonly

regarded as robust. These norms are not normally used in ocean and atmosphere state estimation or data

assimilation systems because software development for parallel computers permitting computation at super-large

dimensions has not yet occurred.
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of adjoint methods reduces to technical details, many of which are complex, but which are302

primarily of interest to computer-code constructors (Heimbach et al., 2005). Within the normal303

equations, the time-evolution of the Lagrange multipliers is readily shown to satisfy a set of304

equations usually known as the “adjoint” or “dual” model. This dual model can be manipulated305

into a form having time run “backwards,” although that interpretation is unnecessary; see the306

references.307

One very interesting complication is worth noting: the description in the last two paragraphs308

assumes one can actually differentiate J, J ′. In oceanographic practice, that implies differentiat-309

ing the computer code which does everything. The “trick” that has made this method practical310

for GCMs is so-called automatic (or algorithmic) differentiation (AD), in which a software tool311

can be used to produce the partial derivatives and their transposed values—in the form of an-312

other software code (see, e.g., Giering and Kaminski, 1998; Griewank and Walther, 2008; Utke313

et al., 2008). This somewhat bland statement hides a complex set of practical issues; see e.g.,314

Heimbach et al. (2005) for discussion in the context of the MIT general circulaition model (MIT-315

gcm). Most of the difficult problems are of no particular concern to someone mainly interested316

in the results.6317

As discussed in more detail by Wunsch and Heimbach (2007), the central ECCO estimates318

are based upon this Lagrange multiplier method, with the state estimates obtained from the319

adjusted, but then freely running, MITgcm, as is required in our definition of state estimation.320

At the time of this writing, most of the estimates have restricted the control variables (the ad-321

justable parameters) to the initial conditions and the meteorological forcing, although following322

exploratory studies by Ferreira et al. (2005), Stammer (2005) and Liu et al. (2012a), state323

estimates are beginning to become public that also adjust internal model parameters, such as324

isopycnal, thickness or vertical diffusion.325

A full modern oceanic general circulation model (GCM or OGCM) such as that of Marshall326

et al. (1997) as modified over subsequent years (e.g., Adcroft et al., 2004; Campin et al.,327

2004), is a complex machine consisting of hundreds thousands of lines of code encompassing328

the Navier-Stokes equations, the relevant thermodynamics, sea ice and mixed-layer sub-codes,329

various schemes to represent motions below the model resolution (whatever it may be), and330

further subsidiary codes for overflow entrainment, etc. Understanding such a model is a difficult331

proposition, in part because different elements were written by different people over many years,332

sometimes without full understanding of the potential interactions of the existing or future333

6The situation is little different than that in ordinary ocean GCM studies. Technical details of time-stepping,

storage versus recomputation, re-starts, etc. are very important and sometimes very difficult, but not often of

consequence to most readers, except where the author necessarily calls attention to them.
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subcomponents. Furthermore, various studies have shown the inevitability of coding errors (e.g.,334

Basili et al., 1992) and unlike the situation with the real ocean, one is faced with determining335

if some interesting or unusual behavior is real or an artifact of interacting, possibly very subtle,336

errors. (Nature presumably never solves the incorrect equations; but observational systems do337

have their own mysteries that must be understood: recent examples include the discovery of338

systematic errors in fall rates to infer the depth of XBT data e.g., by Wijffels et al. (2008), and339

calibration errors of pressure sensors onboard some of the Argo floats (Barker et al., 2011)).340

By recognizing that most algorithms can be regarded as directed at the approximate solution341

of a least-squares problem, one can exploit the two-hundred-year history of methodologies that342

have emerged (e.g., Björck, 1996), substituting differing numerical algorithms where necessary.343

For example Köhl and Willebrand (2002) and Lea et al. (2002) suggested that the Lagrange344

multiplier method would fail when applied at high resolution to oceanic systems that had become345

chaotic. Although such behavior has been avoided in oceanographic practice (Gebbie et al.,346

2006; Hoteit et al., 2006; Mazloff et al. 2010), one needs to separate the possible failure of347

a particular numerical algorithm to find a constrained minimum from the inference that no348

minimum exists. If local gradient descent methods are not feasible in truly chaotic systems, one349

can fall back on variations of Monte Carlo or other more global methods. Obvious failure of350

search methods using local derivatives has had limited importance in oceanographic practice.351

This immunity is likely a consequence of the observed finite time interval in the state estimation352

problem, in which structures such as bifurcations are tracked adequately by the formally future353

data, providing adequate estimates of the algorithmic descent directions. Systematic failure to354

achieve an acceptable fit to the observations can lead to accepting the hypothesis that the model355

should be rejected as an adequate representation. Potential model falsification is part of the356

estimation problem, and is the pathway to model improvement.357

Modern physical oceanography is largely based upon inferences from the thermal wind, or358

geostrophic-hydrostatic, equations. Scale analyses of the primitive equations (e.g., Pedlosky,359

1987; Vallis, 2006; Huang, 2010) all demonstrate that apart from some very exceptional regions360

of small area and volume, deviations from geostrophic balance are slight. This feature is simul-361

taneously an advantage and a liability. It is an advantage because any model, be it analytical362

or numerical must, to a first approximation satisfy the linear thermal wind equations. It is a363

liability because it is only the deviations which define the governing physics of the flow main-364

tenance and evolution, and which are both difficult to observe and to compute with adequate365

accuracy. In the present context, one anticipates that over the majority of the oceanic volume,366

any plausible model fit to the data sets must be, to a good approximation, a rendering of the367

ocean circulation in geostrophic, hydrostatic, balance, with Ekman forcing, and volume or mass368
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conservation imposed regionally and globally as an automatic consequence of the model config-369

uration. The most visible ageostrophic physics are the variability, seen as slow, accumulating,370

deviations from an initial state.371

4.2 The Observations372

Data sets used for many (not all) of the ECCO family of solutions are displayed in Table 2. As373

noted in the Introduction, they are of very diverse type, geographical and temporal distribution,374

and with very different accuracies and precisions.375

As is true of any least-squares solution, no matter how it is obtained, the results are directly376

dependent upon the weights or error variances assigned to the data sets. An over-estimate of377

the error corresponds to the suppression of useful information; an under-estimate to imposing378

erroneous values and structures. Although an unglamorous and not well-rewarded activity, a379

quantitative description of the errors is essential and is often where oceanographic expertise is380

most central. Partial discussions are provided by Stammer et al. (2007), Ponte et al. (2007),381

Forget and Wunsch (2007), and Ablain et al. (2009). Little is known about the space-time382

covariances of these errors, information, which if it were known, could improve the solutions383

