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conventional diffusion coefficient values and no vertical advection, results show a very strong depen-
dence upon initial conditions at —100 ky. Earlier inferences that the abyssal Southern Ocean was strongly
salt-stratified in the LGM with a relatively fresh North Atlantic Ocean are found to be consistent within
uncertainties of the salinity determination, which remain of order +1 g/kg. However, an LGM Southern
Ocean abyss with an important relative excess of salt is an assumption, one not required by existing core
Last glacial maximum data. None of the presenF result.s show statistically signiﬁgmt abyssal .salinity.va'lu.es above the glol?al
Ocean salinity average, and results remain consistent, apart from a general increase owing to diminished sea level, with
Pore waters a more conventional salinity distribution having deep values lower than the global mean. The Southern
Abyssal ocean Ocean core does show a higher salinity than the North Atlantic one on the Bermuda Rise at different
water depths. Although much more sophisticated models of the pore-fluid salinity can be used, they will
only increase the resulting uncertainties, unless considerably more data can be obtained. Results are
consistent with complex regional variations in abyssal salinity during deglaciation, but none are sta-
tistically significant.
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1. Introduction that a reduction in sea level of about Ah = —125 m in an ocean of
mean depth h=3800 m would increase the oceanic average salinity,
McDuff (1985) pointed out that pore-waters in deep-sea cores S, by and amount AS as,
have a maximum chlorinity (salinity) at about 30 m depth owing to
the sea level reduction during the last glacial period. He empha- § _ 7A7h _ 1275z0 03 (1)
sized, however, the basic million-year diffusive time-scale of S h 3800 7
change in cores of lengths of several hundred meters. Schrag and
DePaolo (1993) pioneered the interpretation of the data, focus-
sing on 6'® O in the pore water, and noted that in a diffusion-
dominated system, the most useful signals would be confined to
about the last 20,000 years. Subsequently, Schrag et al. (1996,
2002), Adkins et al. (2002), Adkins and Schrag (2003; hereafter
denoted AS03) analyzed pore water data to infer the ocean abyssal
water properties during the last glacial maximum (LGM) including
chlorinity (interpreted as salinity) and 68 O,,. (The w subscript is
used to distinguish the values from §'® O, in the calcite structures of
marine organisms.)
The latter authors started with the uncontroversial inference

With a modern average salinity of about 34.7 g/kg, AS = 1.04 g/
kg for a global average LGM salinity of about 35.7 g/kg. By calcu-
lating the salinity profile as a function of core depth, they drew the
now widely accepted inference that the abyssal LGM ocean con-
tained relatively more salt—with values above the LGM global
mean—than it does today. A Southern Ocean core produced
calculated values exceeding 37 g/kg. (ASO3, used a somewhat
higher value of 35.85 g/kg for the LGM mean. The difference is
unimportant in what follows.)

Those inferences, coupled with analogous temperature esti-
mates from 6'® 0y, (Schrag et al., 2002) that the deep ocean was
near freezing, has widespread consequences for the oceanic state,
carbon storage, deglaciation mechanisms (e.g., Adkins et al., 2005),
etc. A salty, very cold, Southern Ocean abyss has become a quasi-
To,])epartment of Earth, Atmospheric and Planetary Sciences, Massachusetts fact of the, SUb-!ECt (e.g., Kobayashi et al, 2015). .

Institute of Technology, USA. In the interim, a few other analyses have been published. Insua
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Fig. 1. Core positions—white circles—used by Miller et al. (2015), Adkins and Schrag (2003). Shown on a chart of the modern 20-year average salinity at 3600 m from the ECCO 4
state estimate (e.g., Forget et al., 2015). The focus of attention here is on the North Atlantic core near Bermuda and the South Atlantic—one southwest of the Cape of Good Hope. A
modern average salinity calculated from these 5 positions might be useful but would not be very accurate. See Table 1 for descriptive references of each core, and the greatly varying
water depths at each site. In the modern ocean, the North Atlantic at 3600 m is more saline than the Southern Ocean. The modern full volume average salinity is about 34.7 g/kg. The
average value at this depth today is about 34.75 g/kg (not area weighted) and about 34.74 g/kg when weighted. A suite of charts for modern salinity and other properties in section
and latitude-longitude form is available in the online WOCE Atlas. Variations are complex and defy a simple verbal description. In particular note that strong zonal structures in

salinity exist in the abyssal Southern Ocean; it is not zonally homogeneous.

came to roughly similar conclusions. Miller (2014) and Miller et al.
(2015), using a Monte Carlo method, carried out a form of inversion
of the available pore water profiles and drew the contradictory
inference that the data were inadequate for any useful quantitative
conclusion about the LGM salinity or 6'8 O,

Determining the stratification of the glacial ocean and its
physical and dynamical consequences is where paleo-physical
oceanography meets sedimentology and core chemistry; see
Huybers and Wunsch (2010). The purpose of the present note is to
carry out a more generic study of the problem of making inferences
from one-dimensional time-dependent tracer profiles. For

maximum simplicity, only chlorinity/salinity data are discussed,
with an analysis of 68 0,, postponed (Wunsch, 2016). The question
being addressed is whether the chlorinity data alone determine the
ocean salt stratification during the LGM? The papers already cited can
be interpreted as asking whether, given other knowledge of the
LGM, the chlorinity data contradict their picture of that time?
Conventional inverse methods derived from control theory are
used: these have a more intuitive methodology and interpretation
relative to those of the more specifically Bayesian Markov Chain
Monte Carlo (MCMC) method of Miller et al. (2015). Although the
MCMC method produces full probability densities for the results,
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Fig. 2. Histogram of the modern ocean salinity at 3600 m as a time average over 20 years from the ECCO state estimate (Forget et al., 2015). Perhaps the glacial ocean was more
homogeneous? The two modes roughly correspond to North Atlantic Deep Water and Antarctic Bottom Waters. The probability of an accurate global average from any handful of
values is low and note that the core tops here lie at considerably different water depths (Table 1).
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Fig. 3. Salinity, g/kg over the full measured depth in each of the five cores. This paper focusses on Cores 1063, 1093 plotted as thicker lines. See Table 1 for a reference and
geographical label for each core. Vertical dashed lines are the approximate modern global volume mean salinity, 34.7 g/kg and the approximate LGM value of 35.7 g/kg. and dotted
line fragment shows the LGM maximum value of Cp(t) estimated for this core by Adkins and Schrag (2003).

interpretations almost always begin with the mean and variance,
quantities emerging from the more conventional methods. As in
the formal Bayesian approaches, prior knowledge with statements
of confidence is both needed and readily used. (For modern phys-
ical oceanographers, parallels exist with understanding the estab-
lishment through time of the “abyssal recipes” formulation of
Munk (1966) although the parameter ranges are far different.)
The approaches here are those used by Wunsch (1988) for oceanic
passive tracers and by Macayeal et al. (1991) to infer temperatures
in ice boreholes (and see Macayeal, 1995).

1.1. Profiles

To set the stage and to provide some context, Fig. 1 shows the
positions of the cores discussed by AS03 plotted on a contour map
of modern salinity at 3600 m depth. A bimodal histogram of those
salinity values is shown in Fig. 2. Figs. 3 and 4 display the data
available from five cores whose positions are shown on the chart.
Considerable variation is apparent in both space (latitude and
longitude) and time (that is, with water depth and depth in the
core).

