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ABSTRACT

An exploratory description is made of nearly global potential temperature

variability from to months to 20 years using the field derived from the EC-

COv4 state estimate. Relative to higher frequencies, longer periods do not

exhibit simplification in the space-time structures. Frequency spectra at indi-

vidual points are usefully described by a reduced form of a previously pro-

posed analytic model. In contrast, the vertical structure of the variability at

low frequencies–periods beyond 1 year—has a very complex form, with only

a few global generalizations apparent. Meridional wavenumber spectra, re-

flecting the dominant zonality of oceanic low frequencies, are spatially com-

paratively simple, while the zonal wavenumber spectra are spatially complex

and not very meaningful. The emergence of strong spatial structures at longer

periods is consistent with the presence of complex time-mean (0 frequency)

structures in bottom topography, sidewalls, and meteorological forcing.
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1. Introduction21

This paper began as an attempt to realistically calculate the accuracies and precisions of pub-22

lished estimates of global mean oceanic temperature (heat content) change through time. As23

quickly became clear, the uncertainties of those calculations are dominated by the under-sampling24

of space-time structures of low-frequency oceanic thermal variability. That in turn led to the need25

to describe quantitatively the variability on a global scale at periods extending out to decades. No26

such previously published description appears to exist. Thus what follows is a draft description27

of low frequency oceanic thermal variability extending to 20-years duration. This effort raises28

fundamental questions about how to describe (and then to understand and use) in a basic form, the29

complex structure of a globally time and space varying fluid—if it is possible.30

As will be seen, a large number of assumptions are necessary to proceed, and as a strawman, it31

would be no surprise to find major future changes being made in the results. In the meantime, the32

description does have exemplary uses both for the heat content problem and as tests of numerical33

models directed at the ocean in climate. Application of the results to the estimates of heat content34

change will be described elsewhere (Wunsch 2019).35

As global data sets and global general circulation models with quantifiable skill have emerged36

over the past few decades, the conclusion that the ocean has a very strong regional and temporal37

complexity has become inescapable. Such technically beautiful ideas such as Sverdrup balance,38

abyssal recipes, Stommel-Arons flows, et al., are increasingly perceived to have at best regional39

applicability. Nonetheless a search for widely applicable principles describing oceanic physics40

is worthwhile. So for example, Sonnewald et al. (2019), using a vertically integrated vorticity41

balance, divided the ocean laterally into 6+ distinct dynamical regions, of greatly varying area.42
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Similarly, the altimetric wave number power law results of Xu and Fu (2012) seem to imply a43

minimum of about 14 dynamical regimes.44

Representations via spectral methods are both a useful summary description and have many45

potential applications, depending upon the particular physical variable. The most familiar of46

such spectra, in frequency, wavenumber, or both, are those describing surface gravity waves (e.g.,47

Komen et al. 1994) and the internal wave spectrum in the various Garrett and Munk (GM) esti-48

mates (Munk 1981 and many subsequent papers, e.g., Polzin and Lvov (2011).49

For the mesoscale, as documented in numerous publications, no universality comparable to that50

seen for internal waves is found. In particular, the energy levels, as determined primarily from51

altimetric data, vary by more than two orders of magnitude (e.g., Hughes et al. 2018; their Fig. 1).52

A spectral representation has many useful applications, at least in a local sense. For Gaussian pro-53

cesses stationary in both space and time, the spectral representation along with the various mean54

values, is a complete description of the stochastic field. Here, the spatial inhomogeneity means that55

the frequency-wavenumber spectrum is not, even for purely Gaussian data, a complete stochastic56

representation—it is the first term in a higher order series. Nonetheless, its descriptive power, at57

least locally, remains useful. As one example, Fig. 1 shows the histogram of monthly potential58

temperature anomalies (relative to the 20-year mean) at one depth (477m) from an oceanic state59

estimate (e.g., Fukumori et al. 2018) described below. Although no formal test of normality has60

been made, the near- symmetric, unimodal distribution permits a ready interpretation of standard61

deviations and variances.62

The focus here is on the temperature spectrum, because it is a scalar, has a very long history of in63

situ measurements, is important climatologically and is, in recent times in the upper ocean, widely64

sampled by the Argo array. But direct observations of deep (below about 2000m) interannual65

variability are very few —in a volume of roughly half the ocean. What follows relies on those data66
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that do exist, and on the physics connecting the upper and abyssal oceans. Results are considered67

“exploratory” both because the full skill of the estimates at the longest periods is not known, and68

the best way to describe and use the resulting complicated behavior of a time-varying three-space-69

dimensional global field is also unclear.70

2. The State Values and Their Frequency Spectra71

Wortham and Wunsch (2014; hereafter WW14) proposed a general form of a three-space-72

dimension and time-spectrum for low frequency (below the Coriolis frequency, f ) oceanic vari-73

ability and compared it to a variety of data, both altimetric and from in situ measurements.74

Their form followed on earlier discussions of Zang and Wunsch (2001; hereafter ZW01). WW1475

showed a quantitatively useful fit to a wide variety of data, including altimetry, and from moored76

measurements of temperature and velocity. Subsequent developments for analogous statistical77

descriptions include Wortham et al. (2014); Abernathey and Wortham (2015); Samelson et al.78

(2016). Altimetry data have dominated the discussion of the wavenumber components of the79

spectrum, although for high wavenumbers (wavelengths shorter than about 100-200km), consider-80

able deviation from a universal form is known (e.g., Xu and Fu 2012, but see Callies and Wu 2019,81

for discussion of their interpretation). Here the WW14 form is used to describe the temperature82

temporal-frequency spectrum so as to draw some near-global conclusions.83

The values used here are from the twenty-year time-varying subset climatology of the Estimating84

the Circulation and Climate of the Ocean version 4 (ECCOv4) state estimate (see e.g., Fukumori85

et al. 2018 and references there). This climatology represents a weighted least-squares fit of the86

