
Potential Artifacts of Sequential State Estimation: Invariants1

Carl Wunsch∗

Department of Earth and Planetary Sciences

Harvard University

Cambridge MA 02138

email: cwunsch@fas.harvard.edu

2

September 7, 20213

Abstract4

In sequential estimation methods often used in general climate or oceanic calculations5

of the state and of forecasts, observations act mathematically and statistically as forcings6

as is obvious in the innovation form of the equations. For purposes of calculating changes7

in important functions of state variables such as total mass and energy, or in volumetric8

current transports, results are sensitive to mis-representation of a large variety of parameters9

including initial conditions, various uncertainty covariances, and systematic and random10

errors in observations. Errors can be both stochastic and systematic, with the latter, as11

usual, being the most intractable. Here, in Part 1, some of the consequences of such errors12

are analyzed in the context of a simplified mass-spring oscillator system exhibiting many of13

the issues of far more complicated realistic problems. Part 2 applies the same methods to14

a slightly more geophysical barotropic Rossby wave plus western boundary current system.15

The overall message is that convincing trend and other time-dependent determinations in16

“reanalyis" like estimates requires a full understanding of both models and observations.17

Part 1. Formalism and Simplified System18

1 Introduction19

Intense scientific and practical interest exists in understanding the time-dependent behavior in20

the past and future of elements of the climate system. Best estimates of past, present, and future21

∗Also, Dept. of Earth, Atmospheric and Planetary Sciences, MIT
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invoke knowledge of both observations and models. These both can involve physical-dynamical,22

chemical, and biological elements.23

Fundamental to understanding many physical systems is analysis of long-term changes in24

quantities such as energy, enstrophy, total mass, mean concentrations, that are subject to var-25

ious conservation rules. These elements, absent external perturbations or internal sources or26

sinks, can be usefully regarded as potential “invariants” of the system1. In conventional science,27

violation e.g., of mass or energy conservation not attributable to specific disturbances, would28

preclude any claim to understanding of the physics, chemistry, etc. governing the temporal29

evolution. Observational scientific fields in which time series data are of basic importance thus30

struggle with inferences from changing observation systems–either or both of changing tech-31

nology or of spatial and temporal distributions. In climate science particularly, both of these32

factors determine the ability to determine trends over months, decades and longer.33

In addition, much interest exists in the possibility of trends in major sub-elements of the34

system–oceanographically for example, in the transports of mass or heat or other properties in35

major currents such as the Gulf Stream. “Best estimates” of these values are also made using36

combinations of kinematic and dynamical models plus observations.37

Methods for combining data with models fall into the general category of control theory,38

although full understanding is made difficult by the need to combine major sub-elements of39

different disciplines, including statistics of several types, computer science, numerical approxi-40

mations, oceanography, meteorology, climate, dynamical systems theory, and the observational41

characteristics of very diverse instrument types and distributions. Within the control theory con-42

text, distinct goals include “filtering” (what is the present system state?), “prediction” (what43

is the best estimate of the future state?), and “interval smoothing” (what was the time history44

over some finite past interval?) and their corresponding uncertainties. In the climate context,45

a great deal of effort has been directed toward using the machinery of numerical weather fore-46

casting, usually labelled as “reanalysis,” for all three of these goals, often without distinguishing47

the purposes.48

One example, of intense interest, is the skill with which one can detect trends in climate-49

related variables in the presence of both model and data errors occurring over many past decades50

and longer. Particular attention is called to the paper of Bengtsson et al. (2004) who showed the51

impacts of observational system shifts on outcomes with some sequential methods. A number52

of subsequent papers (e.g., Bromwich and Fogt, 2004; Bengtsson et al., 2007; Carton and Giese,53

2008; Thorne and Vose, 2010) have called attention to difficulties in using “reanalyses” for long-54

1The modifier “potential” is normally omitted here, being implicit as requiring the absence of generalized

dissipation and external forces.
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term climate properties sometimes ending with advice–such as “minimize the errors” (and see55

Wunsch, 2020 for one global application).56

For some purposes e.g., short-term weather or other prediction, system failure to conserve57

mass or energy or enstrophy may be of no concern–as the time-scale for measurable consequence58

of that failure to emerge can greatly exceed the forecast time. In contrast, for reconstruction of59

past states for trend determination, those consequences can destroy any hope of physical inter-60

pretation. In long-duration forecasts with rigorous models, but by definition, no observational61

data at all, invariants are likely to be preserved, albeit tests of model elements and in particular62

of accumulating errors, are not possible.63

What can go astray? This analysis is intended as an analogue of the way in which greatly64

simplified geophysical fluid dynamics models are used to understand much more realistic systems.65

It might be thought of as “geophysical fluid statistics (GFS)”, as distinct e.g., from full statistical66

theories of turbulence. Analyzing very simple systems with order tens of unknowns should help67

understanding of those with →1010+ unknowns without making any claim to necessarily being68

able to scale up the results to full climate system dimensions. To keep the focus on the physical69

results, most of the necessary algebra is here consigned for reference to a series of Appendices70

and to cited standard textbook coverage. What follows has a faintly pedagogical air–justified71

perhaps by the now somewhat notorious, contradictory, results in the public domain (e.g., Hu72

et al., 2020; Boers, 2021) and the wide impression that “reanalysis” methods are not well73

understood in the wider community,74

2 Some Concepts and Notation75

Models76

Some basic notation is necessary to analyze even the simplest, linear, time-evolving system77

with data. A fuller account is given in Appendix A (or see Wunsch, 2006, hereafter W06, or78

many other textbook references. Notation here is similar to that in W06.). Let x () be a79

state vector in discrete time  = 0∆ ∆ =  . A “state vector” is one that completely80

describes a linear physical system evolving according to a perfect model rule,81

x (+∆−) = A ()x (−) +B ()q ()  (1) {perfmodel}

where A () is the “state transition matrix”. B ()q () is a very general representation of82

boundary conditions and any internal sources or sinks in which B () simply distributes the83

time-evolving field, q ()  amongst state vector elements. ∆  0 is a fixed time-step. A minus84

sign has been entered into the argument–from a control theory convention–to indicate that85

no data are being used.86
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Such perfect models do not exist in practice and the system is usefully rewritten as,87

x̃ (+∆−) = A () x̃ (−) +B ()q() + Γ ()u ()  (2) {linmodel1}

A tilde, ~, indicates that the solutions to Eq. (2) are at best an approximation to or estimate of88

the true state vector. Γ ()u ()  a flexible structure is introduced as the unknown elements and89

corrections to B ()q() for boundary/initial conditions, internal parameterizations, and forcing90

generally. Eq. (2) will be referred to below as the “prediction model,” as it is used in practice91

to make the best prediction at any future time–given the immediate past best-estimate. In92

such a calculation, u () = 0 as it is otherwise unknown. In many circumstances (e.g., Brown93

and Hwang, 1997, W06), Eqs. (1 or 2) are linearized about some reference state. That A () is94

itself then, and always, subject to significant error is a very important point, but that possibility95

renders the problem non-linear, and for present purposes the implications and approaches are96

set aside.97

Time-evolving systems require initial conditions, x̃ (0)  having some known or assumed error98

(uncertainty), written for linear systems as a covariance matrix,99

P (0) =
D
[x̃ (0)− x (0)] [x̃ (0)− x (0)]

E
(3)

and with the further, sometimes wholly implicit, assumption that the mean error hx̃ (0)− x (0)i =100

0 The brackets denote an expected value, whether theoretical or estimated. Uncertainties gen-101

erally determine the utility of any solution of any problem. Part of the estimation problem102

is to cope with the possibility that P (0) itself is not wholly accurate, and with implications103

depending on how long the system “remembers” its initial conditions (typically a function of104

A)105

Data106

Suppose now that at time  =   0 some data are available, written generally, but linearly,107

as,108

y () = E ()x () + n ()  (4) {data2}

where n () is usually assumed to be a zero-mean unimodally distributed noise process in the109

observations, with known covariance matrix, R ()  and which is often time-dependent and often110

again assumed to be diagonal. (Non-linear observations, for example that of a speed, require111

special treatment.) Observation matrix E () appropriately distributes the elements of x ()112

making up the observations, and which can range from observation of a single element,  () 113

to some arbitrarily complicated linear combination of different elements (e.g., weighted averages114

or differences).115
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Formally, one can deduce another estimate of x () directly from Eq. (4) as,

x̃ ( ) = E ()+ y()± n ()  (5a) {staticinv}

P () =
D
[x̃ ( )− x ()] [x̃ ( )− x ()]

E
 (5b)

where E ()+ is a generalized inverse deduced from standard, static, linear inverse methods116

using appropriate row and column scaling, and would be accompanied by an uncertainty P ()117

and a resolution analysis. Such static, fixed-time, calculations for time-dependent systems are118

uncommon, as E ()+ usually has a vast unknown nullspace in P (), dependent upon how119

comprehensive and accurate the data are.120

Combining Data and Models121

Suppose, as is commonplace in numerical weather prediction and in reanalyses, that the122

prediction model is used to forecast the state at time  written as x̃ (−)  Given the initial123

condition error P (0)  a straightforward calculation (see Appendix A) produces an expected124

error of the forecast,125

P (−) =
D
[x̃ (−)− x ()] [x̃ (−)− x ()]