(see Weaver and Courtier, 2001, for a useful direction now being used in representing spatial384

covariances). Model errors, which dictate how well estimates should fit to hypothetical perfect385

data, are extremely poorly known and are generally added to the true data error—as in linear386

problems the two types of error are algebraically indistinguishable.387

5 Global Scale Solutions388

Solutions of this type were first described by Stammer et al. (2001, 2002, 2003) and were389

computed on a 2◦ × 2◦ grid with 22 vertical levels. As the computing power increased, a shift390

was made to a 1◦ × 1◦, 23-level solution and that, until very recently, has remained the central391

vehicle for the global ECCO calculations. Although some discrepancies continue to exist in the392

ability to fit certain data types, these solutions (Wunsch and Heimbach, 2007) based as they are393

on geostrophic, hydrostatic balance over most of the domain, were and are judged adequate for394

the calculation of large-scale transport and variability properties. The limited resolution does395

mean that systematic misfits were expected, and are observed, in special regions such as the396

western boundary currents. Often the assumed error structures of the data are themselves of397

doubtful accuracy.398

As noted above, Ganachaud (2003a) inferred that the dominant error in trans-oceanic trans-399

port calculations of properties arose from the temporal variability. Perhaps the most important400
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lesson of the past decade has been the growing recognition of the extent to which temporal401

aliasing is a serious problem in calculating the oceanic state. For example, Figs. 4, 5 display the402

global meridional heat and fresh water transport as a function of latitude along with their stan-403

dard errors computed from the monthly fluctuations. The figures suggest that errors inferred404

from hydrography are under-estimated (and error estimates of the non-eddy resolving ECCO405

estimates are themselves lower bounds of the noise encountered in the real ocean). The classical406

oceanographic notion that semi-synoptic sections are accurate renderings of the time-average407

properties, while having some qualitative utility, has now to be painfully abandoned—an es-408

sential step if the subject is to be a quantitative one. Temporal effects are most conspicuous409

at low latitudes, but in many ways, the difficulty is greatest at high latitudes: the long time410

scales governing behavior there mean that the hydrographic structure is very slowly changing,411

requiring far longer times to produce an accurate time-mean. In other words, a 10-year average412

at 10◦N will be a more accurate estimate of the longer-term mean than one at 50◦N. Even this413

comment begs the question of whether a stable long-term mean exists, or whether the system414

drifts over hundreds and thousands of years? This latter is a question concerning the frequency415

spectrum of oceanic variability, and which is very poorly known at periods beyond a few years.416

For the 19+ years now available in the global state estimates, most of the large-scale prop-417

erties, including the time variations, are stable from one particular set of assumptions to others,418

probably as a consequence of the dominance of overall geostrophic balance and the comparatively419

well-sampled hydrography and altimetric slopes. They are thus worth analyzing in detail. The420

intricacies of the global, time-varying ocean circulation are a serious challenge to the summariz-421

ing capabilities of authors. A full discussion, however, of the global state estimates becomes a422

discussion of the complete three-dimensional time-varying ocean circulation, a subject requiring423

a book, if not an entire library, encompassing distinctions amongst time and space scales, geo-424

graphical position, depth, season, trends, the forcing functions (controls). No such synthesis is425

attempted here! Instead we can only give a bit of the flavor of what can and has been done with426

the estimates along with enough references for the reader to penetrate the wider literature.427

Note too, as discussed e.g., by Heimbach et al. (2011) and other, earlier efforts, the Lagrange428

multipliers are the solution to the dual model. As such, they are complete solutions in three429

spatial dimensions and time, and convey the sensitivity of the forward model to essentially any430

parameter or boundary or initial condition in the system. The information content of the dual431

solutions is very large—representing not only the sensitivities of the solution to the data and432

model parameters and boundary and initial conditions, but also the flow of information through433

the system. Analyzing the dual solution does, however, require the same three-dimensional time-434

dependent representations of any full GCM, and these elements of the state estimates remain435
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Figure 4: Global meridional heat transport in the ocean from ECCO-Production version 4 (G. Forget,

private communication, 2011). Upper panel shows the standard error including the annual cycle and the

lower one, with the annual cycle removed—as being largely predictable. Possible systematic errors are

not included. Red dots with error bars are estimates from Ganachaud and Wunsch (2002). Note that

the WOCE-era hydrographic survey failed to capture the southern hemisphere extreme near 10◦S, thus

giving an exaggerated picture of the oceanic heat transport asymmetry about the equator. {heat_transport_global.eps}

greatly under-exploited at the present time.436

5.1 Summary of Major, Large-Scale Results437

None of the results obtained so far can be regarded as the final state estimate: obtaining fully438

consistent misfits by the model to the observations has never been achieved (see the residual439

misfit figures in the references). Misfits linger for a variety of reasons, including the sometimes440

premature termination of the descent algorithms before full optimization, mis-representation of441

the true model or data errors, or selection of a local rather than a global minimum in the major442

nonlinear components of the model. As with all very large nonlinear optimization problems,443

approach to the “best” solution is asymptotic. With these caveats, we describe some of the more444

salient oceanographic features of the recent solutions, with no claim to being comprehensive.445

Note that results from a variety of ECCO-family estimates are used, largely dictated by the446
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Figure 5: Same as Fig. 4 except for the freshwater transport (G. Forget, private communication, 2011).

Upper panel shows standard errors that include the seasonal cycle, and the lower without the seasonal

cycle. Red dots are again from Ganachaud and Wunsch (2002). {fw_transport_global.eps}

particular problem that was the focus of the calculation.447

Volume, Enthalpy, Freshwater Transports and Their Variability448

The most basic elements describing the ocean circulation and its large-scale variability are449

usually the mass (or volume, which is nearly identical) transports. Stammer et al. (2001,450

2002, 2003) depicted the basic global-scale elements of the mass transport as averaged over451

the duration of their estimates. A longer duration estimate (v3.73) has been used (Fig. 6) to452

compute the vertically integrated volume stream function. We reiterate that diagrams such as453

this one are finite duration averages whose relationship to hypothetical hundred year or longer454

climatologies remains uncertain.455

Fig. 7 shows the zonally integrated and vertically accummulated meridional transport as a456

function of depth and ocean. The very large degree of temporal variability can be seen in Fig. 4457

from a new fully global solution which is about to become available online at the time of writing458

(ECCO-Production version 4; see Table 3) with error bars derived from the temporal variances.459

These time averages have been an historically important goal of physical oceanography, albeit460

estimates derived from unaveraged data were commonly assumed without basis to accurately461

