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ABSTRACT

A benchmark of linear predictability of sea surface height (SSH) globally is presented, complementing

more complicated studies of SSH predictability. Twenty years of the Estimating the Circulation and Cli-

mate of the Ocean (ECCOv4) state estimate (1992–2011) are used, fitting autoregressive moving average

[ARMA(n, m)] models where the order of the coefficients is chosen by the Akaike information criteria (AIC).

Up to 50% of the ocean SSH variability is dominated by the seasonal signal. The variance accounted for by the

nonseasonal SSH is particularly distinct in the Southern and Pacific Oceans, containing.95% of the total SSH

variance, and the expected prediction error growth takes a few months to reach a threshold of 1 cm. Isolated

regions take 12months ormore to cross an accuracy threshold of 1 cm. Including the trend significantly increases

the time taken to reach the threshold, particularly in the South Pacific. Annual averaging has expected pre-

diction error growth of a few years to reach a threshold of 1 cm. Including the trend mainly increases the time

taken to reach the threshold, but the time series is short and noisy.

1. Motivation

The variability and change of future sea surface height

(SSH, denoted h) is the center of much of the concern

about the ongoing global warming. Understanding and

predicting these key values, globally and regionally, in-

volves projection and space–time integration of the

numerous factors that influence SSH. These factors in-

clude the wind field, atmospheric pressure, tides, ice

melt, river runoff, heat and freshwater exchange, and

the shifting ocean circulation itself (Parker 1992; Church

et al. 2013). The diverse physics spans a large range of

time scales for oceanic response (e.g., Wunsch 2015).

Compared to the atmosphere, most relevant oceanic

time scales are very long, ranging frommonths to thousands

of years. The presence of that long time scale (long

memory) and the observed small perturbations in the

oceanic state suggest that many of the major compo-

nents determining future values of h can be predicted

from a knowledge of the present and past states of the

ocean. The expected prediction error (PE) growth of h is

not well established. Attempting to estimate the PE via

ensembles of climate model simulations reveals large

ensemble spread [e.g., the Intergovernmental Panel on

Climate Change (IPCC)] (Church et al. 2013; Stainforth

et al. 2005; Palmer 2012).

The goal here is to assess quantitatively the extent to

which h variability is predictable using linear methods,

describing both the deterministic (seasonal) changes as

well as the underlying continuum treated as awide-sense

stationary linear process.1 As discussed, for example, by
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Wunsch (2013), such an approach provides a baseline

against which predictions made with considerably more

complex methods (nonlinear, nonstationary, extended

to spatial structure) can be compared. The general case

involves much more complex computations and raises

the purely practical issue of whether the linear, univar-

iate, stationary approach is adequate for SSH, and for

how long.

An extensive body of literature explores the vari-

ability of h with varying degrees of complication, rang-

ing from elementary statistics to the application of

hierarchies of general circulation models (GCMs).

These methods have varying degrees of regional success

(Gille 1994; Chowdhury et al. 2007; Melillo et al. 2014)

or global application (Rahmstorf et al. 2012; Church

et al. 2013). The purely statistical approach is less con-

cerned with capturing the underlying physics, while the

GCM approach treats the h field as the deterministic

integrated sum of ocean and atmospheric physics. This

present study uses the simplest statistical approach to

present a benchmark for more complex studies.

Treating oceanic change as linear may be counterin-

tuitive. However, the modern observational record

shows no major shifts in the large-scale baroclinic

structure of the ocean (e.g., Roemmich et al. 2012).

Apart from small regions of sea ice or convection, well-

understood theory also supports the inference of only

perturbation changes over periods from decades to

centuries (Hirschi et al. 2013).

Interpretation of statistics from short records is diffi-

cult (see, e.g., Wunsch 1999; Percival et al. 2001; Ocaña
et al. 2016). The methods that underlie much of what is

presented here rely on the assumptions that h changes

from the superposition of deterministic seasonal com-

ponents and from a wide-sense stationary stochastic

process. Of most relevance to the latter are general red

noise processes and the extreme of white noise, which is,

by definition, linearly unpredictable. Detection of true

nonstationarity is not possible with the short records at

hand. Similarly, an infinite number of generalizations to

nonlinear representations are possible, but unless the

linear assumption can be excluded, it remains an im-

portant reference point.