E


If data also exist at time  then a linear inversion, if carried out as in Eq. (5a), provides126

another estimate of the state, with its own uncertainty, dependent upon R () and the structure127

of E ()  Evidently, a better estimate than either is to combine them, inversely proportional to128

their uncertainties, as is conventional in recursive least-squares, resulting in,129

x̃ () = x̃ (−) +K () [y ()−E () x̃ (−)]  (6) {kf1}

The “gain” matrix is,130

K () = P (−)E ()
h
E ()P (−)E () +R ()

i−1
 (7) {gain1}

In this form, K is the “Kalman gain” and the operation is the “Kalman filter” and which

includes, for discrete time, the uncertainty of the combined estimate,

P () = P (−)−K ()E ()P (−) (8) {poftau}

= P (−)−P (−)E ()
h
E ()P (−)E () +R ()

i−1
E ()P (−) 

a matrix Riccati equation which is again a result of recursive least-squares.2 Textbooks prove131

that the norm, kP ()k ≤ kP (−)k  that is, if used realistically, the data cannot worsen the er-132

ror in the forecast, but can potentially improve it, perhaps greatly, depending upon E () R () 133

(A tilde can sensibly be placed on PR but is omitted here.)134

2The history of the Kalman filter dates to the 19th Century. See Lauritzen, 1981.
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Figure 1: Mass-spring oscillator system used as a detailed example. Although the sketch is slightly

more general, here all masses have the same value,  and all spring constants and Rayleigh dissipation

coefficients   are the same. {mass_spring_s

Innovation Forms135

A slight modification of the system is to combine Eqs. (2) and (6) into the “innovation”136

forms,137

x̃ (+∆) = A () x̃ (−) +B ()q() +K () [y ()−E ()x ()]  (9) {innov1}

again setting the unknown Γ ()u () = 0 or,

x̃ (+∆) = A1 () x̃ (−) +B ()q() +K ()y ()  (10) {innov2}

A1 () = A ()−K ()E () 

(Goodwin and Sin, 1984, P. 251), whose importance is that both show explicitly that data138

introduction acts as an analogue of externally imposed forcing.139

3 Simple Example: Mass-Spring Oscillator140

For a simple, intuitively accessible analogue system, consider the mass-spring oscillator, follow-

ing McCuskey, 1959, Goldstein, 1980, W06, Strang, 2007) in the conventional continuous time

formulation of simultaneous differential equations. Three identical masses,  = 1 are connected

to each other and to a wall at either end by springs of identical constant,  (Fig. 1). Move-

ment is damped by a Rayleigh friction coefficient,  Generalization to differing- masses, spring

constants, and dissipation coefficients is straightforward. Displacements of each mass are  () 
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 = 1 2 3 The linear Newtonian equations of coupled motion are, {xieqs1}


21

2
+ 1 +  (1 − 2) + 

1


= 1 () (11a)


22

2
+ 2 +  (2 − 1) +  (2 − 3) + 

2


= 2 () (11b)


23

2
+ 3 +  (3 − 2) + 

3


= 3 ()  (11c)

This second-order system is reduced to a canonical form of coupled first-order equations by141

introduction of a continuous time state vector, the column vector,142

x () = [1 ()  2 ()  3 ()  1 2 3]
  (12)

where superscript  denotes the transpose. Note the mixture of dimensional units in the elements143

of x ()  identifiable with the Hamiltonian variables of position and momentum.  is144

sometimes written ̇ Then Eqs. (11) become (setting  = 1 or dividing through by it),145

x ()


= Ax () +Bq ()  (13) {canon0}

where146

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 1 0 0

−0 0 0 0 1 0

0 0 0 0 0 1

−2  0 − 0 0

 −2  0 − 0

0  −2 0 0 −

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

(
03 I3

K R

)
 (14) {ac1}

defining the 3x3 block matrices, KR symmetric and diagonal respectively, and are constant147

B distributes inputs, q= [1 2  6]
 , variously amongst the six sub-equations. Putting148

e.g.,  = 05  = 30 A is full-rank with 3 pairs of complex conjugate eigenvalues, but non-149

orthonormal right eigenvectors. These parameter values are generally used throughout. Here,150

and in what follows, the system is notationally simplified by using time-constant AB151

Textbooks (e.g., Bellman, 1960; Brogan, 1991; Anderson and Moore, 1979) show that Eq.152

(42) is a very general form for any linear system. For constant AB, Eq. (42) is readily solved153

analytically as,154

x () = Ax (0) +

Z 

0
ABq ()  (15)

where x (0) are the required initial conditions at  = 0. The physics of such small oscillations155

is discussed in most classical mechanics textbooks and is omitted here.156
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Energy157

Consider now an energy principle. Define a reduced state vector,158

x =

(
03 03

03 I3

)
x () = F

"
ξ

ξ

#
=

"
o3

ξ () 

#
 (16)

containing only the velocity components. Define, without dissipation (R = 0)

E () = 1

2

"µ
ξ



¶ µ
ξ



¶
− ξKξ

#
(17) {ec}

E ()


= −x () FAx () =
1

2





"µ
ξ



¶ µ
ξ



¶
− ξKξ

#
(18) {econdiss}

the sum of the kinetic and potential energies (the minus sign compensates for the negative159

definitions in K) and is here a Hamiltonian. The non-diagonal elements of K redistribute the160

potential energy amongst the masses through time.161

With finite dissipation and forcing, from Eq. (42),162

E ()


=

µ
ξ



¶

R

µ
ξ



¶
+

ξ





Bq ()  (19) {diff_energy_t

E ()  = 0 if the forcing and dissipation vanish.163

An interesting general question is whether, for arbitrary square A an F can be found such164

that there is a quadratic invariant equivalent to E? An approach using symplectic methods165

appears feasible, but is not pursued here. See also Hill and Moylan (1980), Tan et al. (1999).166

Discrete Version167

Write Eq. (1) at constant, discrete, time intervals, ∆ using an Eulerian time-step in the

same form,

x (+∆) = Ax () +Bq ()   = ∆ = 0 1 2  (20) {canondisc}

A=I6 + A (21)

and the prediction model is unchanged except now,

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 ∆ 0 0

−0 1 0 0 ∆ 0

0 0 1 0 0 ∆

−2∆ ∆ 0 (1− )∆ 0 0

∆ −2∆ ∆ 0 (1− )∆ 0

0 ∆ −2∆ 0 0 (1− )∆

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(22) {Adisc}

=

(
I3 ∆I3

∆K I3 +∆R

)
(23)
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Figure 2: The unforced case, initial condition vanishing except for 1 () = 1 Natural frequency and

decay scale are apparent. (a) 1 () = 1 () (solid) and 1 () − 2 (3)(dashed). (b) 4 = ̇4 and

̇4 − ̇6 (dashed). (c) E () showing decay scale from the initial displacement. (d) Kinetic energy (solid)

and potential energy making up E () {osc_initcondo

An example for the nearly dissipationless, unforced, example of the oscillator solution, from168

the discrete formulation is shown in Fig. 2 for elements of  ()  Non-zero values here arise only169

from the initial conditions, x (0) = [1 0 0 ]  A small amount of dissipation was included to170

stabilize the particularly simple numerical scheme. From the particular choice of the discrete171

state vector, the energy, (Fig. 2), is formally identical to that in the continuous case,172

E ()− E (−∆)
∆

=

µ
ξ



¶

R

µ
ξ



¶
+

ξ





Bq ()  (24)

E () and the potential and kinetic energies through time are also shown. The basic oscillatory173

nature of the state vector elements is plain, and the decay time is also visible.174

The total energy declines by about 2% in an initial transient and then stabilizes with small175

numerical oscillations at about 5000 time steps. Kinetic energy is oscillatory as energy is ex-176

changed with the potential component.177
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4 Mass-Spring Oscillator with Observations178

If the innovation form of the evolution Eq. (9) is used, the energy change becomes, numerically,

accounting for the observations,

E ()− E (−∆)
∆

≈ (25) {Einnov}µ
ξ



¶

R

µ
ξ



¶
+

ξ





Bq () +
x ()





K () [y ()−E ()x ()]

showing explicitly the influence of the observations on the computed energy. With intermittent179

observations and/or with changing structures, E ()  then E () will undergo forced abrupt180

changes–as expected.181

Given the very large number of potentially erroneous elements in any choice of model and182

data and data distributions, and the ways in which they interact when integrated through time,183

a comprehensive discussion even of the 6-element state vector mass-spring oscillator system184

is difficult. Instead, some simple examples exploring primarily the influence of data density185

on the state estimate and of its mechanical energy are described. One can experiment with186

the model and its time-constants, model time-step, accuracies and corresponding covariances187

of initial conditions, boundary conditions, data etc. The basic problems of any linear system188

already emerge in this simple example.189

Consider, using the same  , ∆ = 001 to represent “truth” where the forcing Bq () =190

1 () = 01 cos(2(25)) +  ()  that is, only mass 1 is forced in position, and with a low191

frequency not equal to one of the natural frequencies.  = 1, is the dissipation time.  ()192

is a white noise element. Initial condition is 1 (0) = 1 all other elements vanishing; see Fig.193