MITgcm (Marshall et al. 1997) and its evolutionary ECCO successors, to the diverse near-global87

data sets and meteorological forcing estimates that became available during and after the World88

Ocean Circulation Experiment. The single most important feature of this model representation is89
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that the model is free running but with its numerous control parameters having been previously90

adjusted so that the model trajectory takes it through all of the data points within (mostly) estimates91

of their uncertainties.92

As with many global analyses, the chief obstacle here is that the model is non-eddy-resolving93

(with a 1 degree of longitude and a variable latitude grid). Thus the strong assumption is, nonethe-94

less, made here that the solution fit on periods exceeding several months and wavelengths ex-95

ceeding ≈ 200km provides a quantitative estimate of the variability, its nature and structure. That96

assumption in turn rests upon the supposition that the dominant quasi-geostrophic nature of the97

ocean circulation is well-captured by the data—and hence the adjusted model—at long periods—98

an inference consistent with the comparisons to moored data in WW14. In particular, those authors99

showed that frequency spectra within the eddy band appeared to be smooth extensions of the spec-100

tra at lower frequencies. Hence one of the assumptions made here is that the low frequency results101

can be extrapolated into the eddy band.102

To the extent that low frequency features produced e.g., by eddy-eddy or eddy-mean flow in-103

teractions, remain in thermal wind balance, the state estimate will properly represent them. The104

assumption is equivalent to the assertion that away from boundaries,105

∂

∂ t

(
f

∂v
∂ z
−g

∂ρ

∂x

)
= O(ε) (1)

where ε is a small number relative to the left-hand-side terms and the fields are varying over106

years and longer. Boundary layers are not properly resolved with the existing resolution and107

a further assumption is that the unresolved regions are passively consistent with the strongly108

constrained, quasi-geostrophic, interior circulation and structure (an assumption underlying the109

Stommel-Arons picture). Penduff et al. (2010) and others show the integrated effects of eddies110

on the large-scale circulation; the extent to which a geostrophic pressure field is induced to bal-111

6



ance that circulation is not clear. Balanced eddy structures, particularly those associated with112

topographic features, can persist for periods much exceeding a year (no low-frequency cut-off is113

known), and should future studies show major ageostrophic physics in eddy-resolving runs at low114

frequencies, what follows would have to be re-evaluated.115

Frequency Spectra of the State Estimate116

From the monthly average values of ECCOv4 at 477m the spectral density ranging from 20 years117

to 2 months (the Nyquist period) is readily computed as a function of frequency ω ′. A depth of118

477m was chosen as a reasonable global compromise value lying primarily below the mixed layer119

and above the main thermocline. The standard deviation of monthly anomalies averaged over 20120

years at that depth is shown in Fig. 1. Converted to power, spectra sum to the squares of these121

values.122

The discussion that follows is restricted to the region northward of 40◦S, as the Southern Ocean123

with its strong mean advecting eastward flow is spectrally distinct from the remaining oceans124

(WW14). To the north, the sea ice region poleward of about 55◦N is also omitted. This restriction125

still leaves many special dynamical regions in the domain, including the tropics. Conventional126

spectral estimates using a Daniell (rectangular frequency or wavenumber) window were computed127

for 27,634 distinct locations where the depth was at least 500m. An estimated ν = 6 degrees of128

freedom was used at each spectral estimate frequency. The median (not area weighted) of all of129

these spectra can be seen in Fig. 2. In many locations, and as appears in the median result, the130

annual cycle and sometimes its harmonics, is conspicuous. In the net power and fitting results,131

these peaks are ignored because fitting without them changed the results only slightly. Its pres-132

ence may be compensatory for a possible underestimate of power between two months and a year.133

The median power at 477m is 0.10(◦C)2 = (0.31 oC)2 from 20 years to two months. A rough134
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description would be that it has a ω ′−2 behavior at frequencies above the annual cycle, and is flat-135

tened, tending toward white noise, at lower frequencies. The whitish character is consistent with136

the absence of strong (relative to the variability) data trends. A separate study of the temperature137

annual cycle and its overtones would be worthwhile.138

The Analytic Spectrum139

The WW14 spectrum is an empirical one for the interior ocean only, whose construction was140

guided only by general discussions both in theory and observation of wavenumber and frequency141

behavior (e.g., Vallis 2017; Arbic et al. 2012; Scott et al. 2017). In local Cartesian horizontal142

coordinates and time, it is of the form,143

Φψ

(
k′, l′,ω ′,x,y

)
= (2)

A

{
1(

k′2L2
x + l′2L2

y +1
)α

(ω ′2T 2 +1)
+ exp

(
−
[
k′2L2

x + l′2L2
y +T 2(k′cx + l′cy−ω

′)2])} .