Consider the Southern Ocean core ODP 1093 (see Gersonde
et al,, 1999, and Figs. 3 and 5) analyzed by AS03 and by Miller
et al. (2015). It was this core that displayed the highest apparent
salinity during the LGM and which led to the inference of a strongly
salinity-stratified ocean dominated by Antarctic Bottom Waters.
(Its position on top of a major topographic feature, Fig. 5, raises
questions about the one-dimensionality of the core physics, but
that problem is not pursued here.) The overall maximum of about
35.7 g/kg perceptible in the core is somewhere between 50 and
70 m depth below the core-top and is plausibly a residual of high
salinity during the LGM (a very large value near 400 m depth is
assumed to be an unphysical outlier). Initially, only the top 100 m of
the measured cores, Fig. 4, will be dealt with here. The main
questions pertain to the magnitude and timing of the maxima and
their interpretations. Very great differences exist in the water
depths of the cores (Table 1) and the physical regimes in which they
are located are today very different. Differences amongst the core
salinity profiles are unsupportive of simple global-scale change.

In what follows, only the Atlantic Cores 1063 (about 4500 m
water depth) and 1093 (about 3600 m water depth) will be

discussed. Notice (Fig. 4) that the maximum salinity observed in
Core 1093 in the upper 100 m is at best at, but not above, the
estimated oceanic LGM global mean salinity maximum of 37.08 g/
kg of AS03.

In Core 1063, at the northeastern edge of the Bermuda Rise, the
apparent maximum occurs somewhere in the vicinity of 40 m core
depth, with a value of about 35.35 g/kg—above the modern water
mean—but well-below the LGM mean. Core 1063 was used to infer
that the deep North Atlantic Ocean had not become as saline as in
the Southern Ocean, and hence with the results from Core 1093,
that the Southern Ocean had an extreme value of abyssal salinity,
relative to the rest of the LGM ocean. Generally, the salinity of Core
1063 is lower than that of 1093 except near the core-top where the
variability in Core 1093 precludes any simple statement.

Inferences from pore water profiles correspond to what in the
control literature is known as a “terminal constraint” problem (e.g.,
Luenberger, 1979; Brogan, 1991; Wunsch, 2006—hereafter W06):
In a physical system, the externally prescribed disturbances are
sought that will take the system from a given initial state to a
known, within error-bars, final state.! Here the physical system is

1 A more intuitive analogue of this problem may be helpful, one based upon the
terminal control problem for a conventional robotic arm. An arm, with known
electromechanical response to an externally imposed set of control signals, has to
move from a three dimensional position, £y+A&g, at time t=0, to a final position
£, A&y at time ty. In three-dimensions, there exists an infinite number of pathways
between the starting and ending position, excluding only those that are physically
impossible (such as a movement over a time-interval physically too short for transit
between the two positions). Even if the trajectory is restricted to a straight line,
there will normally be an infinite indeterminacy involving speed and acceleration.
The control designer “regularizes” the problem by using a figure-of-merit e.g., by
demanding the fastest possible movement, or the least energy requiring one, or
minimum induced accelerations etc. The designer might know e.g., that the arm
must pass close to some known intermediate position &;+A&; and which can greatly
reduce the order of the infinity of possible solutions. In the case of the pore fluid,
the initial “position” (initial pore fluid value, c(z,ty), is at best a reasonable guess, and
no intermediate values are known. The assumed prior control represents an initial
guess at what controlling signals can be sent, e.g., that a voltage is unlikely to
exceed some particular value. The “identification” problem would correspond to the
situation in which the model or plant describing the reaction of the robotic arm to
external signals was partially uncertain and had to be determined by experiment.
And perhaps the response would also depend upon time, involving the changing
mechanical configuration, as occurs for example, in controlling the trajectory of
aging spacecraft.
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Fig. 4. Same as Fig. 3 except expanded to show only the top 100 m. The maximum measured value in core 1093 lies near the estimated LGM mean of 35.7 (vertical dashed line), but
does not exceed it except slightly in short, possibly noise, events. Thick lines are the data from the two cores analyzed, 1063, 1093. Approximate modern mean salinity of 34.7 g/kg is
also shown as a vertical dashed line. The salinity increase with depth in the much fresher Core 1239 is almost as large as that appearing in Core 1093. Near surface, the core is either

undersampled, or the data are extremely noisy.
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Fig. 5. Location of ODP Core 1093 on the Southwest Indian Ridge. See Gersonde et al.
(1999).

an assumed advection-diffusion one, with the initial state being the
salinity profile far in the past (perhaps —100,000 y), the terminal

Table 1

state is represented by data from the measured core pore-water.
The disturbances sought are the abyssal water salinity—providing
a time-varying boundary condition at the sediment-water inter-
face. Readers familiar with advection-diffusion problems will
recognize their dependence upon a long list of knowns, including
the initial and boundary conditions, and the advective flows and
diffusion coefficients governing the time-depth evolution. In the
present case, flows and diffusion coefficients are expected to
display structures varying in both space (depth in core) and time. In
the best situation, only their terminal values can be measured in the
core. The problem is further compounded by the dependence of
advection and diffusion on the time history of the solid phase in the
sediment containing the pore waters. Finally, and a question also
ignored here, is whether a handful of core values can be used to
infer global or regional mean properties (see Figs. 1 and 2) with
useful accuracy.

For the time being, the problem is reduced to a basic skeletal
framework to understand its behavior under the most favorable
conditions.

2. Models

General discussion of pore fluid behavior in sediments can be
found in Berner (1980), Boudreau (1997), Fowler and Yang (1998),
Einsele (2000), Bruna and Chapman (2015) and in the papers
already cited. Simplifying a complex subject, LGM pore fluid studies
reduce the vertical profiles to the one-space-dimension governing
equation, the canonical model,

oc oc 0 oc
E+wa—z—&(k&):0 )

Cores from which chlorinity/salinity data were used, along with a reference to their initial description in the Ocean Drilling Program (ODP) and with a geographical label. A

nominal water depth of the core-top is also listed.

Core no. Reference Location Water depth (m)
0ODP981 Jansen et al. (1996) NE Atlantic, Feni Drift/Rockall 2200
ODP1063 Keigwin et al. (1998) Bermuda Rise 4600
ODP1093 Gersonde et al. (1999) Southern Ocean, SW Indian Ridge 3600
ODP1123 Carter et al. (1999) E. of New Zealand, Chatham Rise 3300
ODP1239 Mix et al. (2002) E. Tropical Pacific, Carnegie Ridge/Panama Basin 1400
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Fig. 6. Measured porosity from all five cores. Tortuosity is assumed to follow Eq. (4). In the present calculations the corresponding diffusivity, k, is taken to be constant with depth.
Experiments with linear k produced only slight changes from the solutions with a constant value.

Here k is an “effective” diffusivity, and w is a non-divergent
vertical velocity within the core fluid relative to the solid phase.
Note that if 0k/dz+0, the diffusion term breaks up into two parts,
one of which is indistinguishable from an apparent advective term,
w'=—0k/dz, so that Eq. (2) is,

ac ok\ ac , ¥%c
ar (v i) kim0 3

k depends upon the porosity, ¢, and the tortuosity, 4, of the sedi-
ment through relations such as,

02 = ¢l =18, I<oc¢/02. (4)

An upward increasing porosity (Fig. 6 and Eq. (4)) produces, an
apparent effective w'=—dk/dz. The oceanographers' convention
that z is positive upwards is being adopted, but here the origin is at
100 m below the sediment-water interface, and where a boundary
condition must be imposed. Experiments (not shown) with k
changing linearly by a factor of two showed little change from the
constant k values.