19



 +120
°
  −180

°
  −120

°
  − 60

°
     0

°
  + 60

°
 

 −75
°
 

 −60
°
 

 −45
°
 

 −15
°
 

°
 

 +15
°
 

 +45
°
 

 +60
°
 

 +75
°
 

−80−70−60−50−40−30−20−10 0 10 20 30 40 50 60 70 80 90 100125150175200

Figure 6: The top-to- bottom transport stream function from ECCO v3.73 (Wunsch, 2011). Quali-

tatively, the wind-driven gyres dominate the result, with the intense transports in the Southern Ocean

particularly conspicuous. {transportstreamfunctionmap_grayconts.eps}

depict the true time-average. Perhaps the most important utility of the existing state estimates462

has been the ability, at last, to estimate the extent of the time-variability taking place in the463

oceans (Wunsch and Heimbach, 2007, 2009, 2012). Withheld, direct in situ observations in464

a few isolated regions (Kanzow et al., 2009; Baehr, 2010) are consistent with the inference465

that even volume transports integrated across entire ocean basins have a large and qualitative466

temporal variability. More generally, mooring data and the now almost 20-year high resolution467

high accuracy altimetric records all show the intense variations that exist everywhere. With468

ECCO-like systems, syntheses of these data sets are now possible.469

The Annual Cycle470

The annual cycle of oceanic response is of interest in part because the ultimate forcing471

function (movement of the sun through the year) is very large and with very accurately known472

structure. In practice, that forcing is mediated through the very complex atmospheric annual473

changes, and understanding how and why the ocean shifts seasonally on a global basis is a474

difficult problem. Using the ECCO state estimates, Vinogradov et al. (2008) mapped the475

amplitude and relative contributions for salt and heat of the annual cycle in sea level (Figs.476
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(a) Global

(b) Atlantic Ocean (c) Pacific & Indian Ocean

Figure 7: Mean (1992-2010) of the meridional volume transport stream function in Sverdrups (Sv-

106m3/s) from ECCO-Production version 4 (Wunsch and Heimbach, 2012; Forget et al., in prep. 2012).

Panel (a) is the global result; panels (b,c) are the Atlantic, and the combined Indo-Pacific, respectively.

Note the complex equatorial structure, and that this representation integrates out a myriad of radically

different dynamical sub-regimes. In the Southern Ocean, interpretation of zonally integrated Eulerian

means requires particular care owing to the complex topography and relatively important eddy transport

field. {mean_merid.eps}

21



Figure 8: From Vinogradov et al. (2008) showing the annual cycle in sea level from ECCO Climate

State v2.177. Left column is the amplitude in cms and the right column the phase. From top-to-bottom,

they are the surface elevation (a,b), the thermosteric component (c,d), the halosteric component (e,f),

and at bottom, the bottom pressure (g,h). {vinogradov_etal_annualmeanamplitudes.tif}
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8. The importance of the annual cycle, more generally, is visible in Fig. 4, 5 as the large477

contribution to the standard errors.478

Sea Level Change479

The sea surface height is simultaneously a boundary condition on the oceanic general circula-480

tion and a consequence of that circulation. Because of the intense interest in possible large-scale481

changes in its height and the potential shifts in vulnerability to storm surges, and associated482

issues such as ecosystem and freshwater reservoir declines, the ECCO state estimation system483

has been used to estimate the shifts taking place in the era since 1992 (Wunsch et al., 2007).484

A summary of a complex subject is that sea level change is dominated by regional variations485

more than an order of magnitude larger than the putative global average, and arising primarily486

from wind field shifts. Varying spatial contributions from competing exchanges of freshwater487

and heat with the atmosphere and the extremely inhomogeneous (space and time) in situ data488

sets render the global mean and its underlying causes far more uncertain than some authors489

have claimed.490

At the levels of accuracy appearing to be required, very careful attention must now be paid491

to modeling issues such as water self-attraction and load (Vinogradova et al., 2011, Kuhlmann et492

al., 2011) not normally accounted for in OGCMs. Conventional approximations to the moving493

free-surface boundary conditions generate systematic errors no longer tolerable (e.g., Huang,494

1993; Wunsch et al., 2007). Usefully accurate sea level estimation over multiple decades may495

be the most demanding requirement on both models and data sets now facing oceanographers496

(Griffies and Greatbatch, 2012). The global means are claimed by some to have accuracies497

approaching a few tenths of a millimeter per year—an historically extraordinary requirement on498

any ocean estimate. Despite widely publicized claims to the contrary (e.g., Cazenave and Remy,499

2011; Church et al., 2011), state estimate results suggest that at the present time, the global500

observing system appears to be insufficient to provide robust partitioning amongst heat content501

changes, land and ice sheet runoff, and large-scale shifts in circulation patterns. A particular502

difficulty pertains to the deep ocean, below depths measured by the Argo array, where the503

distinction between apparent changes occuring (Kouketsu, 2011) and the significant deep eddy504

variability (Ponte, 2012) remains obscure due to poor observational coverage. Claims for closed505

budget elements involve accuracies much coarser than are stated for the total value. 7
506

Biogeochemical Balances507

7We have omitted here the distinction between absolute sea level with respect to the geoid, and relative sea

level measured by tide gauges, and ignored processes associated with the unloading of the solid Earth from ice

sheet shrinkage. None of these is represented in current ocean or climate models (e.g., Munk, 2002; Milne et al.,

2009).
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Figure 9: 1992-2002 mean March (left) and September (right) effective ice thickness distributions (in

meters) for northern (top) and Southern (bottom) hemispheres. Obtained from a global eddy-permitting

ECCO2 simulation, for which a set of global parameters has been adjusted. Also indicated are the ice

edge (15% ice concentration isoline) inferred from the model (dashed line) and from satellite-retrieved

passive microwave radiometry (solid line). From Losch et al. (2010). {cube76marsepice.png}

From the adjoint of the tracer concentration sub-model of the ECCO system Dutkiewicz et508

al. (2006) calculated the sensitivity of the nutrient production in the system to iron enrichment.509

This work is representative of the use of dual solutions to probe large complex models in any510

field. They found a strong dependence upon the available light, and that the tropical ocean511

had the greatest sensitivity to iron limitation. Among other considerations, these inferences are512

important in the erstwhile debate over whether iron fertilization makes any sense for control of513

atmospheric CO2.514

Woloszyn et al. (2011) used the ECCO higher-resolution Southern Ocean State Estimates515
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(SOSE) of Mazloff et al. (2010) to demonstrate the great importance of adequate resolution516

in calculating carbon exchange between the atmosphere and ocean. The same configuration517

was adopted by Ito et al. (2010) to describe the Ekman layer contribution to the movement of518

carbon dioxide.519

The emerging field of microbial oceanography seeks a zeroth-order understanding of the520

biogeography and diversity of marine microbes. Coupling between ocean physics and ecology is521

being explored through the use of ECCO state estimates which drive models of marine ecology522