3. Accumulation of the influence of the stochastic element in the forcing clearly depends upon194

details of the model time-scales and if  () were not white noise, on its spectrum as well. In all195

cases, the cumulative effect of a random forcing will have the nature of a random walk–with196

details dependent upon the forcing structure, as well as the memory elements of the model time197

scales.198

The prediction model (Fig. 5a) has correct initial conditions and AB matrices, but is199

forced by the deterministic component with 1/2 the correct amplitude, and with the stochastic200

component being treated as fully unknown–replaced by its zero mean The added noise in the201

measurements has a standard deviation of 02 of the total forcing, the latter standard deviation202

including that of the deterministic contribution.203

Near-Perfect Observations: Two Times and Multiple Times204
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Figure 3: Forced version of the same oscillator system as in Fig. 2. Forcing is a low-frequency periodic

sinusoid plus a pure white noise disturbance at every time-step in mass 1 position alone. (a) The

forcing, 1 white noise plus the visible low frequency sinusoid; (b) 1() = 1 ()  1 () − 3 (); (c)

4 () = 1 = ̇1 ()  (d) Total energy through time, E ()  Energy varies with the random walk

arising from  () as well as from the deterministic forcing. {osc_forced_pe

To demonstrate the most basic problem of energy, consider a nearly-perfect observation of205

all 6 positions at two times12 as displayed in Fig. 4 with E = I6 No observational null-206

space exists. Although the new estimate of the state vector is an improvement over that from207

the pure forecast, any effort to calculate a trend in energy of the system will fail unless very208

careful attention is paid to correcting for the invariant violation at the time of the observation.209

Fig. 5 shows the results when observations occur in clusters having different intervals between210

the measurements. Visually, the displacement and energy have a periodicity imposed by the211

observation time-intervals and readily confirmed by fourier analysis.212

Quadratic Variability213

In a linear system, a Gaussian assumption for the dependent variables is commonly appropri-214

ate. By focussing here on the quadratic invariant of energy, the variables become 2 distributed.215

Thus the 2  ̇
2
 have such distributions, but with differing means and variances, and with po-216

tentially very strong correlations, so that they cannot be regarded as independent variables.217

Determining the uncertainties of the six uncertain covarying elements making up E () involves218

some intricacy. A formal analysis can be made of the resulting probability distribution for the219

sum in E (), involving non-central 2 distributions (Imhof, 1961, Sheil and O’Muircheartaigh,220

1977, Davies, 1980). In view of the purpose and simplicity of this example however, an esti-221

mate of the uncertainty was made by simply generating 50 different versions of the observations,222

11



Figure 4: (a) Energy for the 3-mass-spring oscillator system (E ()) and for the prediction model showing
the lower energy in the latter. Vertical lines are the time step when observations become available. (b)

Estimated position for velocity in the first mass (̇1() = 5 ()) from the Kalman filter and showing the

jump at the two times where there are complete near-perfect data. Standard error bar is shown from

P ()  (c) E () and Ẽ () from the Kalman filter and showing the jumps at the observation times as well

as the deviations following the observations. {osc_allobs_en

differing in the particular choice of noise value in each one and tabulating the resulting range.223

These uncertainties can be used to calculate the significance of any apparent trend in E () and224

although the result is not displayed here, use of reliable uncertainties can make an obvious im-225

portant change in any inference about means and trends. In these examples, the observational226

errors are intentionally made relatively small, with no implications for what could be the case227

in geophysically realistic cases.228

Notice that even in the observation interval, the estimated mechanical energy remains too229

low. This bias error is a systematic one owing to the availability of observations only of the230

velocity of one of the masses. Even if the observations are made perfect ones (not shown), this231

bias error in the energy persists.232

As seen in the figure, with full-rank, near-perfect observations the elements of  () and the233

total energy are forced to near the correct values at the two observation times,  but do diverge234

in following times235

A Fixed Position236

Exploration of the dependencies of energies of the mass-spring system is interesting and a237
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Figure 5: (a) ̃5 () − 5 () and the same as Fig. 4b except with the observations shown at the times

of the vertical dotted lines.(b) Estimated energy in the Kalman filter estimate when observations are

available at times of the vertical dotted lines. (c) Expanded portion of (c). Note that the observational

errors were here purposely made comparatively small relative to the signals. {osc_allobs_2d

great deal more can be said. Turn however, to a somewhat different invariant: suppose that one238

of the mass positions is fixed, but with value unknown to the analyst. A significant literature239

exists devoted to finding changes in scalar quantities such as global mean atmospheric tempera-240

tures, or oceanic currents, with the Atlantic Meridional Overturning Circulation (AMOC) being241

a favorite focus. These quantities are typically sub-elements of complicated models involving242

very large state vectors. With this very simple mass-spring oscillator system, it is useful to con-243

sider a situation in which an element is a constant, an invariant, but which must be determined244

from the sequential estimation procedure.245

Using the same situation as above, added constraints, that 3 () = 3 () = 2 6 () =246

̇3 () = 0 that is, an unmoving, fixed displacement in mass 3, are used in computing the true247

state vector. The observations are the velocity of moving mass  = 2 with similar noise in248

the interval shown in Fig. 6 . The question is whether one can infer accurately that 3 () is249

a constant through time? Fixing 3 () = 2 does change all the true variables x () from the250

values they take without these extra constraints. Note that the fixed displacement means that251

the potential energy can never vanish. The resulting estimate for the position, ̃3 ()  is shown252

in Fig. 6 and includes a significant error at all times.253

Position variation occurs even during the data dense period and arises both from the entry254

of the data and the noise in the observations of ̇2 ()  An average taken over the two-halves255
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Figure 6: (a) Correct value of the constant displacement 3 () (solid line), and the estimated value from

the KF calculation (dashed line). Dots are the observation times. (b) Difference ̃3 () − 3 () and one

standard error bar computed from the matrix Riccati equation. {xhatfx3_xfx3.

of the observation interval might easily lead to the erroneous conclusion that a decrease had256

taken place. Such an incorrect inference can be precluded by appropriate use of the computed257

uncertainties (Fig. 6). À258

Observations of Averages259

Consider now a set of observations of the average of the position of masses 2 and 3, and of the260

average velocity of masses 1 and 2, mimicking the type of observations that might be available261

in a realistic setting. Again for simplicity, the observations are very accurate and occur in the262

two-different sets of periodic time intervals The results are in Fig. 7. Position estimates shown263

are good, but not perfect, as is also true for the total energy. Visually it is clear that the energy264

estimate carries oscillatory power with the periodicity of the oncoming observations intervals265

and appears in the spectral estimate (not shown) with excess energy in the oscillatory band and266

somewhat low energy at the longest periods. Irregular spacing would introduced a potentially267

complex spectrum in the result.268

A more general discussion of nullspaces involves that of the weighted P (−)E appearing269

in the Kalman gain. If E is the identity, and R () has sufficiently small norm, all elements270

of x () are resolved. If the noise is uniform in all elements of y ()  the resolution analysis271

of the observations is also uniform and uninteresting. In the present case, with E having two272
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Figure 7: (a) Results for position estimate difference ̃5 ()−5 () with standard error from the KF when
observations were of the average of the two positions 2 ()  3 () and the two velocities, 4 ()  5 () at

the times shown. (b) Total energy corresponding to the situation in (a). (c) Expanded portion of (b)

showing the artificial periodicity in energy from the combination with observations. {osc_avgobs_z5

rows, corresponding to the observations of the averages of two-mass positions and of two velocity273

positions, the resolution analysis is more structured. With274

E =

(
0 12 12 0 0 0

0 0 0 12 12 0

)
(26)

a singular value decomposition E = USV = U2S2V

2  produces two non-zero singular values,275

and U2 etc. carries the first two columns of the matrix. At rank 2, the resolution matrices276

TT based on the UV vectors respectively and the standard solution covariances are easily277

computed (W06) A distributes information about the partially determined  throughout all278

masses via the dynamical connections as contained in P ()  Bias errors require specific, separate279

analysis.280

Green Function Analysis of the Innovation Response281

The innovation form of equations provides a convenient analysis method for determining the282

memory duration of varying observations. Define an innovation matrix,283

y ()−E ()x () = D ( ) = δ (27)
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that is, D is a matrix of Kronecker deltas of the difference  () = δ =  () −284 P
  () ()  The solutions to the equation are the columns of the Green function matrix,285

G () = AG (−∆) +KD ()   = ∆ (28) {green1}

K now fixed in time, is sought as an indication of a delta impulse effects of observations on the286

prediction model at time 287

Define the scalar complex variable,288

 = exp (−2∆) −12∆ ≤  ≤ 12∆ (29)

Then the discrete Fourier transform of Eq. (28) (the −transform–a matrix polynomial in )289

is,290

Ĝ () = (I−A)−1KD̂ ()  (30) {ghat1}

The norm of the variable (I−A)−1 defines the “resolvent” of A in the full complex plane (see291

Trefethen and Embree, 2005), but here, only || = 1 is of direct interest, that is only on the unit292

circle. The full complex plane carries information about the behavior of A including stability.293

Here D̂ () = I and,294

Ĝ () = (I−A)−1K (31)

If a suitably defined norm of A is less than 1295

Ĝ () = (I−A)−1K ≈ ¡I++1A++2A2 + +3A+ 
¢
K (32)

and the solution matrix in time is the causal vector sequence (no disturbance before  = ) of

columns of

G () = 0    (33)