The core fluid is visualized as being contained in a vertical
“pipe,” extending from z = 0 at the base of the pipe to z = h at the
sediment-water interface. At that interface, it is subject to a time-
dependent boundary condition Cp(t) = c(z = h,t), 0<t<ts repre-
senting (here) the salinity of the abyssal water and whose values
through time are sought. The only available data are the measured
profile at t = tyover a depth range 0 <z < h(ty) where tfis the date at
which a core was drilled. h is here taken as 100 m above the origin.
Information about the initial condition, Cy(z) = c(z,t=0), and the
boundary condition at z = 0, may, depending upon parameters, be
essential.

Sediment continues to accumulate and erode over the time
history recorded in the core. Thus the sediment-water interface,
z = h, is time-dependent, and perhaps monotonically increasing. A
somewhat typical sedimentation rate (they vary by more than an
order of magnitude) might be about 5 cm/ky = 1.6 x 1072 m/s.
Following Berner (1980) and Boudreau (1997), h is fixed to the
moving sediment-water interface, meaning that the solid material
directly exposed to the abyssal salinity would be 5 m displaced
from the initial surface at the end of 100,000 y. The assumption is
thus made that while the particulate material is displaced, the fluid
in contact with the overlying sea water remains the same. With h(t)
taken as a fixed point, a corresponding 5 m error at the core-base,
h = 0, is incurred, and will be ignored.

The canonical model omits a complex set of boundary layers just
below and just above the interface at the sea floor (e.g., Dade et al.,
2001; Voermans et al., 2016), which in principle are observable at
the core top, and which would affect the boundary condition there.
These too, are being ignored.

2.1. Scale analysis—orders of magnitude

Before doing any specific calculations, obtaining some rough
orders of magnitude is helpful. Although every core is different, the
time interval of most interest here is the LGM, taken to end
nominally at t=t—20,000 y=tf — 6.3x10'" s (20 ky BP) following
which deglaciation begins. For several cores, ASO3 estimated
k=3x10"19m/2 s and Miller (2014) a value of k=2x10"1 m?/s. In
the purely diffusive limit with w=0, the e-folding diffusion time to
reach the whole core depth is L?/k=1.6x10° y, with the latter value
of k. The e-folding diffusion decay time at any depth is I?/k, where >
is the vertical length scale of any disturbance in the profile. For [=
10 m, /k=16,000 y not far from the time interval since the LGM.
Depending directly upon the analytical sensitivities and the space/
time scales of interest, a 100 m core can retain a signature of some
disturbances dating back more than 1 million years, consistent with
McDuff's (1985) inference. In the shorter term, and as noted by
Schrag et al. (2002), in a purely diffusive system the depth and
attenuated amplitude of a local maximum represent competing
dependencies on k, with smaller scale signals not surviving beyond
about 20,000 y.

Should the vertical velocity, w, of fluid within the core become
significant, additional time and space scales emerge—depending
upon the sign of w; the position and amplitude of maxima are then
no longer simply related. For w>0, a boundary layer familiar from
Munk (1966) of vertical scale, k/w, appears with an establishment
time of k/w? Should w=2x10"1" m/s=6 mj/thousand years, the
vertical scale is 1 m, with an establishment time of 5x10° s or about
150 y. Two Péclet numbers appear, one based upon L, the other
upon L If w<0, the advection time L/w is relevant and the combined
k,w scales are unimportant.

In a number of published results the initial conditions at some
time, t=0 in the core, Cy(z), are simply assumed to be of little in-
fluence in the interpretation of the final profile c(z,t=tf)=Cterm(2),
with most attention focussed on determining the temporal
boundary condition control, Cy(t). Whether the initial conditions
are unimportant (the signal having decayed away) or dominant,
given the long time scales within the core, will depend upon the
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Table 2
Notation used for initial, final and boundary conditions and for algebraic expres-
sions. In the discrete form, two time-steps of the concentration ¢ make up the state
vector, x(t), and corresponding imposed conditions, Tildes over variables denote
estimates. Matrices are bold upper case letters, column vectors are bold lower-case
letters.

Notation Variable Definition
Initial Condition Co(2) c(z,t =0)
Boundary Condition Ch(t) c(z =ht)
Terminal Condition Cterm(2) c(zt =t_f)

magnitudes of w,k, the sign of w, as well as the core length.

In principle, w,k values can be calculated from the available data
and various hypotheses, both physical and statistical the-
—"“identification problem.” Introducing further unknowns into
what will be perceived as an already greatly underconstrained
problem, leads necessarily to even greater uncertainty in the esti-
mates Cp,(t),0 < t < t, or of Co(z) (see Table 2 for notation; tildes
are used to denote estimates.) The simplest problem, with known
k,w, produces a lower bound uncertainty on the results. Should that
lower bound be too large for use, solving the nonlinear estimation
problem involving k,w as additional unknowns to be extracted from
the same limited data would not be justified.

2.2. Analytical reference solutions

In the simplest case with w=0, and k constant, a variety of
analytical solutions to Eq. (2) is available. These are again useful for
understanding the solution structure. As a representative calcula-
tion, set w=0 and k=2x10"1" m/2 s at zero-Péclet number. Let
Cp(t)=H(t), H(t) being the unit step (Heaviside) function, be the
upper boundary value, and let Cy(z) be the initial conditions. Fig. 7
displays the profiles from the analytical solution (Carslaw and
Jaeger, 1986, p. 101) calculated as a summation here over 100
terms of a weighted cosine series, as a function of time,

)Tl+l

LZ (2n+1

L

/ n+Daz\

+/CO(Z)COS(T dz
0

« e-k@nt1yw2e /4 ((2n42rL1)7rz) 5)

anal(z t

for a unit amplitude surface boundary condition, zero flux at the
bottom, and Cy(z)=0. The terminal profile is also shown. Weighting,
exp(—k(2n+1)?wt/4L?), connects the dissipation rate to the vertical
structure present in the solution,? and which rapidly removes even
moderately high wavenumber, (2n-+1)r/2L, structures whether
present in the initial conditions, or emanating from the boundary
condition (here, with zero initial conditions, only the boundary
step-function gives rise to high wavenumbers). Fig. 8 shows the
decay time to 1% of the initial value as a function of vertical scale in
the initial conditions or those induced by the boundary conditions.
Vertical scales shorter than about 12 m will have decayed by 99%
after 20,000 years and need not be considered with this value of k.

The equivalent solution for zero initial conditions and a periodic
surface boundary condition, Cy(t)=sin(ct) is (Carslaw and Jaeger,
1986, p. 105),

2 The scale used above, Lz/k, describes the lowest wavenumber response.

cosh2(a/2k)?z — cos2(a/2k) /2 / .
anal( t) = o/ )1/2 o/ )1/2 sin(ot + ¢)
cosh2(a/2k) /“L — cos2(a/2k)"/“L

n( 1)n+l L

k2 . /Mnz
2> e sn(F)

(6)

sinh[(a/Zk)l/zz(l + i)] }

o= arctan{sinh[(U/zk)l/ZL(I + i)]

where here the lower boundary condition is ¢(0)=0 and placed at

z=-500 m. The first term is the steady-state sinusoidal profile,

whose amplitude is shown in Fig. 10a as a function of depth for
varying ¢ and the above values of kL. The second term is the
starting transient with decay times shown in Fig. 10b. If the LGM
were regarded as part of a quasi-periodic signal with the obliquity
period of about 40,000 y, the signal would not penetrate much
below 50 m. Even at 100 ky periods, no measurable signal reaches
the base of a 100 m core.