(e.g., Follows et al., 2007; Follows and Dutkiewicz, 2011). Crucial requirements of the estimates523

are (1) to be in sufficiently close agreement with the observed physical ocean state such as to524

reduce uncertainties in the coupled models from the physical component, and (2) to furnish an525

evolution of the physical state in agreement with conservation laws.526

Sea Ice527

The importance of sea ice to both the ocean circulation and climate more generally has528

become much more conspicuous in recent years. Sea ice models have been developed within529

the state estimation framework as fully coupled sub-systems influenced by and influencing the530

ocean circulation (Menemenlis et al., 2005; Losch et al., 2010). By way of example, Fig. 11, taken531

from Losch et al. (2010) depicts 1992-2002 mean March and September effective ice thickness532

distributions representing the months of maximum and minimum ice cover in both hemispheres.533

Also shown are the modeled and observed ice edge, represented as 15% isolines of the fractional534

sea ice concentrations (0 to 100%). The results were obtained from an early version of the535

ECCO2 eddy-permitting alternative optimization method using Green functions (Menemenlis536

et al., 2005a,b) on the cubed-sphere grid at 18 km horizontal resolution (see Table 3). More537

detailed studies focussing on the Arctic were carried out with similar and higher-resolution (4538

km) configurations (Nguyen et al., 2011, 2012), but with a very limited control space available539

for parameter adjustment via the Green function approach.540

A comprehensive step toward full coupled ocean-sea ice estimation, in which both ocean and541

sea ice observation were synthesized, was made by Fenty and Heimbach (2012a,b) for the limited542

region of the Labrador Sea and Baffin Bay. Fig. 10a shows an annual cycle of total sea ice area543

in the domain from observations, the state estimate, and the unconstrained model solution.544

Also shown are the remaining misfits, as evidence of the random nature of the residuals, as545

required by theory, Eqns. (2) and (3b). An important result of that study is the demonstration546

that adjustment well within their prior uncertainties in the high-dimensional space of uncertain547

surface atmospheric forcing, patterns can achieve an acceptable fit between model and observa-548

tion, placing stringent requirements on process studies which aim to discriminate between model549

errors and forcing deficiencies.550
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Figure 10: (Top): Annual cycle from August 1996 to July 1997 of daily-mean total sea ice area in

the Labrador Sea and Baffin Bay from observations (red), a regional state estimate (black), and the

unconstrained model solution (blue). (Bottom): Residual misfits between estimated and observed sea ice

area and its frequency of occurrence histogram (right panel). Taken from Fenty et al. (2012a). {fenty-labsea-seaice-area.png}

As in the discussion of biogeochemical balances above, the adjoint or dual solution of the551

coupled ocean-sea ice model can provide detailed sensitivity analyses. Heimbach et al. (2010)552

used the dual solution to study sensitivities of sea ice export through the Canadian Arctic553

Archipelago to changes in atmospheric forcing patterns in the domain. Kauker et al. (2009)554

investigated the causes of the 2007 September minimum in Arctic sea ice cover in terms of555

sensitivities to atmospheric forcing over the preceding months. A similar sensitivity study on556

longer time scales is shown in Fig. 11 of solid (sea ice and snow) freshwater export through Fram557

Strait for two study periods, January 1989 to September 1993, and January 2003 to September558

2007 (unpublished work). The objective function was chosen to be the annual sea ice export559

between October 1992 and September 1993, and October 2006 and September 2007. Export560
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Figure 11: Sensitivity of sea ice export through Fram Strait to changes in effective sea ice thickness 24

months back in time. Two integration periods were considered, Jan. 1989 to Sep. 1993 (left) and Jan.

2003 to Sep. 2007 (right). The objective function is annual sea ice export between October 1992 and

September 1993 (left), and October 2006 and September 2007 (right). {fram_export_2panel_adjheff_level1_img0146.png}

sensitivities to changes in effective sea ice thickness, 24 months prior to September 1993 and561

2007, respectively, are shown. The dominant patterns are positive sensitivities upstream of562

Fram Strait, and for which an increase in ice thickness will increase ice export at Fram Strait563

24 months later. (Spurious patterns south of Svalbard have been attributed to masking errors564

in the sea ice adjoint model and were corrected in Fenty and Heimbach, 2012a.) Sensitivities565

are linearized around their respective states, and depend on the state trajectory. The extended566

domain of influence for the 2007 case compared to 1993 suggests more swift transport conditions567

in the central Arctic, possibly due to favorable atmospheric conditions, or to weaker sea ice, or568

both.569

Ice Sheet-Ocean Interactions570

The intense interest in sea level change and the observed acceleration of outlet glaciers spilling571

into narrow deep fjords in Greenland and ice streams feeding vast ice shelves in Antarctica572

(e.g., Payne et al., 2004; Alley et al., 2005; Shepherd and Wingham, 2007; Pritchard et al.,573

2009; Rignot et al., 2011) has led to inferences that much of the ice response may be due574

to regional oceanic warming at the glacial grounding lines, an area termed by Munk (2011)575

“this last piece of unknown ocean”. One such region is the Amundsen Sea Embayment in West576

Antarctica (Fig. 12, taken from Schodlok et al., 2012), where the ocean is in contact with577
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Figure 12: (From Schodlok et al., 2012): bottom topography (in meters) of the Amundsen Sea Em-

bayment, West Antarctica, with thick black lines delineating the edge of several large ice shelves which

buttress the following glaciers grounded deep below sea level: Abbot (AB), Cosgrove (CG), Pine Island

Glacier (PIG), Thwaites (TH), Crosson (CR), Dotson (DT), and Getz (GZ). Also indicated are prominent

topographic features, such as Sherman Island (SI), Burke Island (BI), Eastern Channel (EC), Central

Channel (CC), and Western Channel (WC). {pig_schodlok_fig1a.png}

several large shelves, among which Pine Island Ice Shelf (PIIS) and Glacier (PIG) exhibits one578

of the largest changes in terms of ice sheet acceleration, thinning, and mass loss. Recent, and579

as yet incomplete model developments have been directed at determining the interactions of580

changing ocean temperatures and ice sheet response, and for the purpose of inclusion into the581

coupled state estimation system (Losch, 2008). Simulated melt rates under PIIS are depicted in582

Fig. 13, but cannot be easily measured directly. A first step toward their estimation in terms of583

measured hydrography has been undertaken by Heimbach and Losch (2012) who developed an584

adjoint model complementing the sub-ice shelf melt rate parameterization. By way of example,585