Local and global predictability are in many ways dis-

tinct; for example, regional variability in h has been at-

tributed to shifts in wind features, tropical modes, and

features such as the North Atlantic Oscillation (Yin and

Goddard 2013; Roberts et al. 2016). Here, the approach

is that of a univariate ‘‘black box,’’ with the underlying

mechanisms (e.g., determining the changing global

mean of h) having been discussed in many published

papers (Parker 1992; Piecuch and Ponte 2011; Forget

and Ponte 2015; Ocaña et al. 2016). The oceans store

large portions of the added heat from global warming,

and land ice is retreating, along with other external

forcings, but discussion of these specific physical con-

tributions as functions of time and position is postponed.

The methods are detailed in section 2, and the results

are presented in section 3, where the seasonal and

nonseasonal contributions to the variance of h are pre-

sented.As defined in this paper, the seasonal component

is perfectly predictable, and the nonseasonal portion

involves stochastic forecasting. A set of four reestimates

is presented: 1) using monthly or annual means of h, 2)

with apparent linear trends included as part of the

background red noise, and 3) and 4) with the trends

removed in both cases. Section 4 presents the discussion

and conclusion.

2. Numerical and ARMA models

Predictability of h is studied using the ECCOv4 global

bidecadal state estimate, as described by Wunsch and

Heimbach (2013), Forget et al. (2015), and others (see

also ECCO Consortium 2017a,b). The state estimate is

global, with latitudinal 18 resolution with tropical mesh

refinement. A least squares with Lagrange multipliers

approach is used to obtain the state estimate. The result

is an adjusted, yet free-running, version of the MIT

general circulation model (MITgcm; Adcroft et al.

2004). In contrast to most ‘‘reanalysis’’ products, the

ECCO oceanic state satisfies basic conservation laws for

enthalpy, salt, volume, andmomentum, while remaining

largely within error estimates of a diverse set of global

data (Wunsch and Heimbach 2007, 2013; Stammer et al.

2016). Regions without data are filled in a dynamically

consistent way, avoiding the use of untested statistical

hypotheses (e.g., Reynolds et al. 2013).

At each point of latitude and longitude (u, l) of the

state estimate, the temporal mean (1992–2011) is re-

moved, and h(u, l) is defined as h5h0(u, l)1h(u, l),

where h(u, l) denotes the seasonal and h0(u, l) the

nonseasonal h(u, l). Throughout this study, each u, l

coordinate is used, and, for simplicity, the spatial indices

are dropped hereafter. At this stage, any temporal trend

is being included as part of h0.
The seasonal component here includes its first two

harmonics, as illustrated in Fig. 1. Variances of the

seasonal and nonseasonal components are additive:

s2
h 5 s2

h0 1s2
h . (1)

To the extent that s2
h � s2

h0 , useful prediction is

purely deterministic. When the seasonal variability is not

dominant, the predictability of the nonseasonal process
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has to be examined. Deterministic prediction of sinu-

soidal components is straightforward.

Linear predictability of wide-sense stationary sto-

chastic processes, not distinguishable from Gaussian, is

well understood, with a very large literature including

standard textbooks (e.g., Box and Jenkins 1970). Here,

the formalism is discussed only insofar as it develops the

notation to be applied. Most linear methods are based

on the autoregressive (AR) process of order n [AR(n)],

the moving average (MA) process of orderm [MA(m)],

or the mixed autoregressive moving average (ARMA)

of order n, m [ARMA(n, m)].

As the textbooks show (Box and Jenkins 1970), these

representations are interchangeable, with a choice being

mainly one of convenience, efficiency of representation,

or a combination of those two. If z(t) is a zero-mean

wide-sense stationary time series, two of the represen-

tations are

AR(n): z(t)5 a
1

z}|{coeff .

z(t2 1)1 a
2
z(t2 2)

1⋯1 a
n
z(t2n)1 e(t)

z}|{white noise

and (2)

MA(m): z(t)5 e(t)1 b
1|{z}

coeff.

e(t2 1)1 b
2
e(t2 2)

1⋯1 b
m
e(t2m) . (3)

A combination gives the general ARMA(n, m) model:

z(t)5 a
1
z(t2 1)1 a

2
z(t2 2)1⋯1 a

n
z(t2 n)1 e(t)

1 b
1
e(t2 1)1 b

2
e(t2 2)1⋯1 b

m
e(t2m) ,

(4)

where ai and bi are regression coefficients; e(t) is near-

Gaussian white noise with zero mean and variance s2
e ;

and t is any time, past, present, or future, measured in

units producing an implied time step Dt5 1. Conversion

of one form to another or to the mixed representation is

discussed in textbooks (e.g., Box and Jenkins 1970). In the

MA form, the white noise increments e(t) are determined

for past values leading up to the present time t. Parameter

e(t) is known (estimated), but no future values e(t1Dt),
Dt. 0 are known. In the AR form, past values z(t) are

assumed to have been estimated, as is e(t), but again, no

future values are available. In the presence of noise,

these representations can become unstable, being in-

distinguishable from apparent nonstationarity. Tests

for stability/nonstationarity are based upon the zeros

and poles of complex polynomials formed from the

various coefficients ai, bj (Box and Jenkins 1970).