Analytical solutions also exist for the case w=0, but are not
displayed here (see Wunsch, 2002 for references).

3. Representative model solutions

An axiom of inverse methods is that full understanding of the
forward problem is a necessary preliminary. In a conventional
forward calculation, solutions depend directly and jointly upon all
of:

(1) The initial conditions, Co(z),

(2) The top boundary condition here, c(z=h,t)=Cp(t)

(3) The bottom boundary condition involving c(z=0,t) and/or its
derivatives (here always a no-flux condition)

(4) Physical parameters, w,k.

Conventionally, these values are all perfectly known with the
solution changing if any of them does.

In practice in the present case, only the final state of the solu-
tion, Ceerm(z)=c(tf2), is approximately available. The inverse prob-
lem involves making inferences about the state, c(zt), 0<t<ty,
0<z<h, initial and boundary conditions, and the w,k parameters
from the limited supply of information. Use of prior information
(assumptions) with statements of confidence becomes crucial. If
incorrectly formulated, so-called inverse solutions to diffusive
systems can become extremely unstable and demonstrably stable
methods are required.

AS03 and subsequent authors have suggested that a good prior
estimate of the boundary conditions on all cores consists of making
C; P (1) proportional to the best-estimated sea level curve. Fig. 11
shows the calculated global mean salinity over 120,000 years
(Miller, 2014; Miller et al., 2015) from a number of sources (their
Table 1), and Eq. (1). Between about —70,000 y <t —25,000 y, values
higher than 35 g/kg are estimated owing to the reduction in sea
level, reaching a maximum at a sea level minimum near t=—
20,000 y. After that, the deglaciation leads to an estimated fall.>

3 Adkins and Schrag (2003) used a considerably more structured estimated sea
level curve. But because prior to —20 ky it was based upon measured 6'® 0, which is
one of the tracers under consideration in these cores Miller (2014), Miller et al.
(2015) chose to avoid any possibility of circular reasoning. Much of the small
scale structure present in the former curve would not survive the diffusive process
in the core. Large scale structures are qualitatively the same in both approaches.
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Fig. 7. Time-depth profile of a numerical solution using a Dufort-Frankel method (Roache, 1976) (a), and the analytic solution from Carslaw and Jaeger (1986, P. 101) for a zero-initial
condition, (b) for w = 0, k = 2 x 10~'° m/2s in a 100 m length “core” over a duration of 100,000 years. Panel (c) shows the terminal profile in the two solutions which are visually

indistinguishable. Time scale zero is at —100 ky BP.

Thus, following the previous literature, the top boundary con-
dition is, for now, assumed to be C;P"*"(t) and the bottom
boundary condition to be one of zero diffusive flux. Initial condi-
tions are problematic. The purely diffusive numerical calculation
and the analytic solutions both show that disturbances at the sur-
face will not penetrate significantly below about 40 m depth in
100,000 years. Structures in Figs. 3 and 4 below that depth cannot
have arisen from the core surface in the last 100 ky. At least four
possibilities suggest themselves: (1) The structures are simply the
noise in the core from measurements (see ASO3 for of the
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Fig. 8. Time for a particular vertical scale to decay to 1% of its initial value (from Eq.
(5)). Horizontal dashed line is at 20 ky.

technicalities and difficulties of shipboard measurements) or from
processes not yet included in the model (time-space-dependent
wyk, or clathrate formation, for example). (2) The structures arise
from the memory of the initial conditions. (3) A purely diffusive
model is inadequate. (4) The structures are the result of upward
diffusion/advection across the base of the core, z=0, noting in
particular that 8C(0)/dz in general does not vanish. All of these
possibilities could be at work.

The simplest interpretation of the solutions discussed by AS03
and others is based on assumption (1): that all structures other than
the deep overall maximum represent errors in the data, and that
only the gross maximum feature must be reproduced. In contrast, a
more agnostic approach is taken here, in which an attempt is made
to understand the extent to which some or all of the additional
core-data features can be regarded as signals. For example, if
structures in the initial conditions can persist in the core, they
should be visible at the terminal time. Some of the published so-
lutions have taken the sensible approach of maximum ignorance,
and set Cy(z)= constant, where the constant might be the modern
mean salinity. In that situation, either all of the terminal structure
arises from Cp(t), and/or non-uniform initial conditions are none-
theless also required by the terminal data. Another possibility is
based upon the description of the glacial-interglacial cycles as be-
ing quasi-periodic, with glaciations recurring at intervals lying
between 80,000 and 120,000 y, leading to a second plausible hy-
pothesis that the initial condition at t=—100 ky is close to the
observed terminal profile of the individual core (Fig. 3). Except
where specifically stated otherwise, this quasi-periodic condition,
but with different uncertainty estimates applied to the initial and
terminal data, is used throughout this study. The initial condition
uncertainty is always larger than the terminal one. A similar initial
condition (set at —125 Kky) was used by Miller et al. (2015).
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4. Terminal constraint inversions
4.1. Numerical model

Eq. (2) is now rendered into discrete form, simplifying the
representation of noise processes. Discretization can be done in a
number of ways. Here we follow Roache (1976; cf. Wunsch, 1987) in
the use of what Roache calls the Dufort-Frankel leapfrog method. A
uniform vertical grid, at spacing Az indexed in 0<i<N-1, and at
time intervals At produces,

Ci(t + At) = aci(t — At) + 8C_1 (t) + 0Ciyq (F), (7)

a=1/(1+2d), =1/(1+2d)(2d+e),6=1/(1+2d)(2d—&) (8)

with d=kAt/Az?, e=wAt/Az plus the boundary conditions, cn(t)=
Ci(t), c1(t)—co(t)=0. The latter is an assumed no flux condition at
the base of the core. Stability requires d<0.5. Defining a state vector,

36

x(t)=[c(t—At),c(t)]" involving two time-steps, Eq. (7) has the ca-
nonical form (e.g., Stengel, 1986; Brogan, 1991; WO06),
X(t + At) = AX(t) + Bq(t) + Tu(t) (9)

(Notation is that bold capitals are matrices, and bold lower case
letters are column vectors.) For this particular discretization,

On-1 In_1
00 . .0 00 . .0
a 0 0 O 0 0 6 0O 0
A_JO @0 0 050 .0
~)Y0 0 « O 0 0 8 0 o 0
000 . «a O O0OOO0OO o
00 0O O0OO0OO OOOODODO

X(t) = [c1(t — At), Cca(t — At),...,cn(t — AL), c1(t),cz(t),...,cN(t)]T

35.8
35.6

- 35.4

ki

= 35.2
35

34.8

34.6

I
—120

=740

KY

Fig. 11. Estimated global mean salinity from the sea level change curve (Miller, 2014; Miller et al., 2015, from a variety of sources). The direction of the time axis has been converted
to the physics convention from the geological “age”. This curve becomes the prior boundary condition Cﬁ Priot 1) Dashed lines are the estimated volume average modern (lower)
and LGM salinities (upper), the latter the value used by Adkins and Schrag (2003). Here the time scale represents time before the present.
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The dimension of square matrix A is 2Nx2N because of the need
to carry two time-levels. Row N+1 forces an assumed no-flux
condition at the bottom, and row 2N is all zeros, because the
boundary condition is set at that grid point by putting Boy=1, B;=0,
otherwise (here B is a 2Nx1 column vector) and q(t)=q(t) is the
imposed scalar Cp, P"'°"'(t). In a conventional calculation of x(t), T is
set to zero, but along with u(t) reappears in the inverse or control
calculations, representing the controls when elements of q are
regarded as unknown. u(t)=u(t), a scalar, with scalar variance Q(t). t
is now always a discrete value.