Fig. 14 depicts transient sensitivities of integrated melt rates (Fig. 13) to changes in ocean586

temperatures. The spatial inhomogeneous pattens have implications for the interpretation of587

isolated measurements and optimal observing design.588

The critical dependence of sub-ice shelf cavity circulation and melt rates to details of the589

bathymetry and grounding line position noted by Schodlok et al. (2012) revives the issue of590

bottom topography as a dominant control on ocean circulation and the necessity for its inclusion591

into formal estimation systems (Losch and Wunsch, 2003; Losch and Heimbach, 2007).592
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(a) velocity-independent transfer coefficient (b) velocity-dependent transfer coefficient

Figure 13: Simulated melt rates (colors, in meters/year) under Pine Island Ice Shelf (PIIS) derived from

variants of the Holland and Jenkins (1999) melt rate parameterization, using either velocity-independent

(a) or velocity-dependent transfer coefficients (from Dansereau, 2012). Large melt rates correspond to

either locations deep inside the cavity where the ice shelf is in contact with the warmest Circumpolar

Deep Waters, or to locations of highest flow at the ice shelf-ocean interface. Direct measurement of melt

rates is challenging, making robust inferences difficult. {fig:pig-forward}

Air-Sea Transfers and Property Budgets593

By definition, state estimates permit calculations up to numerical accuracies of global budgets594

of energy, enthalpy, etc. Many of these budgets are of interest for the insight they provide into595

the forces powering the ocean circulation. Josey (2012, this volume) discusses estimates of the596

air-sea property transfers using the ECCO estimates. As an example, Fig. 15 is an estimate597

by Stammer et al. (2004) of the net air-sea transfers of fresh water. That paper compares this598

estimate to other more ad hoc calculations and evaluates its relative accuracy.599

As examples of more specific studies using the state estimates, we note only Piecuch and600

Ponte (2011, 2012) who examined the role of transport fluctuations on the regional sea level and601

oceanic heat content distribution, and Roquet et al. (2011) who used them to depict the regions602

in which mechanical forcing by the atmosphere enters into the interior geostrophic circulation.603

Many more such studies are expected in the future.604
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Figure 14: Transient sensitivities, δ∗T = (∂J/∂T )T , of integrated melt rates J under PIIS (from Fig. 11b)

to changes in temperature T at times t = τf − 30 days (upper row) and −60 days (lower row) prior to

computing J . Left panels are horizontal slices at 640 m depth, right panels are vertical slices taken along

the dashed line depicted in Fig. 13. Units are in m3 s−1 K−1, where 0.1 m3 s−1 K−1 ≈ 3 Mt a−1 K−1 ≈
3 mm a−1 K−1. {fig:pig-adjoint}

5.2 Longer Duration Estimates605

Although the original ECCO estimates were confined to the period beginning in the early 1990s606

with the improved observational coverage that became available in association with WOCE, the607

intense interest in decadal scale climate change has led to some estimates of the ocean state608

emulating the meteorological reanalyses, extending 50 years and longer into the past. Some of609

these estimates are based essentially on the reanalysis methods already described (e.g., Rosati610

et al., 1995; Hurlburt et al., 2009), and having all of their known limitations.611

Köhl and Stammer (2008), Wang et al. (2010) have pioneered the application of the ECCO612

least-squares methods to an oceanic state estimate extending back to 1960. Their estimates have613
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Figure 15: From Stammer et al. (2004) showing an estimate of the multi-year average heat (left, in

W/m2) and fresh water (right, in m/y) transfers between ocean and atmosphere. {stammer_josey_etal_ht_fw.pdf}

the same virtue as the wider ECCO family of solutions, in satisfying known model equations614

of motion and dynamics and with known misfits to all data types. The major problem is the615

extreme paucity of data in the ocean preceding the WOCE era; see e.g., Figs. 1 and 2 of Forget616

and Wunsch (2007), and the accompanying very limited meteorological forcing observations in617

the early days. Note that polar orbiting meteorological satellites do not exist prior to 1979—see618

Fig. 2 and Bromwich and Fogt (2004). Useful altimetry appears only at the end of 1992. “Whole619

domain” methods such as smoothers or Lagrange multipliers do carry information backwards620

in time, and in the estimates for the underconstrained decades prior to about 1992, the gross621

properties of the ocean circulation are better determined because of the later, denser, data622

sets. But the memory of the upper ocean, which is most prominent e.g., in climate forecasting623

attempts, appears to be restricted to a few years, and one expects considerable near-surface624

uncertainty to occur even as recently as the 1980s.625

A preliminary step of assessing the impact of observational assets in constraining the ECCO626

solutions has been taken through observing system experiments in the context of short-duration627

optimizations during the Argo array period (Heimbach et al., 2009; Zhang et al., 2010). Results628

suggest that the impact of altimetry and Argo floats in constraining, e.g. the MOC is drastic,629

compared to the pre-WOCE period when only hydrographic sections were available.630

The published solutions for the interval prior to about 1992 are best regarded as physically631

possible, but whose uncertainty estimates, were they known, would surely be very much greater632

than they are in the later times, but diminishing as the WOCE-era is approached. These long-633

duration estimates, decades into the past, thus present a paradox: if they are quantitatively634

useful—other than as examples of possible solutions—then the relatively large investment in635
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observation systems the community has made since the early 1990s was unnecessary. If that636

investment has been necessary, then one cannot readily quantitatively interpret the early es-637

timates. We leave the subject here as one awaiting the necessary time-dependent uncertainty638

estimates.639

5.3 Short-Duration Estimates640

Finding a least-squares fit over 19+ years is computationally very demanding and for some641

purposes, estimates over shorter time intervals can be useful. In particular, Forget (2010) used642

the same model and methodology as that of the ECCO Climate State 1◦ system (Wunsch and643

Heimbach, 2007), but limited the calculation of three overlapping 18-months periods in the644

years 2004-2006. In his estimate, the model-data misfit is considerably reduced compared to645

that in the 16+year solution. The reasons for that better fit are easy to understand from the646

underlying least-squares methodology: The number of adjustable parameters (the control vector)647

has the same number of degrees-of-freedom in the initial condition elements as does the decade+648

calculations, but with many fewer data to fit, and with little time to evolve away from the opening649

state. (Meteorological elements change over the same time scales in both calculations.) It is650

much more demanding of a model and its initial condition controls to produce fits to a 16-year651

evolution than to an 18-month one. Although both calculations have time-scales short compared652

to oceanic equilibrium times of hundreds to thousands of years, in an 18 month interval little653

coupling exists between the meteorological controls and the deep data sets—which are then654

easily fit by the estimated initial state.655

Solutions of this type are very useful, particularly for upper ocean and regional oceanographic656

estimates (see the water mass formation rate application in Maze et al., 2009). An important657

caveat, however, is that one must resist the temptation to regard them as climatologies. They658

do bring us much closer to the ancient oceanographic goal of obtaining a synoptic “snapshot.”659