The MA form gives the simplest representation of the

growth of prediction error, from Eq. (5), although the

final growth rate is the same for all consistent ARMA

forms. (All results here are based on the conversion to

the MA after determination of the more general

ARMA.) Converting the ARMA to the MA form using

the Wold representation, the t-ahead PE is

h[ẑ(t1 t)
zfflfflfflffl}|fflfflfflffl{prediction

2 z(t1 t)]2i5 s2
«

z}|{noise variance

�
t

p50

b2
p|{z}

coeff.

, b
0
5 1.

(5)

This quadratic error growth depends upon the values of

bp, whose sum can never exceed the time series vari-

ance hz2i, for which the best prediction would be the

time mean.

The performance of the ARMA(n, m) is assessed in

terms of the PE growth over time. This criterion is ex-

pressed as the time it takes the error to grow beyond a

given threshold, and good model performance refers

to a relatively small PE at a specific time.

In practice, regression coefficients ai, bj are most of-

ten found using one of several versions of least squares

FIG. 1. Example of the process of removing the seasonal signal at 678S, 1498W.Themean (1992–2011) is removed,

and the green line illustrates the fitted seasonal model h. The blue line is the nonseasoned data h0, while the red line

shows the original estimate from ECCOv4 h.
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in which autocovariances are estimated along the way.

The main difficulty is determining the orders n, m for

the particular representation. Orders are increased in-

crementally until a stopping criterion is met (see, e.g.,

Akaike 1973; Hughes and Williams 2010; Aho et al.

2014). Adding regression parameters improves the fit to

the data but risks overfitting. The Akaike information

criteria (AIC) is used here—minimizing the expectation

of the PE where k is the number of parameters:

AIC5 2k2 2 lnðL Þ ,

where L is the likelihood:

L 5P
N

i51

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

"
2�

N

i51

(z
i
2 ẑ

i
)2

2s2

#
.

Parameter zi is the observed, and ẑi is the prediction, so

(zi 2 ẑi)
2 are the prediction residuals. In the estimate,

the AIC value is minimized, which determines the

smallest appropriate order to represent the time series.

As discussed by Priestley (1981) and Yang (2005), the

AIC can overestimate the order; see the appendix for

more detail.

In the following discussion of the SSH time series, two

cases are considered: one where only a time mean has

been removed (h), and one where a best-fitting linear

trend has been subtracted as well (hy). Separate analyses

ofhy, using bothmonthly and annualmean time series, are

considered. Further removing a seasonal cycle h leads to

time series h0 and h0y, respectively. A significant linear or

quadratic trend can, itself, be used to make a prediction.

By including trend structures in the stochastic process, the

predictability of the time series will be enhanced.

3. Results

a. Seasonal variance

Figure 2a shows the total variance s2
h of h from

monthly means of 1992–2011. Western boundary cur-

rents and their extensions are associated with higher

variance, particularly in the Northern Hemisphere. The

tropics have a large SSH variance, particularly in the

Pacific Ocean. The Indian Ocean is dominated by

monsoonal effects, particularly in theArabian Sea warm

pool, and complicated interactions of jet dynamics and

the Indonesian throughflow seen particularly around

158S (Schott et al. 2001). Elevated standard deviations

occur in the eastern Indian Ocean that are not seen in

the Atlantic or Pacific Oceans. The Southern Ocean

shows some excess variance, particularly in the Indian

FIG. 2. From ECCOv4 of monthly averages from 1992 to 2011. (a) The variance of h (m2)—note the high variance

associated with equatorial, western boundary currents, and monsoonal regions. (b) The percentage of variance con-

tained in h (s2
h/s

2
h). (c) The percentage of variance contained in h0 (s2

h0 /s2
h). Contours correspond to 5% (black) and

95% (gray) of values. (d) The amplitude of the variance (cm2) the h contributes toward the total variance of h.
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and Pacific sectors. Bathymetric features, such as the

Pacific–Antarctic Ridge, are associated with higher

variance (Ponte and Piecuch 2014).