Here, k′, l′,ω ′ are non-radian wavenumbers and frequencies, Lx,Ly,T are the zonal and meridional144

spatial scales and a temporal scale. cx,cy are empirical phase speeds, α ≈ 5/2. A is an adjustable145

overall magnitude. As discussed by WW14, all these parameters are functions of position—so146

that using local Cartesian coordinates makes some sense. Dependence upon x,y is slowly varying147

by assumption and the coordinates are usually suppressed below, but are implicit. The subscript148

ψ denotes the stream function as defined by ZW01. Each physical variable, be it temperature,149

salinity, surface elevation, velocity has a differing power density spectrum where a multiplying150

factor converts Φψ into the applicable form. Thus the temperature spectrum would be,151

Φθ

(
k′, l′,ω ′,z,m

)
=

(
f

∂ 〈θ0〉(z,x,y)
∂ z

Gm (z,x,y)
)2

Φψ

(
k′, l′,ω ′

)
. (3)

Here, Gm (z,x,y) is the m−th vertical displacement mode. ∂ 〈θ0〉/∂ z is the time average local ver-152

tical temperature derivative. Eqs. (2, 3) are over-simplified compared to reality. On the other hand,153
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WW14 show that subject to regional adjustment of the various parameters, they are quantitatively154

useful for a variety of time and space-time series.155

The first term on the right in Eq. (2) represents the frequency-wave-number continuum including156

equal amounts of energy moving both eastward and westward, and northward and southward and157

is similar to the ZW01 form. The second term on the right represents the asymmetric westward-158

going energy dominated at low frequencies by the so-called non-dispersive line (NDL) whose159

slope in k′−ω ′ space is controlled by cx (e.g., WW14). The NDL is conspicuous in altimetric160

data, in large-part because of its strong barotropic component and by its non-linear coupling to a161

strongly surface-amplified first baroclinic mode velocity. It is far less prominent in temperatures162

measured or computed at depth. From the altimetric data, its structure is imposed upon the state163

estimate at low frequencies and wavenumbers. Whether it is more wave-like or more isolated164

vortex-like (Chelton et al. 2011) over all frequencies and wavenumbers has not been explored.165

In either case, when viewed through a low-pass frequency and wavenumber filter, the longest166

wavelengths and periods are seen. Note that from frequency spectra alone at individual points,167

one cannot distinguish propagating from standing energy.168

When Φψ is integrated over all k′, l′, the frequency spectrum is obtained (WW14; their Eq. 33):169

Ωθ

(
ω
′)= A

{
π

(α−1)LxLy

1
(1+ω ′2T 2)

+
π√
D

exp
(
−L2

xL2
yT 2

ω
′2/D

)}
, (4)

D = c2
xL2

yT 2 +L2
xL2

y + c2
yL2

xT 2

where the second term represents the frequency spectrum of the NDL. Here A absorbs the factor170

( f ∂ 〈θ0〉/∂ z)2 . In fitting this frequency form, globally, two changes are made: combined param-171

eters are lumped, and the 1/
(
1+T 2ω ′2

)
term and the NDL term are separated to provide an extra172

degree of freedom in accounting the known latitudinal composition of Rossby waves. Thus the fit173
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is to:174

Ω
′
θ

(
ω
′)= A1

(1+ω ′2T 2)
+A2 exp(−ω

′2/Pa) (5)

where locally,175

A1 =
Aπ

(α−1)LxLy
,A2 =

Aπ√
D
,Pa =

D
L2

xL2
yT 2 , (6)

and where the fitting parameters are A1,T,A2,Pa. The first term represents a process obeying an176

ω ′−2 power law at high frequencies and is intimately related to that of a continuous time AR(1)177

process (e.g., Hughes and Williams, 2010). Partial derivatives of Eq. (5) show that the value of178

A1 depends upon T, etc. The second, exponential, term from the NDL, decays faster in frequency179

than does any algebraic power. Spectra that are power laws of ω ′−2 and steeper in some range180

ω ′1 ≤ ω ′ ≤ ∞ are insensitive to aliasing from frequencies above ω ′1 (see Wunsch 1972, Eq. 13;181

Rhines and Huybers 2011).182

A fit was made of logΩ′
θ
(ω ′,x,y)) to the logarithm of the empirical temperature spectra of183

ECCOv4 over the range of periods from 20 years to two months. Logarithms are used to render184

the spectral values more nearly constant with frequency.1 The resulting parameters vary widely185

over the global ocean as seen in Figs. 3 - 4.186

Overall misfits are generally within about 6% of the state estimate log spectrum relative to the187

log of the fit spectrum, but not always. Notable features as might have been expected are: (1) Val-188

ues are spatially noisy, consistent with a comparatively short 20-year time-interval; (2) amplitudes189

A1 are small in the tropical oceans with exceptions on eastern boundaries of the Atlantic and In-190

dian Oceans; (3) High latitudes show enhancement of A1. (4) Over most of the ocean T has values191

of a few years, with much longer values at high latitudes, and much lower values at low latitudes.192

More generally, the regions of high values of T are where the spectra tend to be red out to the193

1Fitting was through a nonlinear trust region method (Seber and Wild 1989, P. 603+; Mathworks Website 2018), a form of least-squares using

a search over a variable neighborhood about the most recent estimate.
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longest periods. Whether these represent true rednoise processes or the presence of trends has to194

be examined separately. (5) The contribution of the NDL to temperature is slight almost every-195

where. (Exceptions exist to all of these sweeping summaries.) Because of the equivalent spatial196

complexity and the much smaller amplitudes, the fits to the NDL line are shown in the Appendix.197

Median values from the fits are A1 = 0.070◦C2/cycle/year, T =10.3y, A2 = 0.0048◦C2/cycle/year,198

Pa = 1.3y2, differing somewhat from the direct fit to the median spectrum (a result expected from199

a nonlinear estimation process).200

An approximate uncertainty of the fitting result can be determined from the inverse Hessian201

based upon its local value calculated from the Jacobian, which is a by-product of the optimization202

algorithm (Kalmikov and Heimbach 2014). When multiplied by the covariance matrix of the data203

noise, it provides an estimate of the uncertainty. The main result is that the 4 parameter estimates204

have strong and highly variable correlated uncertainties. A global display of the individual 4x4205

matrices at each grid point is not easy to digest and is omitted here.206

3. Temporal Autocovariance207

Oceanic physical processes have a strong frequency dependence, and that leads to the central208

importance of spectral analyses. On the other hand, for calculating e.g., the expected accuracy of a209

space or time or space-time average or map, the integrated time-scales included in the covariances210

are a more convenient tool.211
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By the Wiener-Khinchin theorem, the temporal autocovariance, R(τ) , and the autocorrelation,212