5.4 Global High Resolution Solutions660

Ocean modelers have been pursuing ever-higher resolution from the very beginning of ocean661

modelling and the effort continues. In classical computational fluid dynamics, one sought “nu-662

merical convergence”: the demonstration that further improvements in resolution did not qual-663

itatively change the solutions, and preferably that they reproduced known analytical values.664

Such demonstrations with GCMs are almost non-existent, and thus a very large literature has665

emerged attempting to demonstrate the utility of “parameterizations”—constructs intended to666

mimic the behavior of motions smaller than the resolution capability of any particular model.667

A recent review is by Ringler and Gent (2011). Absent fully-resolved solutions with which to668
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compare the newer parameterizations, the question of their quantitative utility remains open.669

They do represent clear improvements on older schemes.670

Despite the parameterization efforts, considerable evidence exists (e.g., Hecht and Smith,671

2008; Lévy et al., 2010) that qualitative changes take place in GCM solutions when the first672

baroclinic deformation radius, at least, is fully resolved. From the state estimation point of view,673

one seeks as much skill as possible in the model—which is meant to represent the fullest possible674

statement of physical understanding. On the other hand, state estimation, as a curve-fitting675

procedure, is relatively immune to many of the problems of prediction. In particular, because676

of the dominant geostrophic balance, its mass transport properties are insensitive to unresolved677

spatial scales—bottom topographic interference being an exception. In data dense regions, away678

from boundary currents, one anticipates robust results even at modest resolution.679

Ultimately, however, the boundary current regions particularly must be resolved (no pa-680

rameterizations exist for unresolved boundary currents) so as to accurately compute transport681

properties for quantities such as heat or carbon that depend upon the rendering of the second682

moments, 〈Cv〉 , where C is any scalar property, and v is the velocity. Thus a major effort has683

been devoted to producing global or near-global state estimates from higher resolution models684

(Menemenlis et al., 2005a, b). The same methodologies used at coarser resolution are also ap-685

propriate at high resolution—as has been demonstrated in the regional estimates taken up next,686

but the computational load rapidly escalates with the state and control vector dimensions. Thus687

available globally constrained models have used reduced data sets, and have been calculated only688

over comparatively short time intervals (see Table 3).689

Because of the short-duration, much of the interest in these high resolution models lies with690

the behavior of the eddy field rather than in the large-scale circulation (e.g., Wortham, 2012).691

As with ordinary forward modelling, how best to adjust the eddy flux parameterizations when692

parts of the eddy field have been resolved, is a major unknown.693

5.5 Regional Solutions694

Because the computational load of high resolution global models is so great, efforts have been695

made to produce regional estimates, typically embedded in a coarser resolution global system.696

Embedding, with appropriate open boundary conditions is essential, because so much of the697

ocean state in any finite region is directly dependent upon the boundary values. Implementing698

open boundary conditions is technically challenging, particularly where the velocity field is699

directly involved—with slight barotropic imbalances producing large volume imbalances (Ayoub,700

2006).701

Gebbie et al. (2006) discussed estimates in a small region of the North Atlantic, and their702
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results were used to calculate (Gebbie, 2007) the eddy contribution to near-surface subduction703

processes. In a much-larger region, the Mazloff et al. (2010) Southern Ocean State Estimate704

(SOSE), was computed initially over the restricted time interval 2005-2006 (now being extended)705

at 1/6◦ horizontal and 42 vertical-level resolution.706

6 The Uncertainty Problem707

From the earliest days of least-squares as used by Gauss and Lagrange, it was recognized that708

an important advantage of the methods is their ability to produce uncertainty estimates for the709

solutions, generally as covariances about the expected solution or the underlying true solution.710

The art of calculating those errors in historically large systems (especially in geodesy and orbit711

estimation—the fields where the method originated) is highly refined. Unhappily, large as those712

systems are, their dimensions pale in comparison to the state and control vector sizes encoun-713

tered in the oceanographic problem. This dimensionality issue renders impractical any of the714

conventional means that are useful at small and medium size. Numerous methods have been715

proposed, including direct calculation of the coefficients of the normal equations (the matrix A,716

defining any system of simultaneous equations) and inversion or pseudo inversion, of ATA (the717

Hessian); the indirect calculation of the lowest eigenvalues and eigenvectors of the inverse Hes-718

sian from algorithmic differentiation (AD) tools; to solutions for the probability density through719

the Fokker-Planck equation; to the generation of ensembles of solutions. Mostly they have been720

applied to “toy” problems—somewhat similar to designing a bridge to span the Strait of Gibral-721

tar, and then pointing at a local highway bridge as a demonstration of its practicality. Serious722

efforts, more generally, to calculate the uncertainties of any large model solution are continuing,723

but when a useful outcome will emerge is unknown at this time.724

In the interim, we generally have only so-called standard errors, representing the temporal725

variances about the mean of the estimate (Figs. 4, 5). These are useful and helpful. Sensitivi-726

ties, derived from the adjoint solutions (e.g., Heimbach et al., 2011; and see Figs. 11, 16), are727

computationally feasible and need to be more widely used. In the meantime, the quest of ocean728

and climate modelers and for the state estimation community more specifically, for useful un-729

derstanding of reliability, remains a central, essential, goal. One should note that conventional730

ocean GCMs or coupled climate models, run without state estimation are almost never accom-731

panied by uncertainty estimates—a serious lack—particularly in an era in which “prediction732

skill” is being claimed.733

Some authors compare their solutions to those inferred from more conventional methods734

e.g., transport calculations from box inversions of hydrographic sections. These comparisons are735
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Figure 16: Sensitivities (from Heimbach et al., 2011) of the meridional heat transport across 26◦N in the

North Atlantic from temperature perturbations at two depths, 15 years earlier. Top panel is for 1875m,

and lower panel is for 2960m. {heimbach_etal_sensitivities.tif}

worthwhile, but it is a major error to treat the hydrographic solutions as if they were true time-736

averages or climatologies. It is now possible to compare a state estimate from data obtained737

over a short interval (e.g., March 2003) with a state estimate for that time, sampled in the same738

way. Differences will appear in the objective function, J. Inevitable discrepancies raise all of the739

fundamental questions of allocating errors amongst the data, the model, and external controls.740

In the decadal+ prediction problem (not discussed here), by definition there are no data, and741

measures of error and skill are far more difficult to obtain. Divergence of IPCC (2007) models742

over time (e.g., Schmittner et al., 2005; Stroeve et al., 2007), even where fitted to the historical743

observations, is a strong indicator of the fundamental difficulties involved in extrapolating even744

systems that appear to give an apparently good fit to historical data, and they are reminiscent745
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of the parable above of fitting cubics to data.746