Figure 2b illustrates the percentage of the total vari-

ance included in the h component. A striking, but well-

known, seasonal hemispheric difference appears across

the equator (Pattullo et al. 1955), where much of the

h variance in the Northern Hemisphere is dominated by

the seasonal component. Exceptions include a large

zonal band in the Pacific and areas at a similar latitude in

the North Atlantic. The Irminger and Labrador Seas

also have large areas where the seasonal signal is less

dominant, as is also true of the Bering Sea. The South

Pacific Ocean has large areas where the seasonal signal

is weak, but a signal extends westward off the coast of

Peru, likely associated with the upwelling there. A

similar feature is seen in the East Australian Current.

In the Indian Ocean, fluctuations in the Arabian Sea

are almost entirely captured by the seasonal monsoonal

component. South of the equator, the eastern half of

the Indian Ocean in the Southern Hemisphere is

largely dominated by h, but less clearly so in the west.

In the Southern Ocean, a clear, seasonal dominance

appears in the Weddell Gyre region, as well as in the

area of the standing meander off the Agulhas coast of

South Africa.

b. Seasonal prediction

The seasonal component h is predictable, as defined

over the bidecadal time interval covered by ECCOv4,

and Fig. 2d illustrates the associated contribution to the

prediction of the standard deviation of the seasonal

component in cm over 1992–2011. As expected, where

the seasonal variance is a large fraction of the total,

good predictability is found (e.g., associated with the

seasonal component in the Mascarene Basin area, as

well as in the Southern Ocean in the Indian and Pacific

Ocean sectors).

c. Nonseasonal variance

Figure 2c shows the percentage of the total variance

accounted for by the nonseasonal background process.

Here, a visually striking signal appears across the Pacific

Ocean along the equator, probably associated with the

El Niño–Southern Oscillation (ENSO) climate mode.

Further zonal bands appear to the north of the equator.

A strong signal occurs in the Bering Strait region. In the

Atlantic Ocean, the subtropical regions show active

areas, as well as along the paths of the Labrador and

southern tip of the East Greenland Currents. In the

South Atlantic, the nonseasonal component of variance

accounts for a large portion of the variance in the Brazil

Current and the Zapiola region of the Argentine Basin,

as well as in zonal bands. In the Indian Ocean, the

nonseasonal component of variance also accounts for a

large portion of the total variance to the west, in the

Mascarene Basin region, as well as along the western

Indonesian coast associated with the propagation of the

throughflow. The Southern Ocean produces a very large

signal associated with regions of deep mixed layers

and possible mode water formation, as well as in areas

where the Antarctic Circumpolar Current (ACC) is

directed southward. Predictability associated with this

nonseasonal variance is addressed in the remainder of

this paper.

d. Predictability after trend removal

A linear trend is now removed from the SSH values,

meaning that a possibly perfectly predictable compo-

nent is eliminated. The h0y is fit to an ARMA(n, m)

process of the ECCOv4 state estimate from 1992 to

2011. A four-point smoother is applied to h0y to reduce

noise (two points in latitude and two in longitude),

equivalent to moving from the tracer (t point) to the

vorticity point (f point) in theArakawa C grid. Using the

smoother tends to make the data adhere more closely

to a normal distribution, but it can exaggerate the spatial

covariance of isolated outliers. The performance of the

different choices is given by the rate of the PE growth

over time. Figure 3a shows the order n of the ARMA

(n, m) chosen with the AIC. The order chosen shows

how many coefficients are used to optimally represent

h0y and the associated prediction error.

The simplest linear theory assumes that the un-

derlying values are Gaussian, or close to it, an assump-

tion tested in the ECCO estimated SSH in Fig. 4a using

the Shapiro–Wilk test for normality (Shapiro and Wilk

1965). Large areas associated with features such as the

ENSO signal appear to deviate from normality (i.e., p

values close to 0). This result has implications for the

predictability because these departures are important

when interpreting the PE.

Figure 5 shows the error growth asymptoting to its

upper bound: the full variance of the background re-

sidual time series. Large differences as a function of

region appear in the PE, as well as in their asymptotic

rate of growth. The expected error e-folding structure is

shown to illustrate the rate of predictability decay, in-

dependent of magnitude.