= AK ()  = +∆

 = 0 1 2 

G can be obtained without the −transform, but the frequency content of these results is of296

interest.297

4.1 Varying Data Density298

As was conspicuous above, data density in time influences the accuracy of estimates of E ().299

Consider the behavior of the energy estimate as the density of observations varies in time. Fig. 8300

displays the RMS difference between the estimated energy over the observation intervals (includ-301

ing non-observation times) as a function of the number of data points included. Compare Fig.302
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Figure 8: RMS difference E−E as a function of the number of data points in the time interval used. {osc_e_varying

5. Similar results will apply e.g., to changing the observational accuracies (and biases) as well303

as the number of observations of individual or average elements  ()  With these parameters,304

the change is not large relative to the background, but as a climate analogue, the importance305

would depend upon the physical significance of a small change (e.g., Wunsch, 2020).306

4.2 The Uncertainties307

The structure of the uncertainties depends upon both the model and the detailed nature of the308

observations. Consider P () for  = 3523 = ∆ and one time-step into the future, Fig. 9b,c,309

just before and after some observations becomes available..310

Notice that changing variances along the diagonal, and the sometimes strong covariances311

implied amongst the different elements of x̂ () after 10 observations have been used. One of312

the eigenvalues of P () is almost zero, meaning that P () is singular. In this case, the only313

observation was relatively accurate–one of the velocity of the second mass. The eigenvector314

corresponding to the zero eigenvalue is close to 1 in position 5 (corresponding to the observed315

̇2 = 2) and zero elsewhere. The implication is, that because very good observations were316

made of ̇2 its uncertainty almost vanishes here, and a weighting of values by P ()
−1 would317

give it a near infinite weight at that time.318

5 A Fixed-Interval Smoother319

As already noted, most physical models in use include some form of invariant principles, including320

quadratic ones related to energy, linear ones related e.g. to vorticity or to positions or flows.321

These principles are violated whenever the model is combined with data. A reasonable inference322

for science generally is that no system that violates conservation rules for mass or energy etc.,323

can be physically understood in a meaningful way. The need for system descriptions over finite324

intervals that do satisfy such principles leads to the notion of “smoothers”–in which the state325
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Figure 9: Only observation is velocity of mass 2. (a) Diagonal element ofP () just prior to an observation

and after 10 observations of 5 () have been obtained. (b,c ) Rows of P () , corresponding to the two

times in (a). {osc_p_hat.jpg

vector over a finite interval simultaneously satisfies a modified model and the data within error326

bars such that no invariant violation occurs.327

The idea of smoothers is again a control theory construct (see Liebelt, 1967, Anderson328

and Moore., 1979, Brogan, 1991, W06 among many others), and algorithmically a number of329

different approaches for linear systems have been developed. A particularly useful one is called330

the RTS (for authors Rauch, Tung, Striebel) and which is built under the hypothesis that a KF331

calculation has already been used over a time interval 0 ≤  ≤  with the results, including all332

of the state vectors and P matrices, stored.333

The basic notion is to find the corrections, Γũ ()  the controls, such that the suitably334

modified prediction model produces a new, the third, state estimate x̃ (+) obeying the model335

time-evolution while simultaneously, consistent within error bars, of all the data. In that way,336

the usual invariants of energy etc., are restored. x̃ (+) is generally a better estimate than is337

x̃ () because it “knows” of the occurrence and values of observations future to the time  and338

accounts for them. The algorithm (see Appendix B, P2) has a somewhat complicated appearance339

because the sequential estimates of x̃ () are correlated with each other, and recombining them340

in any way involves accounting for that correlation. Application is made in Part 2 to a slightly341

more geophysically identifiable example.342
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6 Some Comments on Part 1343

Errors, random and systematic, can evidently occur in a sequential filtering or prediction system344

owing to a large number of elements, even in this simple mass-spring oscillator system. Apart345

from those associated with writing a linear model, any distortion in initial conditions, x̃ (0) 346

initial condition uncertainties P (0)  in the data, and in the data error covariances, R ()  will347

lead to distortions in estimates of invariants ranging from those of position or velocity to linear348

and quadratic physical quantities such as energy and momenta. A subset of the possibilities349

has been explored here. The main point is that for purposes of determining trends in quantities350

such as positions, velocities, energies, or concentrations, the temporal and physical distributions351

of the data can imply false trends and even periodicities. All of these can be accounted for by352

finding and using appropriate uncertainties.353

It will be clear that calculation of Kalman filter estimates, even for linear systems, involves354

the computation through time of the uncertainty matrices P (−) P () in such a way that the355

gain operator K () evolves through time. If the state vector has dimension  computation of356

x̃ () involves running the model once at each time step. On the other hand, calculation of P357

involves (Eq. A1) running the model 2 times for each time-step (once for each column and358

row on the P matrix). This calculation is prohibitive for all realistic (quasi-global) climate or359

related models (with  approaching 1010) and consequently most such calculations replace the360

time-dependent behavior of K () with an ad hoc, time-fixed matrix, K0 in what amounts to a361

predictor-corrector system. Rigorous KF systems are thus almost never used. From the above362

experiments, it should be clear that the implied errors through time when data are used can363

arise from a large number of distortions potentially buried in the choice of K0 Trends of any364

sort, or their absence, will be a consequence of K0 (see Appendix A, P1 ).365
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Appendix A, Part 1. Kalman Filter, and Predictor-Corrector366

Approximations367

Commonly, climate and other models are almost always written so that the physical conser-

vation rules for energy etc., are satisfied to a good approximation. Without such conservation

constraints, be they physical, chemical, or biological, interpretation of an “open” system can

become impossible.3 Let P (−) represent the error covariance (uncertainty) of x̃ (−) :

P (−) =
D
(x̃ (−)− x ()) (x̃ (−)− x ())

E
(A1) {pminus}

= A ()P (−∆)A () + Γ (−∆)Q (−∆)Γ (−∆) 

a matrix Riccati equation, which is just the sum of the error covariance propagated from the368

predicted estimate, plus that generated by unknown forcing, etc., elements, u ()  with Q () =369 D
u ()u ()

E
 the bracket defining an ensemble average. (See any of numerous textbooks cited370

above.) The notation Q () is used as a reminder that u () represents the unknown errors in371

q ()  Inaccuracies in this equation are discussed by Konstantinov et al. (1993), Zhou et al.372

(2009) and P must always itself be regarded as an estimate, not “truth.” Note that precision,373

rather than accuracy, is being omitted here.374

A useful conceptual generalization of these methods is to create ensembles of solutions e.g.,375

generated by random selection of different initial conditions from the probability density of376

the initial conditions (e.g., Evensen, 2009) and then using the results to calculate variances of377

the corresponding solutions. Difficulties lie with the very large number of elements subject to378

random and systematic errors, choice of the correct probability densities, and the usual very379

small number of ensemble members feasible to compute relative to the dimension e.g., of x () 380

For trend determination accurate knowledge of the overall uncertainties remains important.381

Steady-State and Asymptotics382

Time sequence equations starting at  = 0 (however defined) undergo a general transient behav-

ior. For simplifying purposes, and following much of the literature, assume that a steady-state

has been reached, so that the linear prediction model and the innovation equation have become,

x̃ (−) = Ax̃ (−∆−) +Bq(−∆) (A2) {A2}

x̃ () = Ax̃ (−∆−) +Bq(−∆) +K [y ()−Ex ()]  (A3) {A3}

3The existence and use of the information contained in such a priori models, kinematic, thermodynamic,

biological, chemical, and otherwise distinguishes this approach from some attempts to use machine learning to

deduce a fully a posteriori model. The result of Pitandosi (2018) is thus a challenging one.
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respectively, with no time-dependence in AB or K Time-dependence remains in x̃ () but it383

can be statistically stationary (labelled “wide” or “weak” depending on the literature). The384

steady-state error covariance is385

P∞ (−) = AP∞ (−)A +BQB  (A4) {pinf1}

386

P∞ = P∞ (−)−P∞ (−)E
£
EP∞ (−)E +R

¤−1
EP∞ (−)  (A5) {pinf2}

an algebraic Riccati equation, and387

K∞ = P∞ (−)E
£
EP∞ (−)E +R

¤−1
(A6) {pinf3}

is also constant. Pitfalls lie in the accuracies of P∞ and in R388

Within a steady-state, the various moments can be computed. So for example, from the389

innovation state equation, the mean390

m = hx̃ ()i = A hx̃ (−∆−)i+B hq(−∆)i+K∞ [hy ()−Ex ()i]  (A7)

or391

m = (I−A)−1 [K∞ hy ()−Ex ()i+B hq(−∆)i] (A8)

and thus depends directly upon any bias errors in y () and E, and the accuracy of K∞. It will392

be sensitive directly to the structure and rank of I−A393

Predictor-Corrector Methods394

Rigorous Kalman filters are widely used in many applications. In climate systems they are395

almost never used, despite claims to the contrary, because of the computational cost of Eq.396

(A1). Instead, K () is replaced by an ad hoc, often constant, matrix, K and in which Eq.397