φ (τ) , of the frequency spectrum Eq. (5) are,213

R(τ) =
1

2π

∫
∞

−∞

Ω
′
θ

(
ω
′)cos(ω ′τ)dω

′ (7a)

=
1
π

∫
∞

0

[
A1

(1+ω ′2T 2)
+A2 exp(−ω

′2/Pa)

]
cos(2πω

′
τ)dω

′

φ(τ) = R(τ)/R(0)

=
A1π/(2T )exp(−τ/T )+A2P1/2

a π1/2 exp(−Paτ2/4)

A1π/(2T )+A2P1/2
a π1/2

, τ ≥ 0

Decay time to effective zero correlation (φ (τd) = 0.1) is shown in Fig. 5 and which can be214

interpreted as providing the temporal separation required for statistically independent temperature215

samples at this depth. Tropical areas have times of order one year, while patches (including the216

central equatorial Pacific) take more than 10 years to decorrelate. This decorrelation time is im-217

portant in calculations of the accuracy of large-scale sample averages. In low latitudes, samples218

obtained two years apart could be deemed independent, whereas at high latitudes that can take 10219

or more years. The median value is 2.8 years and the mean 3.6 years, omitting values where more220

than 20 years is required.221

4. Wavenumber Spectra222

Computation of wavenumber spectral densities involves choosing distances (or areas) over223

which they are representative, and the presence of complex land boundaries does not lend itself224

to easy or automatic selection. Here what is done is to separately determine the zonal and merid-225

ional wavenumber periodograms along each line of latitude or longitude extending 30◦ eastward226

or northward. The calculations are done for each year separately, and then averaged over 20 years227

to give a power spectrum estimate. Nominal position is assigned to the mid-point longitude or228

latitude.229
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Again simplifying the WW14 forms (their Eq. 31) , now omitting the contribution of the NDL230

which is a pure exponential, the results are then fit to the continuum,231

Φ
(
r j,k′

)
= B

(
1+L2

yk′2
)1/2−α

(8)

for the zonal spectra, and to232

Φ
(
r j, lprime)=C

(
1+L2

x l2l′2
)1/2−α

(9)

for the meridional. Note the pairing of k′ with Ly and of l′ with Lx, consistent with quasi-233

geostrophic balance. At high wavenumbers, the behavior is a power law with exponent 1−2α < 0,234

if α > 1/2, again becoming more white at long wavelengths.235

Meridional Wave Numbers236

The meridional wavenumber spectrum reflects, in the thermal wind/geostrophic balance, the237

zonal flows. A large literature exists describing and rationalizing a tendency for the circulation to238

have preferred zonality, and in the extreme of the appearance of zonal jets (e.g., Chen et al. 2015;239

Galperin and Reid 2019) . Results of fitting Eq. (9) are displayed in Figs. 6-7. Apart from the240

prominent western intensification visible in C, both Lx and α are remarkably uniform and stable241

(α is displayed in the Appendix). Both the mean and median value of α ≈ 3/2 in contrast to the242

estimate of 5/2 by WW14. Year-to-year variations (not shown) do indicate a degree of temporal243

non-stationarity.244

A median spectrum, with best fit of C = 5.4, Lx = 1.2×105km, α = 1.47, power law ≈ −2 at245

high wavenumbers, is shown in Fig. 8. Also shown are the results for a random set of positions.246

While the amplitude changes considerably, the shape of the spectrum is quite stable. The very247

large value of Lx is consistent with a long zonal structure in the meridional fluctuations.248

The decorrelation distance of the meridional wavenumber spectrum is computed from the cosine249

transform of Eq. (9). An analytic expression for the autocovariance is,250
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Rl (ξ ) =
Bξ α−2 πα− 1

2

[
π ξ

(
Iα+1

(
ξ

Lx

)
− I1−α

(
ξ

Lx

))
+Lx α Iα

(
ξ

Lx

)]
(2Lx)

α
Γ
(
α− 1

2

)
sin(π α)

(10)

where Iq is the modified Bessel function. This expression has a straightforward behavior only251

when α = m/2, where m is an integer, and involves subtracting growing exponentials. In practice,252

a numerical calculation of the cosine transform proves more robust. Generally speaking, the auto-253

covariance of both the median, and from the pointwise calculation at most places, produces a zero254

correlation at about 750 km. Beyond that distance, the autocovariance often becomes strongly255

negative.256

Zonal Wavenumber Spectra257

Zonal wavenumbers reflect the meridional quasi-geostrophic variability structure. Zonal flow258

dominance at long periods suggests, a priori, that the zonal wavenumbers may be much noisier259

(unstable) than the meridional ones. Results for the zonal structure parameters are shown in Figs.260

9-11 and the instability of results is manifested in the complex spatial variations in C in Fig.261

9. Analyzed zonal arc length varies with latitude from about 2000 to 3300 km. As with the262

meridional wavenumber values, the zonal wavenumber periodograms were computed for each263

location and each year and then averaged over the 20 years, thus suppressing the year-to-year264

variability. Parameter values (from fitting the median spectrum) are: B = 63, Ly = 7910 km,265

α = 1.6≈ 3/2, power law, ≈−2, again.266

With the different results for zonal and meridional spectra, any wavenumber isotropy assumption267

must be examined carefully and is surely different for time scales associated with internal waves268

and balanced and sub-mesoscale eddies than it is for the general circulation scales dominating the269

results here.270
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5. Vertical Structure271