The ARMA(n, m) expected PE growth associated

with the h0y is illustrated in Fig. 6a. The PE growth is

expressed in terms of the time taken (months) before a

target (1 cm) is exceeded. Large areas of the ocean show

limited performance based on the PE growth over time,

but certain (mostly isolated) areas have good perfor-

mance, exceeding a year. In interpreting these figures, it
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is prudent to keep in mind the assumption of normality

(Fig. 4a).

High predictability is seen in the North Pacific Ocean.

Although the physics here are beyond the intended

scope of this paper, these areas are associated with the

Kuroshio crossing the Pacific and wave–eddy interac-

tions stretching from Hawaii to the coast of California

in a banana shape. Areas in the equatorial Pacific also

show better performance of PE growth over time but are

clearly nonnormal. Features associated with the Pacific–

Antarctic Ridge in the Southern Ocean also produce

better performance in terms of the ARMA(n, m) ex-

pected PE growth over time, along with some areas in

the Irminger Sea.

e. Predictability with apparent trends

Tests of predictability are now made with the linear

trend left in the time series. Including the trend treats it

as an unresolved component of a red noise process. The

inclusion of the trend is expected to increase the per-

formance of the ARMA(n, m) PE growth over time.

One cannot distinguish this variability from a red noise

FIG. 4. The Shapiro–Wilk test for normality for (a) h0y and (b) h0. Darker blue indicates increasing confidence in

accepting the null hypothesis that the data are from a normally distributed population. White areas indicate areas

where the AR coefficient roots were outside the unit circle or where the MA coefficients were are noninvertible.

FIG. 3. The chosen order of ARMA(n, m) using theAIC for the h0y over 1992–2011: (a) the n and (b) them of the

ARMA(n, m) and the chosen order for nonseasoned h0 data with the linear trend not removed: (c) the n and (d) the

m of the ARMA(n, m).

2604 JOURNAL OF CL IMATE VOLUME 31



process with existing data (Church et al. 2013; Lyu et al.

2014; Ocaña et al. 2016). To assess the impact of in-

cluding the trend, analysis of the background process is

repeated. Figures 3c and 3d illustrate the ARMA(n, m)

order chosen by theAIC. This result is similar to Figs. 3a

and 3b, but sometimes smaller values of n, m result, as is

physically plausible with a trend.

The normality of the stochastic background process

with the trend is retested in Fig. 4b, illustrating that most

of the ocean remains indistinguishable from having a

normal distribution in h0. Figure 6b shows the prediction

performance based on the ARMA(n, m), phrasing the

result in terms of the number of months it takes for

the PE to cross the accuracy target of 1 cm. Retaining

the trend adds predictability, with large areas taking

over 12 months before exceeding the 1-cm threshold.

Areas where the trend is important are in bands in the

subtropics in both the Atlantic and Pacific, as well as

large areas off the coast of Greenland, the Drake

Passage, the Kuroshio path across the Pacific, the south-

ern Indian Ocean, and a remarkably large region in the

South Pacific poleward of 308S. Generally, Fig. 6b is seen

to amplify Fig. 6a, but with notable exceptions. These ex-

ceptions could be associated with the spreading of a ther-

mosteric signal, particularly the subtropical South Pacific

associated with Pacific decadal oscillation dynamics. The

subtropical Atlantic stands out as another region where

the trend is key, along with the South Pacific. The mech-

anisms, particularly in terms of linear dynamics, are not

clear. For example, regions associated with bathymetric

features like the Pacific–Antarctic Ridge do not stand out

as intuitive regions of heat storage.

f. Predictability with annual averages

Interannual andmonthly physics are distinct.Assessing

the annually averaged h0y and h0 from ECCOv4 sepa-

rately, the assumptions of estimating the covariance and a

Gaussian distribution are likely inaccurate, owing to the

short, 20-value record.

Figure 7 shows the chosen ARMA(n, m) order. A

four-point smoother is again used for reduced noise in

the ECCOv4 h0y for 1992–2011, where the trend is re-

moved and the data are annually averaged. The n andm

of the ARMA(n, m) now reflect the annually averaged

data rather than the monthly. The n of the ARMA

(n, m) is generally lower for the annually averaged h0y

than for monthly h0y. However, large regions show very

different patterns than in the monthly data. Examples

include the Arabian Sea region and the North Pacific.

However, the areas where one order dominates are

generally larger than for monthly h0y. Regions that have

higher orders for yearly averaged data than for monthly

averages are areas such as the Pacific sector of the

Southern Ocean.