(6) is a predictor-corrector system,398

x̃ () = x̃ (−) +K [y ()−E ()x ()]  (A9) {predcorrector

K would be substituted for K∞ in the previous equations whether derived from the formal399

solution Eq. (7) or not. As with the true KF, x̃ ()  once combined with data, using K no400

longer satisfies the prediction model equations, having undergone a jump in values at time  As401

with the true KF, the predictor-corrector system can be written in innovation form, showing402

the apparent forcing by data.403

Fig. 10 depicts the variation in some elements of the Kalman gain matrix for a set of404

observations at the places shown. Some elements do tend to become nearly constant at the data405
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Figure 10: Kalman gain matrix elements through time and its norm. (a) K55 ()  which is the gain in

5 () for an observation of 5 () = ̇2 () (b) K65 ()–the gain in 6 () = ̇3 () for an observation of

5 (). (c) kK ()k, the 2−norm. Only 5 () = ̇2 was observed. Zero values interlace the observation

times. {osc_kgain5.jp

times, while others continue to show a structure. Whether choosing K from one particular406

time is adequate will be very much problem dependent.407

Part 2. Barotropic Rossby Waves408

7 Introduction409

Part 1 (P1) of this paper discussed the impact of time-varying observational data on simplified410

examples of sequential estimation systems in time. The focus was on the behavior of quantities411

that can be regarded as intrinsically conserved or constant in well-understood problems. As412

in P1, the expressions “conserved quantities” or “(potential) invariants” are used for those413

elements which would be internally unchanging were there no dissipation nor external sources/-414

sinks/forcings. These conservative quantities include energy, total inventories, vorticity, etc.415

Examples were based on mechanical energy and positions in mass-spring oscillators. Identifying416

and calculating these conservative properties is fundamental to understanding of any physical417

system. Estimation concepts can be extended to various properties believed constant over some418

finite time interval–the time-independent transport of a current system being one example.419

In linear systems satisfying a comprehensive set of physical and statistical assumptions, the420
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Kalman filter (KF) provides a basis on which to make an optimal prediction at future time421

steps–a prediction employing all of the known kinematic/dynamical model elements as well as422

all of the data available to that time. Analogous algorithms, some best-regarded as predictor-423

corrector methods, can greatly reduce the computational load, but at the possible expense of424

significantly distorted estimated and predicted values. Climate reanalyses are commonly based425

on these simplified methods.426

Consider now the problem of reconstruction of invariants over the entire time-span of estima-427

tion, building on the sequential analysis and notation of P1. Realism is still not the goal–rather428

it is the demonstration of various elements making up estimates in simplified settings in what429

can be regarded as an exercise in geophysical fluid statistics (GFS). In particular, evaluation430

of the importance of deviations, large or small, of the estimates from true values can only be431

made in the context of a particular physical situation (in some cases a 1% error is the maximum432

tolerable; in others 50% or even an order of magnitude would be regarded as still useful).433

8 The Smoothing Problem434

A variety of smoothing approaches exists (e.g. Anderson and Moore, 1979; Goodwin and Sin,435

1984; Stengel, 1986). Here the “fixed interval” smoother is of most interest. The fundamental436

idea is straightforward: to find a weighted least-squares fit of the invariant-conserving model437

(Eq. 2) to the data Eq. (4) at the sampling times.438

8.1 RTS Smoother439

Consider the sequential method usually known as the Rauch-Tung-Striebel (RTS) smoother440

described in Appendix C (other algorithms exist), in which the assumption is made that the KF441

has already been used, rigorously, over the finite interval 0 ≤  ≤ , producing the estimates442

denoted x̃ (−)  x̃ () with their corresponding uncertainty covariances P (−)  P ()  At this443

stage, no further discussion of the data occurs: all information contained in the observations444

has been exploited by the KF and is encompassed in x̃ () and its uncertainty P (). What445

has not been exploited in an estimate x̃ () P ()  is the information contained in data that446

were obtained afterwards,  +∆   but that information is present in any later estimates447

x̃ (+∆) P (+∆).448

The resulting RTS algorithm is more complex appearing than is the KF, because all of the449

later estimates have a finite correlation with the previous ones, and they cannot be simply com-450

bined without first removing that correlation. (The pure scalar state vector is readily analyzed451

without any matrix/vector algebra and is written out in P1, Appendix C.) In the same notation,452
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and repeating the equations of Appendix B,453

x̃(+) = x̃() + L(+∆) [x̃(+∆+)− x̃(+∆−)] 
L(+∆) = P()A() P(+∆−)−1

P(+)=P()+L(+∆) [P(+∆+)−P(+∆−)]L(+∆) 
Q(+)=Q()+M(+∆) [P(+∆+)−P(+∆−)]M(+∆) 

involving the estimated x̃(+∆) P(+∆−) P(+∆) at a formally future time, +∆ The454

+ in the argument is used to label the estimates of these variables as now having employed455

the formally future data. One can examine putative steady-state behavior of the smoothing456

equations, to the extent it is plausible.457

For all these methods, a potentially very important, but implicit, assumption is
D
n ()n (0)

E
=458

0  6= 0 that is observational noise is uncorrelated over time. Similarly,
D
u ()u (0)

E
= 0459

 6= 0. If the assumptions fail, a general approach is to model the structures of n ()  u () as460

part of the problem–essentially augmenting the state vectors.461

8.2 Green Function of Smoother Innovation462

As with the innovation equation for filtering, Eq. (B1a) introduces a disturbance into the463

previous estimate, x̃ ()  in which the structure of L () will determine the magnitude and time464

scales of observational “disturbances” propagated backwards in time. It is an indication of how465

much influence later measurements will have on earlier estimates. Suppose that the KF has466

been run to time  =  so that x̃ ( +) = x̃ ( )  which has the only measurement. Let the467

innovation, x̃( +)− x̃( −) be a matrix of  functions in separate columns,468

D =  (−  ) I (34)

then a backwards-in-time matrix Green function is,469

G () = L()L ( −∆)L ( ) (35)

The various time-scales embedded in L depend upon those in AP (−) P () and with many470

observations including those of the observation intervals, and any structure in the observational471

noise. Similarly, the control modification will be determined by P(+∆−)−1 if Q()Γ() are472

constant in time.473
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9 Example: Rossby Wave Normal Modes474

P1 showed the generic character of linear estimation problems, with dependencies on uncertain-475

ties, data densities, and accuracies etc. A more recognizably geophysical example now used is476

the flat-bottom, linearized -plane Rossby wave system, whose governing equation is,477

∇21


+ 
1


=  (  )  (36) {rossby1}

in a square beta-plane basin of horizontal dimension  This problem is taken to be representative478

of those involving both space and time structures, including boundary conditions. (Spatial479

variables   should not be confused with the state vector or data variables). Eq. (36) and480

other geophysically important ones are not self-adjoint, and the general discussion of quadratic481

invariants leads inevitably to adjoint operators (see Morse and Feshbach, 1953 or for bounding482

problems–Sewell, 1987, Chs. 3,4).483

The closed-basin problem was considered by Longuet-Higgins (1964 and later). Pedlosky484

(1965) and Lacasce (2002) provide helpful discussions of normal modes) and relevant observa-485

tional data are discussed by Luther (1982), Woodworth et al. (1995), Ponte (1997), and others.486

The domain is 0 ≤  ≤  0 ≤  ≤  with boundary condition  = 0 on all four boundaries.487

Introduce non-dimensional primed variables, 
0
=   = 0  = 0

0 01 = (2)1  488

are evaluated at 30◦N. Letting  be the Earth radius, and  = 0 = 17 the non-dimensional489

equation becomes,490

∇0201
0

+ 0




01
0

=
2



¡
0 0 0

¢
= 0 (37)

choosing further  =  and then omitting the primes from here on except for 0491

∇21


+ 0
1


=  (  )  (38)

Hairer et al. (2006) describe numerical methods that specifically conserve invariants, but these492

are not discussed here. This system was used by Gaspar and Wunsch (1989) for a demonstration493

of sequential estimation using altimetric data. Here a different state vector will be used.494

The solution used is the sum over normal modes satisfying the boundary conditions, 1 = 0495

1 (  ) =
X


X


exp (−) −0 sin () sin () 

and obeying the non-dimensional dispersion relation,496

 = − −02q
()2 + ()2
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where  is a coefficient dependent upon initial conditions and any forcing present; see espe-497

cially, Pedlosky (1965).498

The problem is now made a bit more interesting by addition to 1 of a steady component,499

the solution,  ( ) from Stommel (1948) whose governing equation in this non-dimensional500

form is, where  is a Rayleigh friction,501

0∇2 + 0



= sin (39)

0 =  here written in the simple boundary-layer/interior approximation,502

 = −
00 sin + (− 1) sin (40)

which leads to a small error in the eastern boundary condition. The sin arises from Stommel’s503

assumed time-independent wind-curl.504

For the time-dependent components, the state vector is,505

x () = vec { ()} 

where  is a linear ordering of  of total dimension  × =  − 1 which is equal to506

the number of  times the number of  and the state transition equation is,507

 (+∆) = exp (−∆) () +  ()   = 1   − 1

with a complex, diagonal state transition matrix, A2= diag (exp (−∆))  square of dimension508

 − 1 A small, numerical dissipation is introduced, multiplying A by (-)   0 to509

accomodate loss of memory, e.g., as a conventional Rayleigh dissipation. Some special care in510

computing covariances must be taken when using complex state vectors and transition matrices511

(Schreier and Scharf, 2010).512

The time-independent flow is included as,513

 (+∆) =  ()  (41)

and again,514

x (+∆) = Ax () +Bq ()  (42) {canon1}

where complex A is the same as A2 except with an added zero row and column , and a single515

non-zero element, A ( ) = 1 Eq. (42) here is taken to exactly describe the putative516

“truth”. 