As a demonstration of the numerical model, let the time-step be
At=4x10° s (127 years), L=100 m, and Az= 1 m, k=2x10"10 m?fs,
w=0, for the Heaviside boundary condition, q(t)=1,0<t<trand zero
initial condition, with result shown in Fig. 7 and the terminal state
compared to the analytic solution. Consistent with the scale anal-
ysis and the analytic solution, the signature of the surface boundary
condition has not reached beyond about 50 m after 100,000 years.

Now consider the quasi-periodic initial condition with the same
w,k. Fig. 9 shows the results after 100 ky of forward model inte-
gration. The smallest scales present in the initial condition have
vanished—as expected. However, much of the intermediate and
largest structures at the terminal time originate with the initial
conditions. In contrast, also shown is the state when w = —|k|. In
that situation, the initial conditions are swept downward, out of the
core, before the terminal time.

When w=0, qualitative changes in the solutions occur. With
w>0, confinement of disturbances from C; P"°"(t) towards the
surface is even more marked than for the purely diffusive case.
When w<O0, structures in Cp(t) can be carried much further down
into the core than otherwise. The magnitude and sign of w thus
become major issues.

4.2. Inversions/control solutions

Miller (2014) also discussed the linear time-dependent inverse
problem of determining u(t), the modification to q(t) = C; P""(t)
and chose to solve it by “Tikhonov regularization.” (Here both q and
u are scalars—a special case). Although that method is a useful one
for deterministic problems, it does not lend itself to a discussion of
data and model error, nor of the uncertainties of the results owing
to noise. Determining a best-solution involves not only the core
physical properties and time-scales, but also the analytical accu-
racies, and systematic down-core errors.

Consider the problem of determining Cy(t)=q(t)+u(t) (that is,
u(t)) from the terminal values X(tf), which involves assuming here
that ¢(t—1)=c(ty)=Crerm(z). Now, I'=B, and u(t) is sought. Several
standard methods exist. One approach is to explicitly write out the
full set of simultaneous equations governing the system in space
and time, recognizing that the only information about the state
vector are its final values, X(ty), and a guessed initial condition, x(0).
In practice, neither will be known perfectly, and a covariance of the
error in each is specified, here called P(0) and R(tf) respectively.
Writing out the full suite of governing equations, setting At=1 for
notational simplicity but with no loss of generality,

X(0) +n(0) = Go(2)

x(1) — Ax(0) — Tu(0) + n(1) = Bg(0)

X(2) — Ax(1) — Tu(1) + n(2) = Bq(1)

x(3) — AX(2) — Tu(2) +n(3) = Bq(2)

~Ax(t~1) = Tu(ty ~ 1) +n(f) = ~Cem(@) + Ba (1),
(10)

where all unknowns are on the left of the equals sign, and all

known fields are on the right. Vectors n(t) represent the presence of
errors in the starting and ending profiles and their propagation
through the system. The I'u(t) terms are the controls and which,
more generally, include the model error, but here are specifically
accounting only for the uncertainties in Bq(t), q(t) = Gy P"°"(r).
Equation (10) are a set of linear simultaneous equations which is,
however, extremely sparse; unless tf or N become very large, they
can be solved by several methods for dealing with under-
determined systems. This route is not pursued here, but the exis-
tence of the set shows that any other method of solution is
equivalent to solving it, and which can help greatly in the inter-
pretation. The special structures present in the equations permit
rapid and efficient solution algorithms not requiring explicitly
inverting the resulting very large, albeit very sparse, matrix (a
generalized-inverse would be involved in practice), and which is
the subject of the next sections.

5. Lagrange multipliers-Pontryagin principle
5.1. Formulation

One approach uses ordinary least-squares and Lagrange multi-
pliers to impose the model (Eq. (9)) with an error represented by
the controls, and minimizing the weighted quadratic misfit be-
tween the calculated value of x(0) and xg and between the calcu-
lated x(ty) and Cerm,

J = (X(0) — Co(2))"P(0) ! (X(0) — Co(2))

- (5(s) o) (o) (5(5) - Cum)

t—1

+y_unQaw. (11)
t=0

respectively. Tildes denote estimates, but are sometimes omitted
where the context makes clear what is being described. The third
term renders the problem fully determined as a constrained least-
squares problem, by simultaneously minimizing the weighted
mean square difference between u(t) and its prior value (here
written as zero), and with a result that is a form of the “Pontryagin
Principle.” The figure of merit in the L, norm attempts to minimize
the mean square deviation of u(t) from the prior, which as written
here is zero, while simultaneously minimizing the squared differ-
ence from the assumed initial and final conditions in what is just a
form of least-squares. (Other figures-of-merit such as maximum
smoothness can be used. The problem can be reformulated too,
using different norms such as L1 or L.,; see the references.) Because
the system of equation (10) has a special block structure, a closed
form solution can be obtained (W06, P. 218+, or the Appendix here)
and which makes explicit the relationships between the initial and
final states, and the control, all of which are subject to modification.

5.2. Using Lagrange multipliers

With w=0, pure diffusion, and the quasi-periodic initial condi-
tion taken from Core 1093, an integration is started at
t=—100,000 y using the C; P"°"'(t) in Fig. 11 with result shown in
Fig. 9. Although a rough comparability to the core values occurs in
the top 10—20 m, they diverge qualitatively below that depth, both
in the large-scale structures and in the high wavenumbers apparent
in the core data. The first question to be answered is whether it is
possible to modify C; P"°"" (t) within acceptable limits, +/Q so as to
bring the two terminal profiles together within estimated error?

The second immediate question is whether the smaller scale
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structures in the core data are real structures or noise (issue (1)
above)? Assume that they are uncorrelated white noise of RMS
amplitude approximately 0.1 g/kg, and allowing the control u(t) to
have the possible large RMS fluctuation of 1 g/kg. The initial con-
ditions are assumed to have a white noise (in depth) RMS error of
1.7 g/kg, the terminal data RMS uncertainty is 0.1 g/kg, and the
result is shown in Fig. 12. Assuming that all of the structures visible
in the core data, except the maximum in the vicinity of 40 m from
the core bottom, are just noise, this solution is a qualitatively
acceptable one. ASO3 noted, that their solutions above the
maximum in depth did not produce a good fit. Much of the terminal
state here is controlled by the initial conditions, not Cp(t), except for
the last few thousand years in the very upper parts of the core.

Introducing w>0 exacerbates the confinement of the core-top
disturbances to the upper core placing even more emphasis on
the initial conditions. On the other hand, permitting w<0, here w =
—|k| m/s succeeds in producing a slightly better fit overall (see
Fig. 14) and increases the sensitivity to Cy(t) (using the same prior
statistics, held fixed throughout this paper). The modification
required to G P"°" (t) is also shown along with the resulting total
q(t) + u(t). This result decreases the maximum salinity estimated to
35.75 g/kg and delays its timing to about —12,000 y, and is followed
by a large variability. Notice that the estimated maximum salinity
again lies below the LGM average—implying high salinities else-
where. This solution is also a formally acceptable one, and if taken
at face value, moves the salinity maximum several thousand years
before that in the prior, and still below the LGM mean. The central
question at the moment is whether any of the variations in Cy(t) =
q(t) +u(t) are significant? Further discussion of this result is
postponed pending the calculation of its uncertainty.