With some exceptions (e.g., Blumenthal and Briscoe 1995; Polzin and Lvov 2011) the inter-272

nal wave band can be represented with vertically propagating free waves—that is without vertical273

modal structure. In contrast (Wunsch 1997, Arbic et al. 2014, Hochet et al. 2015, Lacasce 2017),274

the balanced eddy field band appears to be dominated by the barotropic and first baroclinic modes275

with higher modes being much weaker. The often-observed coupling of these two lowest modes276

(Wunsch 1997, Wang et al. 2013, Lacasce 2017, and others) is rationalized as the tendency of277

topographic features to minimize the horizontal velocity at and near the bottom over topography.278

These inferences rely heavily on the in situ current meter measurements that have been accumu-279

lated over the last several decades, and with some indirect inferences made from the altimeter data.280

The longest in situ records do not generally surpass two years in length, and their geographical281

distribution remains sparse and irregular. 2
282

Absence of long duration moored data means that little or nothing is known about the full vertical283

structure of temperature variability over years and decades apart from some regional inferences284

(e.g., Bindoff and McDougall, 1994) based upon the temporally sparse deep CTD data. In an285

initial reconnaissance, the ECCOv4 state estimate/climatology will be used to describe the vertical286

structures extending out to 20 years. How is that best done?287

In the context of the balanced eddy band the moored data, where available, produced a reason-288

ably efficient representation in terms of the linear, flat bottom, modes (which are a complete set).289

Such a representation has the virtue of being consistent with the horizontal Fourier frequency/-290

wavenumber representations of WW14. On the other hand, the inference of very strong topo-291

graphic effects, and the known complexities in the time and space scales (e.g., Wunsch 2015;292

Lacasce 2017) of vertical and horizontal propagation of linearized β−dominated motions make293

2The isolated Bermuda Station S and the Hawaiian HOT series are exceptions albeit subject to temporal aliasing problems.
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any such choice seem arbitrary. Consider the differences between linear baroclinic wave propaga-294

tion in the equatorial regions, at mid-latitudes, and at high-latitudes. Response e.g., in the Rossby295

wave regime, to eastward going forcing disturbances produces vertically trapped (“negative equiv-296

alent depth”) solutions, while westward moving forcing radiates wave-like motions into the deep297

interior. Varying topographic slopes will have very different effects on energy that does reach298

the bottom topography, and the influences of mean flows are very important, particularly at high299

latitudes.300

In the spirit of exploration, we instead here use the singular value decomposition (empirical or-301

thogonal functions, or EOFs, and several other terminologies). Consider the temperature anomaly302

field, written as a matrix for θ
(
r j,zm, t n

)
at horizontal position r j, at vertical positions zm, and303

times (years tn; only yearly averages are being used for this purpose). With r j fixed, the Eckart-304

Young-Mirsky Theorem shows that a perfect representation by the singular value decomposition305

(SVD) is,306

θ
(
r j,zm, t n

)
= UΛVT =

L

∑
j=1

λ j
(
r j
)

u j
(
r j,zm

)
vT

j
(
r j, tq

)
,fixed r j (11)

where the orthonormal columns, u j (zm) , of U carry the vertical structure and are often known as307

the EOFs. Arguments zm and tq have been written on the right side of Eq. (11), for mnemonic308

reasons. Each u j has length equal to the number of local depths being used, and the number of309

columns, L, in U, is less than or equal to the smaller of the number of depths, zm and the number310

of years, here 20. Thus L never exceeds 20. The orthonormal columns, vm, of matrix V each311

carries the time representation of the corresponding um. Their length is the number of years.312

Diagonal matrix Λ has elements λ j known as the singular values. u j,v j are the singular vectors.313

(See Lawson and Hansen 1995 or Wunsch 2006; Λ is not usually square, but a main diagonal is314

still defined in the obvious way.) Dimensions are most conveniently associated with λ j, the vectors315

being dimensionless.316
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This representation is particularly useful when the effective number of singular values/vectors is317

very small compared to the maximum number possible. If Eq. (11) is truncated at a value K ≤ L,318

the fraction of the variance in θ that is captured by the representation is,319

F (K) =
∑

K
j=1 λ 2

j

∑
L
j=1 λ 2

j
≤ 1, K ≤ L (12)

If a useful value of K is much less than L, e.g., 1 or 2, a concise description is available of an320

otherwise potentially very complex field. A corollary of the Eckart-Young-Mirsky Theorem is321

that no other pair of K-orthogonal vectors can increase the captured variance. In what follows, the322

vertical and temporal structure of the annual mean temperatures in the state estimate are explored,323

with a focus on those regions where a very small number (i.e., K = 1 or 2) captures the structure324

of interannual variability.325

A priori, the barotropic mode, if it exists, is not expected to make a measurable contribution326

to temperature variability. The variance of temperature is such a strong function of depth that327

fitting temperature directly produces results dominated by the upper ocean. For numerical accu-328

racy, θ (rh,z) is first weighted by dividing the temperature anomaly by the local time average full329

vertical temperature profile, ∂ 〈θ0〉/∂ z, as determined from the state estimate:330

G
(
r,z j, t

)
=

θ
(
r j,zm, tq

)
∂
〈
θ0
(
r j,zm

)〉
/∂ z

(13)

The SVD is thus being applied to a weighted temperature, rendering the units of the singular331

values as meters. Because ∂ 〈θ0〉/∂ z is itself noisy, the effect of the division in Eq. (13) is to make332

the displacement even noisier. Experiments were conducted by using instead the global median333

value of ∂ 〈θ0〉/∂ z, but although it produced a somewhat smoother result, the variability in the334

mean profile is sufficiently great spatially that use of a fixed form can distort the results. G should335
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not be interpreted as a vertical displacement, as that requires the validity of the local equation,336