() = 0 because the Stommel solution has a steady wind.517

Consistent with the analysis in Pedlosky (1965), no westward intensification exists in the518

normal modes, which decay as a whole. Rayleigh friction of the time-dependent modes is per-519

mitted to be different from that in the time-independent mean flow–a physically acceptable520

26



situation. The value  = 1130 = 18× 10−3 is used. No particular realism is intended here in521

the choices of numerical amplitudes, data properties etc. They are chosen only to demonstrate522

the estimation issues.523

If q () = 0 and with no dissipation, then following P1, Eq. (36) has several useful invariants:524

the quadratic invariant of the kinetic energy and of the “energy” in –x ()x () (complex525

transpose); and the linear invariant of the vorticity or circulation–when integrated over the526

entire basin domain. Estimates of the quadratic and linear invariants will depend explicitly on527

initial conditions, forces, distribution and accuracy of the data, and the covariances and bias528

errors assigned to all of them.529

Eq. (42) is here taken to be “truth” and to generate the correct fields. As would be necessary530

in practice, a “prediction” model is introduced as531

x (+∆) = Ax () +Bq ()  (43) {pred2}

with the only difference from the truth model in the initial conditions and forcings.532

10 System with Observations533

The problem is now posed of determining the transport of the western boundary current (WBC),534

which is here a constant (invariant) in the presence of both physical noise–the normal modes–535

and the random noise of the observations y ()  For determining the transport of the WBC, the536

presence of both natural noise (the time-dependent modes) and observational noise is analogous537

to the true physical circulation problem. Non-dimensional normal mode frequencies and periods538

for  = 3 4 5  = 4 5  9 are shown in Fig. 11. ∆ = 29 1 = 553 00 = 029539

Initial modal amplitudes are taken to have a slightly “red” property. The field  ( = 167∆)540

is shown in Fig. 12, keeping in mind that apart from the time-mean , the structure is the result541

of a particular set of random forcings.542

Noisy observations, y() are taken at the positions in Fig. 12. The prediction model has543

the correct A but the magnitudes of the initial conditions are 20% too large, and the forcing544

field magnitude of  is 50% too small (the forcing is complex white noise).545

Aliasing546

In isolation, the observations will time-alias the field, if not taken at minimum intervals of547

1/2 the shortest period present (here 4∆). A spatial-alias occurs if the separation is less that548

1/2 the shortest wavelength present (here ∆ = 19) Both these phenomena are present in549

what follows, but their impact is minimized by the presence of the time-evolution model. Times550

of assumed observation vary and are displayed below in the time-series results figures.551
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Figure 11: (a) Non-dimensional periods, grouped by increasing  and then increasing  for fixed

 with  = 3 4 5  = 4 5  9 Dashed line is the computational step, ∆ (b) Radian frequencies

corresponding to the upper panel. (c) Logarithm of the initial conditions for the normal modes. {rossby_modes_

Figure 12: Stream function after 11 time steps of including both normal modes and the time—independent

Stommel solution. At later times, the mean flow becomes difficult to visually detect in the presence of the

growing normal modes under the forcing. White line segment is the distance over which the boundary

current transport is defined, slightly shorter than the −1 decay thickness of the boundary current. White

circles indicate the assumed 14 available observational positions, fixed in time. {rossby_withme
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11 Results: KF+RTS552

11.1 KF Estimates553

The RTS algorithm assumes that a proper KF result has been computed and the results stored.554

P (0) = diag(1) initial condition uncertainty, and is uniform amongst the elements. Here,555

as shown in Fig. 13, a priori knowledge that higher frequencies have smaller initial values is not556

being used. Q () = diag(0015) except for  () for which  () = 0 R () =557

diag(06 × 10−3) The system is run with the knowledge that the time-mean wind is truly558

constant. Observations are available spatially as in Fig. 12 at intervals, initially at 50∆559

beginning at  = 166∆ (Fig. 13) and then more densely at 25∆ spacing, a crude mimicking560

of observations becoming more dense with time. Observations cease prior to  mimicking a561

pure prediction interval following the observed states.562

The energy, Φ () =
P

 | ()|2  in the time-dependent components is shown for the563

true value and the KF estimate in Fig. 13. It is a surrogate for the total system energy and is a564

quadratic variable. A slow increase is visible in the true value and in the prediction value with565

a levelling off at around time-step 200 again a combination of the dissipation and the white566

noise random walk increase. Until the first observation time, the predicted energy is identical567

to that of the KF, Φ () = Φ ()  when the latter takes a jump towards the true value,568

but remains low. As additional observations accumulate, the Φ () jumps varying amounts569

depending upon the particulars of the observations and their noise. Over the entire observation570

interval the energy remains low–a systematic error owing to the sparse observations and null571

space of E. If the number of observations is greatly increased (not shown), the systematic error572

in the estimated energy vanishes. Here the forcing amplitude overall dominates the effects of573

the incorrect initial conditions. Uncertainty estimates for energy would once-again come from574

summations of correlated 2 variables of differing means. In the present case, the most important575

errors are the systematic ones visible as the offsets between the curves in Fig. 13.576

This system can theoretically be over-determined by letting the number of observations at577

time  exceed the number of unknowns–should the null space of E () vanish. As expected,578

with 14 covarying observations, and 18 time-varying unknown  (), E () has a nullspace (is579

rank 12) and thus energy in the true field is missed even if the observations were perfect. As is580

conventional in inverse methods, the smaller eigenvalues and their corresponding eigenvectors581

are most susceptible to noise biases. The solution nullspace of this particular E () found from582

the solution eigenvectors of the singular value decomposition, UΛV = E Solution resolution583

matrix at rank  = 13 VV

  is shown in Fig. 14 where V contains the first  columns584

of V. Thus the observations carry no information about modes (as ordered) 3,6,9,12,15,18. In585
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Figure 13: (a) The “energy”, the sums Φ () =
P

 | ()|2  for the true and prediction models. In
the prediction model, the initial conditions are 20% too large, and the forcing is 50% too small (but is

otherwise identical to the true value). Time positions of the data, initially at every 50∆ and then at

every 25th ∆ are shown. Prior to the data onset, the energy is that given by the prediction model.

After the data interval, power is also from the prediction model, but starting with the final KF analysis

estimate. Jumps in the KF power at observation times are visible, especially at the time of the first

observation. The smoothed solution carries too much energy prior to the first observations as the system

has no information about the growth of power before that time and the uncertainty assigned to the

actual initial conditions is large. (b) The smoothed solution energy when initial conditions are set to

be essentially perfect and showing the estimated reduced power towards the origin which does not occur

when a finite uncertainty is assigned (as in (a)). {rossby_pwr_al
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Figure 14: (a) First 14 singular vectors of E Rank is 13 with 14 observational positions. (b) Diagonal

elements of the rank 13 solution resolution matrix (see W06), showing lack information for several of the

modes. A value of 1 means that the mode is fully resolved by the observations. {rossby_svde1.

a real situation, if control over positioning of the observations was possible, this result could586

sensibly be modified and/or a strengthening of the weaker singular values could be achieved.587

Knowledge of the nullspace structure is very important in the interpretation of any of the results.588

Amore general discussion of nullspaces involves that of the weightedP (−)E appearing in589

the Kalman gain. If P (−)12 is the Cholesky factor of P (−) (W06, P. 56), then EP (−)12590

is the conventional column-weighting of E at time  and the resolution analysis would be applied591

to that combination. In the present system, A is diagonal, and thus it does not distribute592

information about any covariance amongst the elements () and which would be carried in593

P (−) 594

An important observational goal is determination of the north-south transport at each time-595

step from the velocity or stream function as,596

() =  ( = 1 0 )−  (0 0 )  (44) {wbctrans1}

at fixed latitude index 0 as the stream-function difference between a longitude pair,  0. From597

the boundary condition,  ( = 1 0 ) = 0 identically. In the present context, five different598

values are relevant: (1) the true constant, invariant, value, (2) the true apparent value including599

the oscillatory mode noise, (3) the estimated value from the prediction model, (4) the estimate600

from the KF, (5) the estimate from the smoother. Fig. 15 displays the estimated transport from601

Eq. (44) for the correct value and from the KF estimate along with the standard error. Values602

here are dominated by the variability induced by the normal modes. Note that the result can603

depend sensitively on 0 0 and the particular spatial structure of any given normal mode.604
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Figure 15: (a) Estimated western boundary current transport from the Kalman filter, and its standard

error (gray field). (b) Same as (a) except for the smoothed solution and showing the difference between

the true value and the estimated one. {rossby_wbctra

In the KF (Fig. 15), observations move the WBC values closer to the truth, but do retain605

the normal mode noise. Prior to the first observation, the values are indistinguishable from606

zero. Within the observation interval, the estimates are indistinguishable from the true value607

but still have a wide uncertainty with time scales present both from the natural variability and608

the regular injection times of the data. Transport value uncertainties are derivable from the P609

of the state vector.610

11.2 RTS Algorithm Results611

Turning now to the RTS smoother, one sees in Fig. 13 that the energy, Φ ()  in the smoothed612

solution is continuous (up to the usual time-stepping changes), but exceeds the true energy prior613

to the appearance of the first observation. The only information available to the smoother prior614

to the observational interval lies in the initial conditions, which were provided only with a very615

large uncertainty and the unknown u () in this interval also has a large variance. If the initial616

conditions are made near-perfect, the energy does decrease towards the origin as shown.617