The large negative value of w or w'—required to carry infor-
mation downward from the core top before diffusion erases the
observed structures—is counter to the conventional wisdom that
the appropriate model is nearly purely diffusive. No claim is made
that the model here is “correct,” only that if the magnitude of w is

much smaller, or that it is positive upwards, then the canonical
model cannot explain any of the pore-water salinity properties
below about 20 m unless they originate in the initial conditions. On
the other hand, the physics of fluid-solid interaction through
hundreds of thousands of years is sufficiently unclear (see the
references already cited) that ruling out large negative w is pre-
mature, particularly in partially saturated cores where the effects of
sea level-induced pressure changes of hundreds of meters of water
have not been accounted for. Violation of any of the other basic
assumptions, including especially, that of a one-dimensional-space
behavior, could render moot the entire discussion.

The Lagrange multiplier formalism does permit an affirmative
answer to the question of whether a model can be fit to the top
100 m of the core data within a reasonable error estimate? The
stable flow of information, nominally “backwards” in time from the
terminal state is particularly apparent (Eq. (A1)) via the transposed
matrix AT (the “adjoint matrix™). But it neither answers the ques-
tion of whether this model is “correct” (or “valid” in modelling
jargon), or if the model is nonetheless assumed correct, how un-
certain is the estimate, Cp(t) = q(t) + ii(t)? We next turn to this
latter question.

6. Smoothers

A great advantage of the Lagrange multiplier approach is that it
is computationally very efficient, not involving calculation of the
uncertainty of @(t), (the adjustment to Cy P"°"(t)) nor of the in-
termediate time values of the profiles in X(t). On the other hand, the
absence of those uncertainties is the greatest weakness of the
estimated state and controls in problems such as this one. The need
to find formal uncertainties leads to the alternative approach based
upon the idea of “smoothers”, which are recursive estimation
methods for calculating the state and control vectors using data
from a finite time-span. Several different smoothing algorithms
exist depending upon the particular need. Perhaps the easiest to
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Fig. 12. (a) Kalman filter solution, Core 1093, pure diffusion (w=0) and the sea level prior. The filter solution is identical to that shown from the pure forward calculation in Fig. 9
except, nearly invisibly, near the terminal time. (b) Estimate of the state vector after application of the smoothing algorithm, and which changes the state as far back as its initial
conditions. (c) Deviation of the terminal state estimate from the core data, along with one standard errors ,/P(tf) = , /P(t) (d) Gy P"*" (t) (solid), and the estimated Cy (t) = q(t) +
u(t) (dashed). Horizontal dashed lines are the modern and LGM global means, the latter the ASO3 estimate. The estimated value of Cy(t) remains below the global mean LGM salinity,
as the deep maximum is controlled by the initial conditions in contrast to the solution of AS03 which reached 37.1 g/kg. (e) Last 5000 years of i(t), and the one standard deviation
uncertainty from +./Q(f). Except at the very end, Q(t) differs negligibly from Q(t).(f) Terminal state from the Kalman filter just prior to the invocation of the terminal data (identical
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smoothed solution are identical at t=ty.
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understand is the so-called RTS (Rauch-Tung-Striebel) algorithm
which involves two-passes through the system in time.

To start the RTS algorithm, a prediction algorithm known as the
Kalman filter is used, beginning with the initial conditions and their
uncertainty, employing the model (Eq. (9)) to predict the state at
the next time when more observations become available (perhaps
many time-steps into the future). By weighting the prediction
inversely to its uncertainty and the observations inversely to their
errors, a new estimate is made combining the values appropriately,
and determining the covariance matrix of the new combined esti-
mate. With that new estimate, further predictions are made to
times of new data. (Note that the state estimate jumps every time a
new model-data combination is made, meaning that at those times
the model evolution equation fails.) After arriving at the final data
time, t, another algorithm is used to step backwards in time to t=0,
using the later-arriving data to correct the original predicted and
combined values of x(t), and estimating the control vector u(t)
necessary to render the model exactly satisfied at all time-steps.
Uncertainty estimates are required in the calculation for both
state vector and control.

Because several covariance matrices are square of the dimension
of x(t), for large systems the computational load can become
enormous. Calculating the error covariance matrix of the state
predicted by the Kalman filter is equivalent to running the model
N? times at every time step, and which is why true Kalman filters
and related smoothers are never used in real atmospheric or
oceanic fluid systems. Nonetheless, in the present context, realistic
calculations are feasible on modest computers. The state vector
solution from the Lagrange multiplier method and from the RTS
smoother can be shown to coincide (e.g., W06, P. 216) and the
uncertainties may be of little interest as long as the controlling
solution is physically acceptable.*

4 For example, in operating a vehicle such as an aircraft, that a useful control
exists may be the only concern, and with its non-uniqueness being of no interest.

6.1. Using the filter-smoother

Consider again Core 1093. The Lagrange multiplier method shows
that with w=0 or —|k|, consistency can be found within varying
estimated errors between the model and the measured terminal
state. Those solutions, which minimize the square difference from
G P™"(t), are not unique, and as in least-squares generally, an
infinite number of solutions can exist, albeit with all others having a
larger mean-square. The question to be answered is what the un-
certainty of any particular solution is, given the existence of others?
To do so, the filter-smoother algorithm is now invoked.

6.2. The filter step

With the same initial condition and Cj """ (t) as before, the
model is run forward, one time step of 4x10° s (127 y), from Eq. (9)
as before, but with a slightly different notation,
X(t + At,—) = AX(t, —) + Bq(t) + Tu(t), (12)
with the minus sign showing that no data have been used in the
model prediction one time-step into the future. This prediction
based upon the state estimate at the previous time, and Bq(t) set by
Cp P"°"(t). For now, I'it = 0. Simple algebra shows that the error
covariance (uncertainty) of this one-step prediction is,
P(t + At,—) = AP(tH)AT + rQr’, (13)
where the first term arises from errors in the state estimate, X(t),
and the term in T'QI'! represents the error from the unknown de-
viation, u(t), from q(t). The estimated prior covariance Q is here
being treated as time-independent, and is also a scalar, Q. The
progression is started with the given P(0). P(t+At) is the uncer-
tainty at time t if no data at t+At are used, and if no data are
available then, P(t+At)=P(t+At, —).

Let there be a time t' when measurement of the full profile is
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Fig. 14. Same as Fig. 12 except for w = —|k| m/s. Again Cp(t) is always below the LGM mean.

available, written for generality as,

y(t') = Ex(t') + n(t').