Figure 8a assesses the extent to which the 20-yr time

series can be viewed as coming fromanormally distributed

FIG. 5. The prediction error as defined in Eq. (5) for h0y in three

locations: the Southern Ocean (blue line; 508S, 1608E), the North

Pacific (green line; 448N, 1508E), and the equatorial Pacific (red

line; 28S, 1008E). The rate of error growth varies regionally,

showing the e-folding time scale (black bars).

FIG. 6. The ARMA(n, m) expected prediction performance of (a) h0y and (b) h0 phrased in terms of the time it

takes the expected prediction performance to be less than 1 cm (months). Areas saturating the color scale indicate

predictability longer than 17 months.
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population when using annual averages. Most of the

ocean passes this test for annually averaged h0y, but with
large areas that appear noisy/nonstationary, presumably

owing primarily to the presence of noise.

The associated prediction performance based on the

ARMA(n, m) expected PE growth over time is shown in

Fig. 9a. In most areas, the time to reach the criterion of

1-cm expected error is 1 year, but areas exceeding 3

years are seen. These regions are clustered in the Pacific,

with a patch in the western equatorial Pacific, a band

stretching from the central North Pacific to the coast of

the United States (from Hawaii to California), and

small, isolated patches elsewhere. A larger patch of

good PE performance over time exists in the Pacific

sector of the Southern Ocean.

As expected, the role of the linear trend is also im-

portant in the annually averaged h0. Figures 7a–c illus-

trate the associated orders of the ARMA(n, m). As with

FIG. 7. Chosen order of ARMA(n, m) using the AIC of nonseasoned h0y annually averaged with the linear trend

removed: (a) the n and (b) them of the ARMA(n, m) and parameter h0 annually averaged with the linear trend not
removed: (c) the n and (d) the m of the ARMA(n, m).

FIG. 8. The Shapiro–Wilk test for normality for the annually averaged (a) h0y and (b) h0 data where the linear

trend is not removed. Darker blue indicates increasing confidence in accepting the null hypothesis that the data are

from a normally distributed population.White areas indicate areas where theAR coefficient roots were outside the

unit circle or where the MA coefficients were noninvertible consistent with apparent nonstationarity, likely due

to noise.

2606 JOURNAL OF CL IMATE VOLUME 31



the monthly data, the orders are generally lower. Higher

orders exist in a band stretching from the central Pacific

northward to the United States (from Hawaii to Cal-

ifornia), as well as a feature associated with the Pacific–

Antarctic Ridge.

Figure 8b, using annually averaged h0, suggests that

most of the ocean passes the test of normality, but again

with large areas of failure. The associated prediction

performance based on the ARMA(n, m) expected PE

growth over time is shown in Fig. 9b. This result is

similar to that in Fig. 9a, but most of the longer-term PE

performance over time is found in the South Pacific. A

band stretching from the central Pacific northward to the

United States still exists, but large areas do not pass the

test of a stable or wide-sense stationaryARMA. Patches

of longer-term PE performance over time are also seen

in the Indian Ocean and Drake Passage, with isolated

regions elsewhere.

4. Discussion and conclusions

In this paper, linear univariate predictability of SSH

h is discussed, and benchmarks for more elaborate

prediction methods are presented. In general, more

complex models and prediction methods (e.g., GCM

projections) would need to exceed this PE performance

over time to be proven worthwhile. Prediction perfor-

mance is presented here in terms of the time it takes the

expected PE to grow beyond 1 cm. More complex

models should necessarily do better, and their use may

well be justified, particularly in specific, physically

identifiable regions. This approach is supported by

work such as Goddard et al. (2015), where certain

events in h0 have been attributed to factors such as

changes in the Atlantic meridional overturning circu-

lation and the North Atlantic Oscillation. Existing

spreads in ensemble studies, such as the CMIP5models,

would suggest that many difficulties remain (Church

et al. 2013).

In the ECCOv4 state estimate, the seasonal cycle h,

seen in Fig. 2b, accounts for more than 80% of the

variability over 201 years in large parts of the Atlantic

and Northern Pacific, as well as in the Weddell Gyre

area in the Southern Ocean. In these regions, the sea-

sonal component is likely sufficient for estimating the

variation in h for at least a few decades.