7 Discussion747

The history of fluid dynamics generally, and of complex model use in many fields, all support748

the inference that models unconstrained by data can and do often go wildly wrong (in the wider749

sense, see e.g., May, 2004; Post and Votta 2005). Readers will recognize the strong point of view750

taken by the present authors: that models unaccompanied by detailed, direct, comparisons with751

and constraints by data are best regarded as a kind of science novel.752

As we go forward collectively, the need to develop methods describing GCM and state es-753

timate uncertainties is compelling: how else can one combine the quantitative understanding754

of oceanographic, meteorological and cryospheric physics with the diverse sets of system ob-755

servations? Such syntheses are the overarching goal of any truly scientific field. Existing state756

estimates have many known limitations, some of which will be overcome by waiting for the757

outcome of Moore’s Law over the coming years. Other problems, including the perennial and758

difficult problem of oceanic mixing and dissipation (Munk and Wunsch, 1998; Wunsch and Fer-759

rari, 2004) are unlikely simply to vanish with any forseeable improvement in computer power.760

Further insight is required.761

Lack of long-duration, large-scale, observations generates a fundamental knowledge gap.762

Without the establishment and maintenance of a comprehensive global ocean observing system,763

which satisfies the stringent requirements for climate research and monitoring, progress over the764

coming decades will remain limited (Baker et al., 2007).765

Oceanographers now also directly confront the limits of knowledge of atmospheric processes.766

Until about 20 years ago, meteorological understanding so greatly exceeded that of the ocean767

circulation that estimated state errors for the atmosphere were of little concern. The situa-768

tion has changed emphatically with the global observations starting in WOCE, along with the769

development of oceanic state estimates.8 These estimation systems are better suited for the770

purposes of climate research than those developed for numerical weather prediction. What is771

needed now for climate change purposes, are useful state estimation systems including simul-772

taneously, coupled oceanic, atmospheric, and sea ice physics, and the entirety of the relevant773

observations in those fields. Thus atmospheric precipitation and evaporation pattern changes774

can be constrained tightly by changes in the oceanic state. ECCO and related programs have775

demonstrated how to carry out such recipes. Conventional weather forecast methods are not776

8The authors have been asked repeatedly at meetings “Why don’t oceanographers adopt the sophisticated

methods used by meteorologists?” The shoe, however, is now firmly on the other foot.
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appropriate, and implementation of a fully coupled state estimation system that will be ongoing777

is a challenge to governments, university, and research organizations alike. (cf. Bengtsson et al.,778

2007, who propose a limited step in this direction. Sugiura et al., 2008, and Mochizuki et al.,779

2009, have made some tentative starts on it.) Surely we must have the capability.780
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Hoteit, I., B. Cornuelle, A. Köhl, and D. Stammer, 2006: Treating strong adjoint sensitivities902

in tropical eddy-permitting variational data assimilation. Quarterly Journal of the Royal Mete-903

orological Society, 131 (613), 3659-3682.904

Hoteit, I., B. Cornuelle, and P. Heimbach, 2010: An Eddy-Permitting, Dynamically Consistent905

Adjoint-Based Assimilation System for the Tropical Pacific: Hindcast Experiments in 2000. J.906

Geophys. Res., 115, C03001.907

Huang, R. X., 1993: Real freshwater flux as a natural boundary condition for the salinity bal-908

ance and thermohaline circulation forced by evaporation and precipitation. J. Phys. Oc., 23,909

2428-2446.910

Huang, R. X., 2010: Ocean circulation: wind-driven and thermohaline processes. Cambridge911

University Press, xiii, 791 p. pp.912

Hurlburt, H. E., and Coauthors, 2009: High-resolution global and basin-scale ocean analyses913

and forecasts. Oceanography, 22, 110-127.914

IPCC Intergovernmental Panel on Climate Change, 2007: Climate Change 2007 - The Physical915

Science Basis. Cambridge Un. Press, Cambridge, 1009pp.916

Josey, S. A. and others, 2012: Unknown Title. This Volume.917

Ito, T., M. Woloszyn, and M. Mazloff, 2010: Anthropogenic carbon dioxide transport in the918

Southern Ocean driven by Ekman flow. Nature, 463, 80-83.919

Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng.,920

82, 35-45.921

Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge922

University Press, xxii, 341 p., 344 p.923

Kanzow, T., and Coauthors, 2009: Basinwide Integrated Volume Transports in an Eddy-Filled924

Ocean. Journal of Physical Oceanography, 39, 3091-3110.925

Kauker, F. and 5 others, 2009: Adjoint analysis of the 2007 all time Arctic sea-ice minimum.926

41



Geophys. Res. Lett., 36, L03707.927
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reanalysis	  product	   net	  fresh	  water	  imbalance	  [mm/year]	   net	  heat	  flux	  imbalance	  [W/m2]	  
	  

ocean-‐only	   global	   ocean-‐only	   global	  

NCEP/NCAR-‐I	  1992-‐2010	   159	   62	   -‐0.7	   -‐2.2	  

NCEP/DOE-‐II	  (1992-‐2004)	   740	   -‐	   -‐10	   -‐	  

ERA-‐Interim	  (1992-‐2010)	   199	   53	   -‐8.5	   -‐6.4	  

JRA-‐25	  (1992-‐2009)	   202	   70	   15.3	   10.1	  

CORE-‐II	  (1992-‐2007)	   143	   58	  

Table 1: Global net heat and freshwater flux imbalances of atmospheric reanalysis products. {woce_table_imbalances.tiff}
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observation instrument product/source area period dT 

Mean dynamic 
topography (MDT) 

•  GRACE SM004-GRACE3 
•  EGM2008/DNSC07 

CLS/GFZ (A.M. Rio) 
N. Pavlis/Andersen & Knudsen 

global 
global 

time-mean mean 

Sea level anomaly 
(SLA) 

•  TOPEX/POSEIDON 
• Jason 
•  ERS, ENVISAT 
•  GFO 

NOAA/RADS & PO.DAAC 
NOAA/RADS & PO.DAAC 
NOAA/RADS & PO.DAAC 
NOAA/RADS & PO.DAAC 

65oN/S 
82oN/S 
65oN/S 
65oN/S 

1993 – 2005 
2001 – 2011 
1992 – 2011 
2001 - 2008 

daily 
daily 
daily 
daily 

SST •  blended, AVHRR (O/I) 
•  TRMM/TMI 
•  AMSR-E (MODIS/Aqua) 

Reynolds & Smith 
GHRSST 
GHRSST 

Global 
40oN/S 
Global 

1992 - 2011 
1998 - 2004 
2001 - 2011 

monthly 
daily 
daily 

SSS Various in-situ WOA09 surface Global climatology monthly 

In-situ T, S •  Argo, P-Alace 
•  XBT 
•  CTD 
•  SEaOS 

•  TOGA/TAO, Pirata 

Ifremer 
D. Behringer (NCEP) 
various 
SMRU & BAS (UK) 

PMEL/NOAA 

“global” 
“gobal” 
sections 
SO 

Tropics 

1992 – 2011  
1992 – 2011  
1992 – 2011  
2004 – 2010  

1992 – 2011  

daily 
daily 
daily 
daily 

daily 

Mooring velocities •  TOGA/TAO, Pirata 
•  Florida Straits 

PMEL/NOAA 
NOAA/AOML 

Trop. Pac. 
N. Atl. 