With a full profile observation, E=I, the identity matrix. n(t) is
the zero-mean noise in each profile measurement, and with error
covariance R(t'). Evidently, at t’, two estimates of the state vector,
X(t) can be made: X(t') from the model prediction, and
X4ata () = ETy(t'), where E™ is a generalized-inverse of E, but here
is the identity, L. Their corresponding uncertainties are P(t'), and
R(t). The gist of the Kalman filter is to make an improved estimate
of X(t') by using the information available in these two (indepen-
dent) estimates. With a bit of algebra (see any of the references), the
best new estimate is the weighted average,

x(t) - x(t f) +K<t/) {y(t') ~EX(t, 7)],

(14)

(15a)

K(£) =P(. - )E" {Ep(t’,f)EuR(t’)]*l (15b)
and the new combined estimate has an uncertainty covariance
matrix,

P(t/) = P(f,—) —K(t’)l-:(r’)P(t’,—)

(variant algebraic forms exist). In the absence of data at t,
x(t) =x(t); P(t) =P(t') because no new observational informa-
tion is available. In this linear problem, Eqs. (13) and (16) are in-
dependent of the state x(t), and the uncertainties can be
determined without calculating Xx(t) (and which is already available
from the Lagrange multiplier solution).

In the present situation, only one time, the last one, exists where
observations are available. Thus the model is run forward from the
assumed initial conditions and two boundary conditions, making a
prediction of X(t' = t;, —), using the predicted profile from Eq. (12),
along with an estimate of the error of that prediction (Eq. (13)).
Then from the weighted averaging in Eq. (15), a final profile is
determined that uses both the information in the a priori model
and in the data, paying due regard to their uncertainties.

(16)

6.3. The smoothing step

The Kalman filter is seen to be an optimal® predictor and, con-
trary to widespread misinterpretation, is not a general purpose
estimator. The intermediate state X(t) = X(t), t<ty, is estimated
without using any knowledge of the observed terminal profile and
so cannot be the best estimate. X(t) does not satisfy the governing
equation at the times when the predicted estimate and that from
the data are combined and u(t) is not yet known. Thus in this
particular method (others exist, including direct inversion of the
set, Eq. (10)), the filter step is followed by the RTS algorithm, as
written out in the Appendix and in the references. The calculation
steps backward in time from the final, best estimate X(f) and its
uncertainty, P(tf), comparing the original x(tf — At) (Eq. (15)) and
the prediction made from it, with the improved estimate now
available at one time step in the future, which is both X(t) and its
uncertainty. The RTS algorithm leads to a third, smoothed, estimate,
X (t, +), (in addition to the existing X(t), X(t, —)) and u(t) from the
recursion given in the Appendix. The result includes the uncer-
tainty, P(t), of the smoothed state, and Q(t) for u(t). Together, x(t)
and u(t) satisfy the model at all times. At ty, filtered and smoothed
estimates are identical.

In the present special case, as in many control problems, the
major changes in the scalar ui(t) occur near the end, as the terminal
data are accounted for. Those data change X(t; — At) and its un-
certainty, leading to a change in its immediate predecessor,
X(t; — 2At), etc., commonly with a loss of amplitude the further the
estimate recedes in time from the terminal data.

7. Results
7.1. Top 100 m
7.1.1. Core 1093

Fig. 12 displays the inferred modification, (t) to Cj priori ¢y and

its standard deviation 1/Q (t). The terminal state itself is identical to

that in Fig. 9 from the Lagrange multiplier method. The maximum
value of Cy(t) occurs at —12ky with a value 35.8+0.7. With an a

5 The term “optimal” is only justified if the various statistics are correctly
specified.
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priori uncertainty of Q=( 1 g/kg)?, the information content of the
terminal state alone is unable, except near the very end, to much
reduce it. If the same calculation is done using Q=(0.1 g/kg)? (not
shown) the uncertainties are correspondingly reduced by produc-
ing a different #i(t), but the smaller permissible adjustments to
G priori ¢y increase the terminal misfits. The a priori uncertainties
are directly determining the accuracy with which Cy(t) can be
inferred from these data. A residual (t) uncertainty of +(0.5—1 g/
kg)? precludes any interesting inference about LGM salinity
changes.

That the general structure of the solution is nearly independent
of the prior control is shown by Fig. 13 in which the prior was made
a uniform value of the mean value of C; P""(t). Only in the last
20 ky does any structure appear, and it remains below the esti-
mated LGM mean. A similar calculation with a very high prior of
37 g/kg (not shown), with w = —|k|, is reduced below the LGM
mean in the last 20 ky. The inability here to obtain values as high as
those found by ASO3 and others lies in part with the requirement
that the near-core-top data should also be fit, data that generally
require a strong decrease in Cp(t) in the last tens of thousands of
years. Should the core-top data be regarded as noise, perhaps the
result of unresolved boundary layers in the sediment, higher values
of Cp could be obtained, particularly if the initial conditions are
made uniform, and near-perfect, and so unchangeable by the
estimation procedure.

Fig. 14 shows the result obtained by choosing the sea level prior,
but allowing w = —|k| m/s with the initial conditions nearly
completely ineffective in the final state. The fit to the terminal state
is somewhat improved, but the uncertainties for u(t) remain O(1 g/
kg) except at the very end.

7.1.2. Core 1063

For core 1063, with w=0 and the same value of k, the results are
shown in Fig. 15. The state estimate is generally within the esti-
mated prior uncertainty. Control u(t) produces the maximum at
about —20ky, of 35.55+ 0.85 g/kg, with a value for the total well-
below the estimated LGM mean, but with an uncertainty encom-
passing it. The specific estimated maximum lies below that for the
Southern Ocean core, consistent with the ASO3 result, but here both
nominally fall below the average. Following that maximum, a
considerable variation again occurs, but it is without statistical
significance (see Figs. 15 and 16).

The considerable structure in the estimated control (bottom
water salinity) that emerges during the deglacial period is inter-
esting, if only in its general variations (none of which are statisti-
cally significant). During deglaciation, the injection of =125 m of
freshwater and the shift in the entire ocean volume to the modern
lower salinity, along with the major change in atmospheric winds
and temperatures, must have generated a host of regional circula-
tion and salinity shifts and with complicated spatial differences.
Differences found here between the two cores do not support an
hypothesis of any globally uniform shifts in abyssal salinity-
—although they cannot be ruled out.

7.2. Deeper core data

Using the values of k above, the purely diffusive system cannot
explain disturbances down-core deeper than about 50 m or from
before about —20,000 y. If the possibility that the effective w = —|k]
is accepted, signals can penetrate from the surface far deeper into
the sediments. Assume that the deeper structures are signal, and
not measurement or geological noise. Then the smoother

calculation was carried out for Cores 1093 and 1063 using data
from —300 m to the surface with a start time of t=—200 ky, a 100 ky
periodic Cj, P"°"'(t), and with results shown in Figs. 17 and 18. The
Southern Ocean core shows early excursions even exceeding the
LGM mean at about —38 Kky, while the Atlantic Ocean core is
consistently below both the prior and the LGM mean. Although it is
tempting to speculate about what these apparent excursions
imply—attaching them to events such as the Bglling-Allered,
Heinrich events, etc.—none of them is statistically meaningful, and
far more data would be needed to render them so.

Because the uncertainty, Q, of the control remains dominated by
the prior assumption of independent increments in u(t), the esti-
mated values u(t) remain largely uncorrelated. A plausible infer-
ence is that on the average over the LGM and the deglaciation that
the near-Bermuda abyssal waters were considerably fresher than
those near the Southwest Indian Ridge and to that extent sup-
porting previously published inferences, but not the conclusion
that the salinity in the latter region was above the global-volume
mean.