∂θ

∂ t
+w

∂θ

∂ z
= 0 (14)

which has no contribution from diffusion or from lateral advection, uh∇hθ . Both processes are337

important at periods of years and longer. G is best interpreted simply as a vertically weighted338

temperature anomaly.3 The vertical structure of temperature itself is recovered by multiplying back339

u j
(
r j,zm

)
∂
〈
θ0
(
r j,zm

)〉
/∂ z, re-weighting to the upper ocean. The only drawback compared340

to applying the SVD to unweighted temperatures is that these re-weighted u j are not mutually341

orthonormal. Fits here are made between 105m depth, and 3900m depth or the bottom, whichever342

is shallower. Unlike the balanced eddy band, the only qualitative generalization is that the result343

is spatially complex. Examples along two longitudes are shown in Fig. 12. Regions where the344

lowest singular vector, u1(z), contain 90% or more of the variance (Fig. 13) appear to be restricted345

largely to the South Atlantic and Indian Oceans. Use of the first two ui results in a much greater346

coverage (Fig. 14), although the corresponding vertical structures in vi are very diverse. Any347

relationship to the linear flat bottom modes, or e.g., the “surface modes” of Lacasce (2017) and348

others, and their relevance at these much longer periods, remains to be explored.349

The conventional flat bottom baroclinic vertical displacement mode number is the number of350

zero-crossings plus one (Fig. 15). Thus the first baroclinic mode represents a unidirectional move-351

ment of the whole water column up or down and the 2nd vertical mode has one zero crossing at352

3A global test (not shown) of the time-average “abyssal recipes” point balance of w∂ < θ0 > /∂ z = k∂ 2 < θ0 > /∂ z2 showed only extremely

limited regions of useful accuracy, even in regions of relatively flat time-mean isopycnals. Terms such as u∂ < θ0 > /∂x are important and that is

likely also true of the time-dependent balances. Liang et al. 2017) discuss the complexity of the calculated w field, and the importance of the bolus

contribution.
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depth.4 A unidirectional mode (no zero crossings) does dominate much of the Pacific and Indian353

Oceans, but with considerable regions having a sign reversal with depth. One might have hoped354

that the ui would reflect local linear dynamical modes, but given the general inaccuracy of Eq.355

(14), any such interpretation should be resisted. Instead, a complicated vertical structure emerges356

even where one singular vector is dominant, particularly in the South Atlantic and northern Indian357

Oceans.358

Although not shown here, the same calculation using the unweighted temperature anomalies has359

a similar vertical complexity, although the magnitudes in the abyssal ocean are much smaller, as360

expected, and with deep reversals with depth.361

6. Temporal Trends362

Each vertical orthonormal singular vector ui is accompanied by a time-varying orthonormal363

vector vi. The temporal variations of the lowest, singular vector, u1 often exhibit a visual trend364

over the duration of the state estimate. The significance of these trends, in the presence of a365

general rednoise in the variability, the known long memory in the ocean, and concerns about366

residual model drifts make it not easy to evaluate. Model drift is however, suppressed by the use367

of data sets spanning the whole time domain.368

Ultimately, a breakdown of the vi by frequency band is sought. But given the brief 20-year369

interval available, only the time-domain structures are described. By fitting a least-squares straight370

line to each v1, about 80% of the results are significant at two-standard deviations (determined371

from the fit itself; Fig. 16) and a near-Gaussian distribution. A number (far from all) of the372

v1 visually depict a quasi-linear trend (e.g., Fig. 12). Of those, despite the largest value at the373

4This description is incomplete in the sense that very close to the sea surface, another reversal of sign occurs, one providing movement of

the free surface to compensate the upper ocean thermally derived pressure field. (See Wunsch 2013). By starting the fits below 100 meters, this

structure is unseen by the SVD analysis.
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maximum positive slope, slightly more than half the significant slopes are negative, but the net374

heating or cooling can be calculated only from the full water column (see references in Fukumori375

et al. 2018). Regions of positive and negative slope are shown in Fig. 16.376

Some of the intricate structure of trends and depth dependence can be seen in Fig. 12. In the At-377

lantic, the temporal change at all but the highest latitude shown (42◦N) is a nearly monotonic trend378

(warming). That warming corresponds to those depths where the corresponding u1 is positive, but379

would be a cooling where u1 is negative.380

In the east central Pacific Ocean, a cooling trend is visible at 21◦N, predominantly at the381

bottom—consistent with existing analyses showing deep North Pacific cooling (Fukumori et al.382

2018; Gebbie and Huybers 2019). At 30◦S v1 is nearly unchanged until about 2008 when a warm-383

ing over almost the whole water column sets in. Near the equator (0.6◦N), a maximum at the time384

of the 1997-1998 El Niño is visible and is a general feature of the near equatorial Pacific Ocean.385

7. Other Condensed Descriptors386

The central difficulty encountered in this description is the apparent need for a localized387

frequency/wavenumber/covariance decomposition at every point with the volume of numbers be-388

coming indigestible. One possible condensation is given by the decorrelation times or distances389

discussed above. Other summary numbers, useful for model comparisons, etc. do exist: for ex-390

ample, the spectral moments. Consider e.g., the frequency moments. Vanmarcke (1983) defines391

the “characteristic frequency of the spectral moments” µk of a power density spectral estimate,392

Φ(ω ′) ,393

µk =

[∫ ω ′max
0 Φ(ω ′)ω ′kdω ′∫ ω ′max

0 Φ(ω ′)dω ′

]1/k

, ω
′
max = 1/(2∆t). (15)