1992 – 2006 
1992 – 2011  

daily 
daily 

Climatological T,S •  WOA09 
•  OCCA 

WOA09 
Forget, 2010 

“global” 
“global” 

1950 - 2000 
1950 - 2002 

mean 
mean 

sea ice cover •  satellite passive 
microwave radiometry 

NSIDC (bootstrap) Arcitc, SO 1992 - 2011 daily 

Wind stress QuickScat •  NASA (Bourassa) 
•  SCOW (Risien & Chelton) 

global 1999 – 2009 
climatolggy 

daily 
monthly 

Tide gauge SSH Tide gauges NBDC/NOAA sparse 1992 - 2006 monthly 

Flux constraints from ERA-Interim, JRA-25, 
NCEP, CORE-2 variances 

Various global 1992 - 2011 2-day to 
14-day 

Balance constraints global 1992 - 2011 mean 

bathymetry Smith & Sandwell, ETOPO5 global - - 

Table 2: Data used in the ECCO global 1◦ resolution state estimates until about 2011. {woce_table_eccodatasets.png}

49



label	  &	  version	   hor./ver.	  grid	   domain	   dura4on	   scope	   reference	  

ECCO-‐Produc4on	  	  	  	  Sustained	  produc/on	  of	  decadal	  climate	  state	  es/mates	  (former	  ECCO-‐GODAE)	  
ver.0	  (ECCO-‐MIT)	   2o	  /	  22	   80o	  N/S	   1992—1997	  	   first	  ECCO	  product	  –	  proof	  of	  feasibility	   Stammer	  et	  al.	  (2002/04)	  

ver.1	  (ECCO-‐SIO)	   1o	  /	  23	   80o	  N/S	   1992—2002	  	   begin	  of	  1o	  sustained	  produc/on	   Köhl	  et	  al.	  (2007)	  

ver.2	  (ECCO-‐GODAE)	   1o	  /	  23	   80o	  N/S	   1992—2004	  	   air-‐sea	  flux	  constraints	  for	  sea	  level	  studies	   Wunsch	  &	  Heimbach	  (2006/07)	  

	  	  	  	  	  	  	  	  	  (OCCA)	   1o	  /	  50	   80o	  N/S	   2004/5/6/7	   Atlas	  from	  one-‐year	  “synop/c	  snapshots”	   Forget	  (2010)	  

	  	  	  	  	  	  	  	  	  (GECCO)	   1o	  /	  23	   80o	  N/S	   1951—2000	   50-‐year	  solu/on	  covering	  NCEP/NCAR	  period	   Köhl	  and	  Stammer	  (2008a/b)	  

ver.3.0	  (ECCO-‐GODAE)	   1o	  /	  23	   80o	  N/S	   1992—2007	  	   switch	  to	  atmos.	  state	  controls	  and	  sea	  ice	   Wunsch	  &	  Heimbach	  (2009)	  

	  	  	  	  	  	  	  	  	  	  revision	  1	  (ver.3.1)	   1o	  /	  23	   80o	  N/S	   1992—2010	  	   updates	  to	  ver.3.0	   Fukumori	  et	  al.	  (in	  prep.)	  

ver.4	   1o	  /	  50	   global	   1992—2010	  	   first	  full-‐global	  es/mate	  incl.	  Arc/c	   Forget	  &	  Heimbach	  (in	  prep.)	  

ECCO-‐ICES	  	  	  	  Ocean-‐Ice	  Interac/ons	  in	  Earth	  System	  Models	  (former	  ECCO2)	  
ver.1	  (CS510	  GF)	   18	  km	  /	  50	   global	   1992—2002/10	   Green’s	  func/on	  op/m.,	  of	  eddying	  model	   Menemenlis	  et	  al.	  (2005)	  

ver.2	  (CS510	  adjoint)	   18	  km	  /	  50	   global	   2004-‐05/2009-‐10	  	   adjoint-‐based	  global	  eddying	  1-‐year	  op/m.	   Menemenlis	  et	  al.	  (in	  prep.)	  

ECCO-‐JPL	  near	  real-‐/me	  filter	  &	  reduced-‐space	  smoother	  
ver.1	  (KF)	   1o	  /	  46	   80o	  N/S	   1992—present	  	   near-‐real	  /me	  Kalman	  Filter	  (KF)	  assimila/on	   Fukumori	  et	  al.	  (1999)	  

ver.2	  (RTS)	   1o	  /	  46	   80o	  N/S	   1992—present	  	   smoother	  update	  of	  KF	  solu/on	   Fukumori	  (2002)	  

Regional	  Efforts	  (/*/	  denote	  ongoing	  efforts)	  
Southern	  Ocean	  (SOSE)	  	  /*/	   1/6o	  /	  42	   25o-‐80oS	   2005—2009	  	   eddy-‐permifng	  SO	  State	  Es/mate	   Mazloff	  et	  al.	  (2010)	  

ECC2	  Arc/c	  &	  ASTE	  	  /*/	   18	  &	  4	  km	  /	  50	   Arc/c	  &	  SPG	   1992—2009	  	   Arc/c/subpolar	  gyre	  ocean-‐sea	  ice	  es/mate	   Nguyen	  et	  al.	  (2011/12)	  

North	  Atlan/c	   1o	  /	  23	   25o-‐80oN	   1993	   experimental	  2o	  vs.	  1o	  nes/ng	   Ayoub	  (2006)	  

Subtropical	  A/aln/c	   1/6o	  /	  42	   	  …	   1992/93	   experimental	  1o	  vs.	  1/6o	  nes/ng	   Gebbie	  et	  al.	  (2006)	  

Tropical	  Pacific	   …	   …	   experimental	  1o	  vs.	  1/3o	  nes/ng	   Hoteit	  et	  al.	  (2006/2010)	  

Labrador	  Sea	  &	  Baffin	  Bay	   …	   …	   1996/97	   first	  full	  coupled	  ocean-‐sea	  ice	  es/mate	   Fenty	  et	  al.	  (2012a/b)	  

Table 3: Published ECCO family state estimates, divided roughly into categories. The global decade+

estimates are labelled as “ECCO-Production”, while others are either regional, or experimental. {woce_table_eccoversions.tif}
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