The percentage of 20-yr variance in the stochastic,

nonseasonal component h0, seen in Fig. 2c, is important

over large areas of the ocean, particularly in the

Southern Hemisphere. Parameter h0 is treated as a

weakly stationary univariate random process, with the

assumption of being normally distributed. Areas where

h0 is particularly important for predictions, as seen in

Fig. 6b, lie in the Southern Ocean and in extensive re-

gions of the Pacific, as well as in the Indian Ocean.

When a linear trend is removed, as in Fig. 6a, regions

where the ARMA prediction still performs well are

mainly clustered in the Pacific, particularly in a band

extending northeast from Hawaii, as well as in small,

isolated areas elsewhere. A patch of higher predict-

ability exists in the Pacific sector of the Southern Ocean.

However, the ARMA prediction, as expected, tends to

perform less well when the trend is removed.

An important next step is to distinguish the physical

mechanisms, whether atmospheric or oceanic, in re-

gions where the ARMA prediction procedure does

well and those where it works poorly. Stationary linear

prediction methods can be of limited utility for a va-

riety of reasons. These include dominance by unpre-

dictable white noise (e.g., from atmospheric forcing),

non-Gaussian forcing functions, strong nonlinear-

ities in ocean physics, and nonstationary behavior

from external forcing and lack of equilibrium in the

ocean.

FIG. 9. The prediction performance based on the ARMA(n, m) expected prediction error for annually averaged

(a) h0y and (b) h0. Performance is phrased in terms of the time it takes the prediction performance to be less than

1 cm (years). Areas saturating the color scale indicate nonstationary ARMA coefficients.
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Investigating the contribution of specific mechanisms

to the predictability structures of h is outside the scope

of this study, but results presented suggest such analysis

is merited. For example, work with linear models of h

includes that of Hughes and Williams (2010). Using al-

timetry alone, and without a prediction focus, they fit

AR(n) models, choosing the orders using the Bayesian

information criterion (BIC). With their higher temporal

resolution, the AR(n) fits are not easily compared to

those from the use of the ARMA(n, m) on monthly and

annual average values. They concluded that Rossby

wave patterns are important within6308 of the equator,
while advective processes become more influential at

higher latitudes, allowing features such as the Pacific–

Antarctic Ridge to influence h0 predictability. The

ARMA fits to the ECCOv4 data also have distinct fea-

tures associated with the Pacific–Antarctic Ridge and

different behavior within 308 of the equator, suggesting

the physics that give rise to these features are coherent

across these time scales and lend themselves to linear

modeling approaches.

Predictability from annually averaged data, as in

Figs. 9a and 9b, proves generally different. With the

trend included, a region in the western South Pacific

Ocean has striking performance. Paradoxically, an in-

crease in prediction performance is seen in a band ex-

tending northeast of Hawaii when the trend is removed.

This is likely a stochastic artifact. Given the long time

scales controlling oceanic physics, the records remain far

too short to infer statistically stable results. In this con-

text, the continuing difficulties, generally experienced in

distinguishing the lowest frequencies present between a

general red noise process and a true secular trend

of multidecadal applicability, remain a major issue.

Whether unconstrainedmodels, such as the CMIP5 ones

used by Lyu et al. (2014), have true prediction skill re-

mains unknown. Note, too, that the univariate approach

used here is readily extended to accommodate multi-

variate predictive models employing correlated spatial

structures of many different types, which may work

much more effectively in some areas.

In brief summary, the present study produces a

benchmark of univariate linear skill in predicting h.

Figure 2b illustrates that up to 50% of the ocean

h variability is accounted for .80% using only the sea-

sonal signal over the 20 years of the ECCO state esti-

mate. The remaining ocean h variability has a significant

stochastic component, with expected prediction error

growth largely taking over 2 months to exceed 1 cm.

Figure 6b shows that treating the linear trend as part of

the continuum enhances the predictive performance, as

expected. In areas in the Southern and Pacific Oceans,

the stochastic continuum h0 contains more than 95% of

the total variance of h, with expected prediction per-

formance of 1 cm exceeding a year in significant portions

of these regions. Moving forward, extending in time the

global measurements of h and understanding the un-

derlying physical processes remains the key to progress

in regional sea surface height prediction.
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APPENDIX

Influence of Chosen Information Criteria

The choice of information criteria to determine the

ARMA(n, m) significantly influences the predictive per-

formance. TheAIC [Eq. (2)] was used, as it demonstrated

better performance for applications where the ‘‘true’’

model is likely not available (Yang 2005). The BIC has

been used in studies such as Hughes andWilliams (2010).