These have dimensions of a frequency. Of particular importance are µ1,µ2 which can be interpreted394

as the mean frequency, and the root-mean square frequency. Another useful summary number is395
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the “spectral bandwidth” (Vanmarcke, 1983) ε = (1−µ2/µ4)
1/2 . Fig. 17 shows the calculated396

value of the period 1/
√

µ2 from numerically summing the frequency spectrum derived from the397

annual mean values. A useful physical interpretation is (Vanmarcke 1983, Eq. 4.4.6) that the ex-398

pected rate of zero-crossings of the temperature anomaly at each point is just
√

µ2 and thus 1/
√

µ2399

is an estimate of the interval between sign changes in the temperature anomaly through time. See400

Wunsch and Heimbach (2013) for oceanographic application to the occurrence of extreme events401

and other properties. The calculated range here is roughly by a factor of two, with a general,402

if not consistent, tendency for low latitudes to have shorter intervals than higher latitudes and a403

complicated behavior near the western boundary currents.404

8. Summary and Discussion405

Results here are a tentative description of low frequency variability, subject to the numerous406

assumptions made throughout, and are a mixed bag. The “why” has to be taken up separately.407

To a great extent, the best qualitative global description is the characteristic complexity itself. On408

the other hand, a simplified form of the Wortham and Wunsch 2014; WW14) temporal frequency409

spectral form does succeed in describing with useful accuracy much of the near-global temperature410

variability in the ECCOv4 state estimate. Dominant zonality of oceanic low-frequency variability411

emerges in the spatial stability/instability of the meridional/zonal wavenumber spectra. Vertical412

structure corresponding to the lumped variability at periods lying between 1 and 20 years proves to413

be complex, vertically, horizontally, (and temporally), and without any obvious globally dominant414

physics. The problem appears to be somewhat like that faced by geologists: in that field, every415

location has a nearly unique, noisy stratigraphy and geochemistry, but regional syntheses exist,416

and a few principles (those of plate tectonics, volcanism, mountain building, sedimentation, etc.)417

can be perceived as acting globally with widely varying importance.418
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With the numerous long time-scales of adjustment/memory in the ocean, and the complicated,419

effectively permanent, topographic features, that a 20-year interval produces a very complex pat-420

tern of variability is not surprising. Oceanic bottom topography does influence the whole wa-421

ter column–which becomes clearer as near-surface higher frequency structures are suppressed by422

averaging—and is a very complicated, spatially non-stationary, anisotropic, two-dimensional per-423

manent disturbance. Over long time scales, the variety of atmospheric variations in space and424

time, in wind, precipitation, evaporation, and temperature, also affect the underlying ocean in425

geographically complicated ways, including oceanic flow redistribution effects.426

In contrast with much variability in nature generally, the structure of the higher frequencies (the427

balanced eddies and the internal wave band) is simpler here than in the lower frequencies. What428

remains imponderable is whether e.g., a 200 year duration would produce a simpler pattern of429

time mean and variability? Some insight into the 100 year and longer changes in the ocean can be430

found in Roemmich et al. (2012) and Gebbie and Huybers (2019).431

The reader is reminded that these results all rest on the accuracy of the least-squares-fitted EC-432

COv4 version of the MITgcm. In particular, apart from temporally and spatially sparse CTD casts,433

direct measurements of the lower 50 percent of water column temperature variability over recent434

years and decades are lacking. Inferences here rest upon the ability of the dynamical equations to435

combine the diverse altimetric, Argo, meteorological, and other data to infer the full water column436

physics. Extended-duration full-water-column measurements would be useful as tests of system437

skill.438

Another important question is whether better methods exist to depict the spatially and tempo-439

rally changing character of oceanic variability? The appeal and power of Fourier representations440

is clear, but the non-stationary character of the fields renders awkward conventional results—441

particularly those applying to the wavenumber domain. Alternatives do exist. Wunsch and Stam-442
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mer 1995) produced a global description of altimetric variability using spherical harmonics. Adap-443

tive methods, perhaps based upon empirical mode decompositions (Huang et al. 1998) or Slepian444

functions (Simons et al. 2006) or cluster analysis or some combination need also to be explored.445

(All of the fields discussed here are available in Matlab form on request to the author and all446

ECCO fields are publicly accessible through the Jet Propulsion Laboratory.)447
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APPENDIX452

This Appendix includes some additional charts showing the results of the analytic fits to the453

estimated frequency and wavenumber fields. For the frequency spectra, Figs. A1, A2 show the454

amplitude and exponential scale factor of the non-dispersive line (NDL). Amplitudes are generally455

considerably weaker then in the continuum term. Also shown (Figs. A3, A4) are the exponents α456

for the meridional and zonal wavenumber spectra and which prove relatively featureless.457
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Fig. 12. Pairs of u1(a),v1 (b) along the meridian 10◦W in the Atlantic Ocean at every 25th meridional591

grid point. Linear trends are visually present, with the strong exception at 42◦N, where the592

initial years imply cooling (increase of negative values of u1) and warming after about 2004.593

(c,d) Same as (a,b) except along longitude 150◦W in the Pacific Ocean. Linear trends are594
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Fig. 13. Fraction of the variance lying in the first singular vector (EOF) of vertically weighted tem-596
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those areas. . . . . . . . . . . . . . . . . . . . . . . . 42600
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in depth/time. In conventional mode terms, the baroclinic mode number is nz +1. Regions604

roughly similar to a simple first baroclinic mode (nz = 0, possibly representing a unidirec-605

tional vertical displacement) are unusual. More common are regions resembling a mode 2606

dominance with a zero-crossing in the vertical. . . . . . . . . . . . . . . 44607

Fig. 16. Values of 100× the linear slope in v1 where it exceeds 2 standard deviations of the fit error.608