The smoother solution in the pre-data interval differs more widely from the true value than618

does the KF solution. That behavior is a consequence of the comparatively large uncertainty619

estimate assigned to the initial conditions. If the initial conditions are made near-perfect then620

(Fig.13), they are reproduced in the smoother solution and the reduced energy in that interval621
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Figure 16: (a) One element, 2 ()  of the control vector correction estimate and (b) its standard error

through time, showing the drop to zero at the data time, and the rapid recovery to a higher value. {rossby_contro

is also the best estimate. An element through time of the control vector and its standard error622

are shown in Fig. 16. The complex result of the insertion of data is apparent. As with the KF,623

discussion of any systematic errors has to take place outside of the formalities leading to the624

smoothed solution.625

Fig. 17 shows the behavior of the estimate of the WBC transport and its uncertainty when626

the smoothing algorithm is used with two different data densities. A test of the hypothesis that627

it was indistinguishable from constant would be based upon an analysis using the uncertainty628

(not shown here).629

The very large uncertainty prior to the onset of data, even with use of a smoothing algorithm,630

is a central reason that the ECCO estimate (e.g., Fukumori, et al., 2018) is confined to the631

interval following 1992 when the data become far denser than before. Estimates prior to a632

dense data interval will depend greatly upon the time durations built into the system, which in633

the present case are limited by the longest normal mode period. The real ocean does include634

some very long memory (Wunsch and Heimbach, 2008), but the skill will depend directly on the635

specific physical variables of concern, and which in ECCO include the time-sensitive flow field.636

Fig. 18 shows the norm of the operator L controlling the correction to earlier state estimates,637

along with the time dependence of one of the diagonal elements. The temporal structure of L638

in Eq. B1b depends directly upon the time constants embedded in A and the compositions of639

P () P (+∆−). In turn these latter are determined by any earlier information, including640

initial conditions, as well as the magnitudes and distributions of later forcing and data accuracies.641

Generalizations are not easy.642
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Figure 17: (a) Smoothed solution (blue line) estimate of the western boundary current transport and

the true mean value along with the standard error of the KF estimate (gray lines). Data positions also

shown. (b) Uncertainty in the WBC estimate for the KF and the smoothed values. {rossby_wbctra

Figure 18: (a) Norm of the matrix L controlling the backwards in time state estimate. (b) {rossby_lnorm_
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Figure 19: (a) Norm of the the gain matrix, M (), through time (upper two panels) for the control

value.(b) Norm of the products of M () for 20 backwards steps showing strong decrease from the prior

observation.[??] {rossby_mstore

The gain matrix M () for computation of the control vector is displayed in Fig. 19. Here643

the dependence is directly upon the a priori known Q ()  the data distributions, and the deter-644

minants of P (+∆−)  The limiting cases discussed above for the state vector also provide645

insights here.646

11.3 Spectra647

Computation of the spectral estimates of the various estimates of any state vector element or648

combination is straightforward and the −transforms described in the text provide an ana-649

lytic approach. What is not so straightforward is the interpretation of the result in this non-650

statistically stationary system. Care must be taken to account for the non-stationarity, but651

results are not further described here.652

12 Discussion653

The behavior of dynamical system invariants, be they fundamental ones such as energy or circu-654

lation or scalar inventory, or derived ones such as a current transport, in sequential estimation655

processes depends upon a number of parameters. These parameters include the time scales em-656

bedded in the dynamical system, the temporal distribution of the data relative to the embedded657

time-scales, the accuracies of initial conditions, boundary conditions, and data, as well as the658

accuracy of the governing time evolution model. In addition, the invariant estimates can depend659

directly upon the accuracies of the uncertainties, explicit or implicit, in all of the elements mak-660

ing up the estimation system. Because of their interplay, the only easy generalization is that the661
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user must check the accuracies of all of these elements, including the often difficult appearance662

of systematic errors in any of them. When feasible, a strong clue to the presence of systematic663

errors e.g., in energies, lies in determining the nullspace of the observation matrices coupled with664

the structure of the state evolution matrices, A Analogous examples have been computed e.g.,665

for advection-diffusion systems (not shown, but see Marchal and Zhao, 2021) with analogous666

results concerning e.g., estimates of fixed total tracer inventories.667

Physical insights into the system behavior are essential, as is an understanding of the struc-668

ture of the imputed statistical relationships. As a considerable literature cited previously has669

made clear, the inference of trends in properties in the presence of time-evolving observation sys-670

tems requires particular attention. At a minimum, one should test any such system against the671

behavior of a known result–e.g., treating a GCM as “truth” and then running the smoothing672

algorithms to test whether that truth is forthcoming.673
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13 Appendix B The Smoothing Problem677

In the terminology of control theory and engineering, estimates using models and data and678

applying to finite time intervals are known as “smoothers.” A variety of approaches exists (see679

e.g. Anderson and Moore, 1979; Goodwin and Sin, 1984). In the present context, it is the “fixed680

interval” smoother that is of most interest. Given the linear discrete time prediction model, and681

a set of noisy data distributed over times , find a weighted least-squares fit of the model to682

the data at the sampling times. In the prediction model, u () vanishes, as being unknown. The683

fitting can involve initial conditions, boundary conditions (contained in qu) and the general684

forcing q Adjustments can be made to the model parameters themselves (elements of A) but685

that renders the problem nonlinear, and although the subject has a large literature, it is ignored686

here. In any event, the result is one that satisfies the model over the entire time-domain along687

with whatever conservation requirements are implicit. BΓ have the configurations necessary688

to distribute the disturbances qu correctly over the state vector elements. Commonly, B = Γ689

Direct, static, inversion of Eq. (4) for x (E) was described in above.690
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RTS Smoother691

Consider the sequential algorithm usually known as the Rauch-Tung-Striebel (RTS) smoother, in692

which the assumption is made that the KF has been used, rigorously, over the finite interval 0 ≤693

 ≤ , producing the estimates denoted x̃ (−)  x̃ () with their corresponding uncertainty694

covariancesP (−) P ()  At this stage, no further discussion of the data occurs: all information695

contained in the observations has been exploited by the KF and is encompassed in x̃ () and its696

uncertainty P (). What has not been exploited in an estimate x̃ () P ()  is any information697

contained in data that were obtained afterwards,  +∆   but that information is present698

in any later estimates x̃ (+∆) P (+∆) 699

The logic of the RTS smoother is to compare the change that took place between x̃ (−)700

and x̃ ()  and its uncertainty, to estimate the unknown elements in q ()  (called u ()) and701

to improve the preceding estimate x̃ (−∆−) and its uncertainty. If done rigorously–up to702

the various assumptions–the result is a system in which changes in the physical invariants can703

be properly attributed to specific, estimated, forcing/sources/sinks, etc. over the entire time704

interval being considered.705

The resulting RTS algorithm is more complex appearing than is the KF, because all of the706

later estimates have a finite correlation with the previous ones and they cannot be simply com-707

bined without first removing that correlation. (The scalar state vector case is readily analyzed708

without any matrix/vector algebra and is written out in Appendix C.) As described in the709

numerous textbooks, the RTS algorithm is,710 {rts1}

x̃(+) = x̃() + L(+∆) [x̃(+∆+)− x̃(+∆−)]  (B1a) {rts1a}

L(+∆) = P()A() P(+∆−)−1 (B1b) {rts1b}

{rts2}

ũ(+) =M(+∆) [x̃(+∆+)− x̃(+∆−)]  (B2a) {rts2a}

M(+∆) = Q()Γ()P(+∆−)−1 (B2b) {rts2b}

{PQ}

P(+)=P()+L(+∆) [P(+∆+)−P(+∆−)]L(+∆)  (B3a) {Ptplusa}

Q(+)=Q()+M(+∆) [P(+∆+)−P(+∆−)]M(+∆)  (B3b) {Ptpb}
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involving the estimate at a formally future time, +∆ (As always, in the forward, prediction,711

the unknown u() = 0) The + in the argument is used to label the estimates of these variables712

as having employed the formally future data.713

Algorithmically, these equations are run “backwards” in time from  =  using the ter-714

minal time estimates x̃ () P () found from the KF as the starting values. The main715

point here is that one obtains new estimates x̃(+)P (+) that use the information about716

the formally future data, as well as estimates of the changes required in the forcing/boundary717

conditions etc., u(+) and their uncertainty Q(+). The result is a system, x̃(+)u(+)718

that now satisfies the original prediction equation including its implicit or explicit invariants,719

but with modified values of the initial and boundary conditions, such that the data are also con-720

sistent within their error bars. As with the discussion of the various nullspaces of E Q()Γ()721

will determine the extent to which elements of ũ(+) can be resolved from the observations.722

Limiting Cases723

The RTS smoother algorithm is not very intuitive. Consider two limiting cases. First,

suppose that at time  it is known that no forcing has occurred, Q ()= 0 and then ũ (+) = 0