The BIC is defined as

FIG. A1. Chosen order of ARMA(n, m) for annually averaged h0y using the BIC: (a) the n and (b) them of the ARMA

(n, m).Weuse a four-point smoother for theh0y for 1992–2011.Note the difference to Fig. 3, where higher orders are seen.
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BIC5 k ln(n)2 2 lnðL Þ ,

where n is the number of data points, k is the number of

parameters, and L is the likelihood shown in Eq. (2).

As discussed by Priestley (1981) and Yang (2005), the

AIC tends to overestimate the true order, and the BIC

tends to underestimate it. The AIC results showed bet-

ter predictive power. The two criteria give different

weights to penalizing the number of regression co-

efficients, with the BIC having a larger penalty term.

Figure A1 illustrates the orders chosen by the BIC for

h0y. Note the difference from Fig. 3, where higher orders

are chosen using the AIC. Overall, the AIC produces

estimates at higher orders than the BIC, but results for

large areas are similar (e.g., the North Pacific and

equatorial Atlantic). The information criteria, particu-

larly the AIC, tend to pick out differing dynamical

regions.

The predictive potential associated with the h0y using
the BIC is illustrated in Fig. A2. This shows a very

similar pattern to Fig. 6a, and we highlight the differ-

ences by showing the difference between the two

(AIC 2 BIC) in Fig. A3a. Here, we see that the AIC

largely gives higher predictive performance based on the

ARMA(n, m) expected prediction error growth. The

difference between the AIC and BIC prediction per-

formance is highlighted in Fig. A3b. We see slight dif-

ferences, with the AIC having higher predictive

performance in bands 6308 of the equator, particularly

in the Pacific and IndianOceans, but also in theAtlantic.

The BIC shows somewhat higher predictive perfor-

mance in the higher latitudes, particularly in the Pacific.

For annually averaged h0, the difference between us-

ing the AIC and BIC is smaller. Figure A3c highlights

the difference between the AIC and BIC criteria,

showing that overall, the AIC has higher performance

based on the ARMA(n, m) expected prediction error

FIG. A2. The ARMA(n, m) expected prediction performance

with BIC estimating the order of ARMA(n, m) models of h0y

phrased in terms of the time it takes the prediction performance to

be less than 1 cm (months).

FIG. A3. The prediction performance difference with AIC 2 BIC using monthly averaged (a) h0y (months),

(b)monthly averagedh0 (months), (c) annually averagedh0y (years), and (d) annually averagedh0 (years). Note that

the AIC offers better predictability (red predominates) in most areas, but some prefer the BIC (blue).
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growth. With annually averaged h0y, the AIC and BIC

also give similar prediction accuracies, with the differ-

ences highlighted in the difference plot shown in

Fig. A3d. However, small areas show higher perfor-

mance based on ARMA(n, m) expected prediction er-

ror growth with the BIC.

The difference in predictability with the AIC and BIC

informing the choice of the order suggests that the AIC

has the highest utility. The BIC underestimates the or-

der, and the AIC is found to be more suitable. This is

illustrated in detail, looking at the predictability with the

apparent trend in h0, in Fig. A3d and is demonstrated

throughout with the higher prediction performance us-

ing the AIC. The AIC is better particularly in the

equatorial regions. The difference between the perfor-

mance of the prediction is larger in the monthly data

with the trend. For the case that is not detrended, the

BIC occasionally does better than the AIC, but no ob-

vious spatial pattern is apparent. The differences are

larger for the annually averaged data, as the chosen

ARMA(n, m) orders would suggest. The higher orders

chosen by the AIC are not surprising, as the AIC pe-

nalizes adding parameters less strongly than the BIC.

Burnham and Anderson (2002) show that the AIC can

actually be derived from the BIC using a different prior

in the Bayesian framework. They suggest the AIC has

advantages over the BIC, first being based on in-

formation theory and, second, having a more sensible

prior. Our results are in agreement with Burnham and

Anderson (2002) and similar work by Yang (2005),

suggesting better performance based on theARMA(n, m)

expected prediction error growth is achieved using the

AIC. The AIC has been seen to have higher perfor-

mance than the BIC, as is discussed further by Burnham

and Anderson (2004) and Aho et al. (2014). The impli-

cations of how well the different models capture the

different dynamical regimes is not discussed, as this re-

lies on large generalizations of the prediction perfor-

mance of the fitted ARMA(n, m) over vast areas.
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