The slope pertains to the value of the maximum of u1, defined as always positive. Thus609
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FIG. 1. Standard deviation (oC) from monthly anomalies of the temperature at 477m. Upper left inset is the

distribution of standard deviations, and upper right shows the distribution of underlying temperature anomalies

over all points and times and its unimodal character. The mean value is 0.12 and the median 0.10 o C.
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FIG. 2. Median spectral density estimate, o C2/cpy, from all those computed of the monthly mean temper-

atures at 477m in the state estimate (solid line). Frequency, ω ′ is cycles/year. Dashed line is the fit of the

analytic spectrum to the median. Note the prominent annual, semi-annual and higher harmonic peaks which

are included in the overall fits. Direct fits to the median spectrum produce A1 = 0.0580C2/cpy,T = 8.1y,

A2 = 0.003oC2/cpy,Pa = 1.6y2. The decorrelation times and distances discussed in the text would enter into a

formal calculation of the confidence limits on this result. The 95% confidence limit is approximated by about

the small excursion limits in the high frequency range.
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FIG. 3. log10(A1), where A1, o C 2/cpy, is the fitted coefficient. A tendency for small values in the tropics and

high values at higher latitudes is evident, albeit with a considerable zonal structure. Compare to Fig. 1 showing

that A1 is not simply an amplitude, but that the total power is controlled also by T.
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FIG. 4. log10(T ) years where T is from the nonlinear least-squares fit. A strong spatial correlation with A1 is

evident consistent with the behavior of the inverse Hessian (not shown) Note the multi-modal behavior.
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FIG. 5. Time in years τd for the magnitude of the temporal autocorrelation to fall to 0.1. In white areas, the

correlation never becomes as small as 0.1. Based on the both the continuum ω ′2 and NDL terms in the analytic

form in Eq. (7a).
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FIG. 6. log10(C), o C2/cpy, in the meridional wavenumber spectral density (Eq. 9). Both visually and in the

histogram, a considerable fraction of the ocean has a nearly uniform value, albeit the western boundary areas are

distinctly stronger. Values are assigned to the mid-points of vertical strips of 30 degrees of latitude and white

areas are within 15 degrees of the coast. Isolated white stripes result from island presence in the strip.

643

644

645

646

35



FIG. 7. The nearly uniform open ocean value of log10 (Lx) in the meridional wavenumber spectrum. Here

eastern boundaries tend to stand out. Median value is about 380km. Mean is about 460km.
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FIG. 8. (left panel). Median meridional wavenumber spectrum (‘o’, not the fit) and wavenumber spectra from

a random selection of positions. (right panel) Autocorrelation corresponds to the median meridional wavenum-

ber spectrum and is typical of most of the ocean. The spectrum remains reddish at long wavelengths..
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FIG. 9. log10(B),
o C 2/cpy, in the zonal wavenumber spectral density. Note that the 30◦ choice of zonal

extent precludes values extending westward more than 30◦ from the coastline. Values are assigned to the mid-

point position in longitude. In a quasi-geostrophic system, zonal wavenumbers reflect the meridional flow field.

The result is bimodal.
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FIG. 10. log10,Ly in kms, in the zonal wavenumber spectral estimates. Strong bimodality again appears.

39



FIG. 11. Median zonal wave number spectral density and the corresponding fit (dashed line).
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FIG. 12. Pairs of u1(a),v1 (b) along the meridian 10◦W in the Atlantic Ocean at every 25th meridional grid

point. Linear trends are visually present, with the strong exception at 42◦N, where the initial years imply cooling

(increase of negative values of u1) and warming after about 2004. (c,d) Same as (a,b) except along longitude

150◦W in the Pacific Ocean. Linear trends are not obvious and note the strong bottom intensification at 21◦N of

a slight cooling.
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FIG. 13. Fraction of the variance lying in the first singular vector (EOF) of vertically weighted temperature

through depth and time (years). Regions where the value exceeds 0.9 are largely limited to the South Atlantic

and the western Indian Ocean. In general the Atlantic is simpler in this special sense than is the Pacific, but the

structures of u1 are very variable within those areas.
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FIG. 14. Fraction of the variance included in the first two ui singular vectors. Most of the ocean exceeds 90%.
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FIG. 15. Number of zero crossings, nz, in the vertical in the first singular vector u1) for temperature in

depth/time. In conventional mode terms, the baroclinic mode number is nz + 1. Regions roughly similar to a

simple first baroclinic mode (nz = 0, possibly representing a unidirectional vertical displacement) are unusual.

More common are regions resembling a mode 2 dominance with a zero-crossing in the vertical.
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FIG. 16. Values of 100× the linear slope in v1 where it exceeds 2 standard deviations of the fit error. The

slope pertains to the value of the maximum of u1, defined as always positive. Thus a negative value here means

that the depth of maximum change is cooling in the 20 year average. Whether the rest of the water column is

cooling or warming depends upon the number of zeros in u1. Some locations show no trend of either sign (white

areas).
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FIG. 17. Time scale (years) associated with the second moment of the frequency periodogram at each grid

point at 477m annual average values.
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Fig. A1. log( A2), o C/cpy, the coefficient of the nondispersive line frequency contribution. A2 is generally

an order of magnitude smaller than A1.
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Fig. A2. log(Pa), years2, from the fit of the exponential frequency term in the analytic spectrum. A low

latitude and western dominance is the most conspicuous feature along with a high latitude intricacy. Fit is

unstable in the equatorial Pacific and the contouring is incomplete there.
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Fig. A3. Value α as the best fit in the meridional wavenumber spectrum, and dominated by a value near

α = 3/2.
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Fig. A4. Estimated value of α from the fit to the zonal wavenumber spectrum. These values are more nearly

constant near the median of α = 1.6≈ 3/2.
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