8. Modifications and extensions

Thus far, the models used have been purely nominal, one-
dimensional with constant in space and time diffusion and fixed
w, either zero, or w = —|k|. Neither of these models is likely very
accurate; both parameters are subject to variations in time and
space, including higher space dimensions which would permit
non-zero values of dw/dz. The central difficulty is that using some of
the information contained in either G P (t), or in Ceerm(2) to find
w or k necessarily further increases the calculated uncertainty of
u(t). More measurements with different tracers would help, as
would a better understanding of the time-depth properties of pore
fluids in abyssal cores. More sophisticated use of the prior co-
variances (functions of depth and time) could also reduce the
uncertainties—but only to the extent that they are accurate.

9. Summary and conclusions

Reproducing pore-water chlorinity/salinity observations in a
deep-sea core involves an intricate and sensitive tradeoff of as-
sumptions concerning diffusion rates, k, magnitudes and signs of
the fluid vertical velocity, w, prior estimates of lower and upper
boundary conditions, and in some cores, the nature of the initial
conditions, the one-dimensional behavior of an advection-diffusion
equation and, crucially, strong assumptions about the nature of the
recorded noise. Most previous inferences with w=0, which have led
to a picture of the abyssal ocean as particularly saline, have been
based essentially on the assumption that only the salinity
maximum appearing at tens of meters from the core-top is signal,
and does not originate with the initial conditions. All remaining
structures are supposed noise of unspecific origin.

In the more general, approach used here, initial condition
structures in a purely diffusive 100 m core can persist for more than
100 Ky, greatly complicating the inference that the terminal data
are controlled by the sea level changes of the past 20 ky alone.
When observed structures beyond the gross maximum in salinity
are treated as signals related to abyssal water properties, a statis-
tically acceptable fit can be obtained by permitting a substantial
downward fluid flow, w<0, and which removes the initial condi-
tions from the system. The abyssal water property boundary con-
dition (the system “control” in the present context) however, then
displays a complex and rich structure, none of which is statistically
distinguishable from the LGM mean salinity. Terminal time
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Fig. 15. Same as Fig. 12, except for Core 1063 on the Bermuda Rise. The terminal state does not well-match the core data in terms of depth and this solution probably should be

rejected.

conditions, Cierm(2), only weakly constrain the time history of the
control, Cy(t), insufficient in the two cores analyzed to reduce
salinity uncertainties below about + 0.5 g/kg at any time before a
few hundred years ago. This inference is consistent with that of
Miller et al. (2015), using the same pore-water data, but a different
analysis methodology.

That the Southern Hemisphere ocean was heavily salt-stratified
in the abyss, with values well above the LGM mean, remains a not-
implausible assumption about the last glacial period ocean, one
depending upon the claim that initial conditions have little or no
effect at the core terminal state data or upon other data not used
here. If that assumption is take at face value, it raises the question of
what the initial conditions were in practice and why their effects
are invisible at t? With this particular type of core data, reducing

@100

the resulting uncertainty requires among other elements, providing
a prior estimate, CpP"°"(t), with smaller levels of uncertainty
(better than 0.1 g/kg), a requirement for which little prospect exists.

The uncertainties derived here are all lower bounds, and are
based in part upon the assumption of perfectly known, simple, core
profiles of w,k. These parameters can, in a formal sense, be treated
as further unknowns as a function of depth and time, but if the
information contained in the terminal chlorinity data is used to
estimate their values, the uncertainties of Cj,(t) will become even
larger. No claim is made that the chosen parameters here,
k=2x10"1"m/2 s, and w = —|k| m/s are “correct”, merely that they
give a reasonable fit to the terminal data. If the equivalent of k is
measured at the terminal time in the cores (via the porosity and
tortuosity) the measurement errors are necessarily greater than the
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zero values used here in treating it as perfectly known. A further
generalization estimates the uncertainty covariances as part of the
calculation (“adaptive” filtering and smoothing; see e.g., Anderson
and Moore, 1979), but it again necessarily further increases the
estimated state and control vector uncertainties.

Of particular use would be pore water properties in regionally
distributed cores. It would then become possible to better under-
stand the background structures (are they regional covarying sig-
nals, or are they noise particular to one core?) and their geography.
Such additional data would be a major step towards expanding the
data base to the point where an accurate global average would
become plausible.

Numerous interesting questions arise, at least within a

theoretical framework. How the dynamical and kinematical
response to an excess of evaporation, leading to formation of the
continental ice sheets would have worked its way through the
entire ocean volume, raising the mean by about 1 g/kg is far from
obvious. Equally obscure is how the global volume salinity mean re-
adjusted itself, much more rapidly, to its lower modern value
through the excess runoff in the deglaciation. Complex transient
behavior would be expected with time scales exceeding thousands
of years. Amongst many such interesting issues, note that much of
the salt in the modern upper North Atlantic Ocean arises from the
highly saline Mediterranean Sea outflow. Paul et al. (2001) have
discussed possibilities for LGM salinity changes there, also from
pore fluid data. Whether any of the world-wide symptoms of these
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major re-adjustments can be detected in paleoceanographic data
remains a challenging question.

To answer the two questions posed in the Introduction: An LGM
ocean with greatly intensified salinity in the abyssal Southern
Ocean is not required by the pore-water chlorinity data and, such an
ocean is not contradicted by the pore water data within the large
lower-bound residual error estimates.
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Appendix-Control algorithms

The algorithms for the Lagrange multiplier (or adjoint) solution,
and for the filter-smoother are written out here for reference pur-
poses; cf. WO06.

Lagrange multipliers

Assume a model (Eq. (9)) with a state vector x(t), and a terminal
data set, x4(tf), having error covariance R(f), X(0) is the initial
condition with uncertainty P(0), and assuming for notational
simplicity that none of A, B, or I is time-dependent. The covariance
of the control, u(t), is Q(t). Let the objective or cost function be Eq.
(11), the model is adjoined (appended) to J using a set of vector
Lagrange multipliers, u(t). Generating the normal equations by
differentiation in ordinary least-squares, u(t) satisfy a time-
evolution equation

p(t—1) =ATp(0),

w(t) =R (x(y) xa(y)).

time appearing to “run backwards.” The unknown controls are
then,

t=1,2,..t (Ala)

(A1b)

u(t) = —Qrlu(t+ 1) (A2)
and
{1+ Al UrQrrat TR 1 Al rQrTat 2R
4+ TQIR™! }x(tf) = AYX(0)
+{AlrQrTal- TR 4 Al QAR
4+ 4+1rQr'R™! }xd.
(A3)

explicitly relates the estimated terminal state, X(tf), to the desired
one, Xy. Eq. (17) is then solved for u(t), and the entire state then
follows from Eqs. (A2, 9). See W06, p.218+).

RTS smoother

The RTS smoother uses a Kalman filter in the forwards-in-time
direction, with the equations in the main text. In the time-reverse

direction, the algorithm is more complicated in appearance
because it takes account of the time-correlations in the error esti-
mates that were built up in the filter sweep. The resulting system, in
the notation of W06, p. 208, is,

X(t,+) = X(t-H)L(t + D)X(t+1,4) —X(t +1,-)], (A4a)
L(t+1)=POAWD)PE+1,-)7", (A4b)
U(t+1) = M(t+ DR(E+1,4) —X(t+1,-)], (A4c)
M(t+ 1) =QOT(t) Pt +1,-)7", (A4d)

Pt,+)=P{t)+L(t+ D[P+ 1,+)—P(t+1,-)L{t+ l)T,
(Ade)

Q(t,+)=Q(t)+M(t+1)[P(t+1,+) —P(t+1,—)M(t + 1)T,
(A4f)

t=0,1,.....t — 1

Data do not appear, all information content having been used in
the forward sweep.
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