Eq. (B1a) produces (assuming the inverses exist),

x̃(+)− x̃() = P()A() (A ()P ()A ())−1 [x̃(+∆+)− x̃(+∆−)] (B4)

= P()A()
³
A ()− P ()−1A ()−1

´
[x̃(+∆+)− x̃(+∆−)]

= A ()−1 [x̃(+∆+)− x̃(+∆−)] 

that is, the backwards in time correction is simply the model run backwards in time on the724

discrepancy seen at +∆725

Now consider the opposite limit, in which x̃() is known perfectly, so that P () = 0 Then

P (+∆−) = ΓQ ()Γ , owing to the unknown forcing only. Then, L( +∆) = 0, and the
previous perfect state estimate remains unchanged, x̃(+) = x̃(). Also,

M(+∆) = Q()Γ()
£
Γ(t)Q ()Γ()

¤−1
(B5)

= Q()Γ()Γ()−Q ()−1Γ()−1 = Γ()−1

726

ũ(+) = Γ ()−1 [x̃(+∆+)− x̃(+∆−)]  (B6)

simply an estimate of what the disturbance was. Generally, Γ−1 does not exist (Γ will almost727

never be a full-rank square matrix), and a generalized inverse could be used–leaving a null-space728

in ũ(+) as part of its uncertainty. Between these two limits, the algorithm partitions changes729

in the earlier state vector and in the control according to their relative covariances.730
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Appendix C Scalar Systems731

The algebraic statement of the smoother is not easy to penetrate. Consider an even simpler732

system—that of a scalar obeying a time evolution equation, the “prediction equation” in the733

above terminology is,734

 (+∆) =  () +  () + Γ () () (C1) {c1}

where ||  1 is a constant, and  () is a known forcing process. Γ () () has zero-mean and735

variance  ()  perhaps constant in time, and represents any unknown element in  ().  is736

used as  () represents the uncertainty in  Γ are known scale factors and might as well be737

taken as 1 but are useful markers. Let there be observations of  () 738

 () =  () +  () (C2) {c2}

where the observation noise,  ()  is another zero-mean white noise process of variance,  The739

system begins at  = 0 with an initial condition ̃ (0)  with a known uncertainty,  (0) =740

(̃ (0)−  (0))2  No null space of  exists741

The Kalman Filter742

Prediction is made using Eq. (C1) with the unknown  () set to zero and the estimated743

initial condition. Then744

̃ (+∆−) = ̃ () +  ()  (C3) {c3}

At the previous time-step, the uncertainty,  () = (̃ ()−  ())2  is known, and then the745

uncertainty of the prediction is,746

 (+∆−) = 2 () + Γ2 () (C4) {c4}

with as before, the minus sign indicating that no data at time  + ∆ have been used. If no747

data are available, ̃ (+∆) = ̃ ()  and its uncertainty is  (+∆) =  (+∆−) with Eq.748

(C4) becoming,749

 (+∆) = 2 () + Γ2() (C5) {c5}

a simple difference equation which can be solved beginning at  = 0750

If no data at all are available, taking the −transform,  = exp (−2∆)  and denoting751

the result with a circumflex,752

̂ ()  = 2̂ () + Γ2̂() (C6) {c6}

and753

̂ () =
̂ ()

1− 2
= ̂ () 

¡
1 + 2 + 24 + 

¢
(C7) {c7}
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If  is a constant, ̂ () = 0
¡
1 +  + 2 + 

¢


̂ () = 0
¡
 + 2 + 3 + 

¢ ¡
1 + 2 + 4 + 63 + 

¢
(C8) {c8}

=
0

(1− 2) (1− )

and which will not converge on || = 1; the pole at  = 1 arises from the accumulating influence754

of the constant  One might assume a vanishingly small decay constant,  → 0 so that755

 () = (1− )0 and then,756

̂ () =
Γ20

(1− 2) (1− (1− ) )
 (C9) {c9}

is now interpretable as a Fourier transform on || = 1757

If data are available at time 758

̃ () = ̃ (−) +  (−)
[2 (−) +]

( ()−̃ (−)) (C10) {c10}

where the difference,  ()−̃ (−) includes both the observational noise, and the discrepancies759

in the predicted state from the true value. Evidently, any mis-specification of ,  or  (0)760

will lead to an error in the estimate, and in its uncertainty. With   1 the influence of initial761

condition, ̃ (0)  will fade with time. In the limit of zero observational noise,762

̃ () = ̃ (−) +  (−)
2 (−)( ()−̃ (−)) =  () 

as one would expect. In the opposite limit of very large noise, no change is made in ̃ (−) 763

The uncertainty following employment of the observation at  =  is764

 () =  (−)
µ
1−  (−)2

2 (−) +

¶
≤  (−)

that is, the data reduces the uncertainty. Should → 0  () vanishes but would become finite765

again at the next predicted time-step. If →∞  () =  (−) 766

Smoother767

Now assuming that the KF has been run out to a duration 0 ≤  ≤  the Rauch-Tung-768

Striebel (RTS) algorithm can be used to improve the estimates using observations that were769

formally future to times  in the KF. Let any such new estimate be denoted ̃ (+)  with a770

new uncertainty  (+)  Then for this scalar system,771

̃ (+) = ̃ () +
 () 

 (+∆−) [̃ (+∆+)− ̃ (+∆−)] (C11)
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so that if there were no data future to  +∆ ̃ (+∆+) = ̃ (+∆−)  and no change is772

made in the previous value, ̃ ()  If, previously, ̃ () were know perfectly,  () = 0 and again773

no change is made.774

Supposing ̃ (+∆+) were perfect e.g., from a perfect observation at that time, ̃ () is not775

simply replaced by the model run backwards, because the change is appropriately partitioned776

between ̃ (+) and ̃ (+) The estimated unknown control variable in that interval is,777

̃ (+) =
 ()Γ ()

 (+∆−) [̃ (+∆+)− ̃ (+∆−)] (C12)

If ̃ (+∆+) is perfect, ̃ () is directly proportional to the difference between the predicted778

̃ (+∆−) and the true value, but not equal to it because some of the change is allotted to779

̃ (+) Similar constructs can be inferred for the various uncertainties. Should  = 0 ̃ (+) =780

0 and with  (+∆−) = 2 ( ), then ̃ (+) = ̃ () = 1 [̃ (+∆+)− ̃ ( +∆−)] 781

Appendix D. Direct Least-Squares Solution782

That sequential estimation requires knowledge of the uncertainties at each stage leads to con-

sideration of non-sequential methods, whose great advantage is avoidance of that major compu-

tational burden. Their chief weakness, however, is the corresponding absence of knowledge of

the uncertainties. Nonetheless, it is useful to understand how those methods work, particularly

as systems such as ECCO (see e.g., Fukumori et al., 2018, 2019) rely upon these non-sequential

approaches. Although the methodology has a number of opaque labels (e.g., “4DVAR”, or “ad-

joint”), algorithmically it is simply a form of recursive weighted least-squares with Lagrange

multipliers (e.g., W06 and references there). One begins, as in all least-squares problems, with

the statement of an objective function to be minimized, for example,

1 =

X
=1

(y ()−E ()x ()) R ()−1 (y ()−E ()x ())+ (D1) {obj1}

(x (0)− x0) P (0)−1 (x (0)− x0) +
−1X
=1

u () Q ()−1 u ()

where the first term is a conventional weighted misfit of the state estimate to the data, the783

second term is the misfit to the initial conditions (which could be included in the “data”), and784

the third term attempts to minimize the control, u ()  from its initial estimate, weighted by785

its prior uncertainty matrix. The minimization is subject to the model evolution being correct,786

and that is appended using Lagrange multipliers, μ ()  so that the final objective function is,787

 = 1 − 2μ () [x (+∆)−Ax ()−Bq ()− Γu ()]  (D2) {obj2}
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whose stationary value is to be found. Because an error term, Γu ()  appears in the appended788

model, this constraint is a “soft” one. (Again, AB, Γ can be time-dependent, and the model789

can be non-linear.) Setting all the partial derivatives in Eq. (D2) with respect to x ()   =790

0  u ()   = 0  − ∆ and μ ()   = 0  − 1 to zero, one obtains conventional normal791

equations. In practice, the appended model is nonlinear.792

This resulting system has an equal number of equations and unknowns and in principle can793

be solved like any other set of linear simultaneous equations. In practice, the dimension is so794

large, that a great deal of attention has been paid to solving it recursively (Heimbach et al.,795

2009). Without going into those details, note that the resulting solution is identical to that found796

from the smoothing algorithm, but without the burden of finding the uncertainty matrices. As797

discussed in the various references, knowledge of μ () permits a highly efficient calculation of798

sensitivities to various elements, although not a formal statistical uncertainty.799

In the normal equations resulting from taking the derivatives in Eq. (D1, and see W06),800

the transposed A matrix (the adjoint matrix) is very important. Claerbout (2014, Ch. 1) gives801

a number of useful intuitive physical interpretations of algebraic adjoints. In the same way802

that nonlinear systems lead to successive linearizations through the extended Kalman filter and803

corresponding smoothers, the least-squares system can be readily solved by iteration (Heimbach804

et al., 2009). (These non-linear extensions make assumptions about the degree and type of805

nonlinearity, but that discussion is outside the present scope.)806
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