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Abstract4

Pore fluid chlorinity/salinity data from deep-sea cores related to the salinity maximum5

of the last glacial maximum (LGM) are analyzed using estimation methods deriving from6

linear control theory. With conventional diffusion coefficient values and no vertical advection,7

results show a very strong dependence upon initial conditions at -100 ky. Earlier inferences8

that the abyssal Southern Ocean was strongly salt-stratified in the LGM with a relatively9

fresh North Atlantic Ocean are found to be consistent within uncertainties of the salinity10

determination, which remain of order ±1 g/kg. However, an LGM Southern Ocean abyss11

with an important relative excess of salt is an assumption, one not required by existing12

core data. None of the present results show statistically significant abyssal salinity values13

above the global average, and results remain consistent, apart from a general increase owing14

to diminished sea level, with a more conventional salinity distribution having deep values15

lower than the global mean. The Southern Ocean core does show a higher salinity than16

the North Atlantic one on the Bermuda Rise at different water depths. Although much17

more sophisticated models of the pore-fluid salinity can be used, they will only increase18

the resulting uncertainties, unless considerably more data can be obtained. Results are19

consistent with complex regional variations in abyssal salinity during deglaciation, but none20

are statistically significant.21

1 Introduction22

McDuff (1985) pointed out that pore-waters in deep-sea cores have a maximum chlorinity (salin-23

ity) at about 30m depth owing to the sea level reduction during the last glacial period. He24

∗Also, Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology

1



emphasized, however, the basic million-year diffusive time-scale of change in cores of lengths of25

several hundred meters. Schrag and DePaolo (1993) pioneered the interpretation of the data,26

focussing on 18O in the pore water, and noted that in a diffusion-dominated system, the most27

useful signals would be confined to about the last 20,000 years. Subsequently, Schrag et al.28

(1996, 2002), Adkins et al. (2002), Adkins and Schrag (2003; hereafter denoted AS03) analyzed29

pore water data to infer the ocean abyssal water properties during the last glacial maximum30

(LGM) including chlorinity (interpreted as salinity) and 18O. (The  subscript is used to31

distinguish the values from 18O in the calcite structures of marine organisms.)32

The latter authors started with the uncontroversial inference that a reduction in sea level of33

about ∆ = −125 m in an ocean of mean depth  = 3800 m would increase the oceanic average34

salinity, ̄ by and amount ∆ as,35

∆

̄
= −∆


=
125

3800
≈ 003 (1)

With a modern average salinity of about 34.7 g/kg, ∆ ≈ 104 g/kg for a global average LGM36

salinity of about 35.7 g/kg. By calculating the salinity profile as a function of core depth, they37

drew the now widely accepted inference that the abyssal LGM ocean contained relatively more38

salt–with values above the LGM global mean–than it does today. A Southern Ocean core39

produced calculated values exceeding 37 g/kg. (AS03, used a somewhat higher value of 35.8540

g/kg for the LGM mean. The difference is unimportant in what follows.)41

Those inferences, coupled with analogous temperature estimates from 18O (Schrag et al.,42

2002) that the deep ocean was near freezing, has widespread consequences for the oceanic state,43

carbon storage, deglaciation mechanisms (e.g., Adkins et al., 2005), etc. A salty, very cold,44

Southern Ocean abyss has become a quasi-fact of the subject (e.g., Kobayashi et al., 2015).45

In the interim, a few other analyses have been published. Insua et al. (2014), analyzed core46

pore-fluid data in the Pacific Ocean and came to roughly similar conclusions. Miller (2014) and47

Miller et al. (2015), using a Monte Carlo method, carried out a form of inversion of the available48

pore water profiles and drew the contradictory inference that the data were inadequate for any49

useful quantitative conclusion about the LGM salinity or 18O.50

Determining the stratification of the glacial ocean and its physical and dynamical conse-51

quences is where paleo-physical oceanography meets sedimentology and core chemistry; see52

Huybers and Wunsch (2010). The purpose of the present note is to carry out a more generic53

study of the problem of making inferences from one-dimensional time-dependent tracer profiles.54

For maximum simplicity, only chlorinity/salinity data are discussed, with an analysis of 18O55

postponed to a second paper. The question being addressed is whether the chlorinity data alone56

determine the ocean salt stratification during the LGM? The papers already cited can be in-57
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Core No. Reference Location Water Depth (m)

ODP981 Jansen et al. (1996) NE Atlantic, Feni Drift/Rockall 2200

ODP1063 Keigwin et al. (1998) Bermuda Rise 4600

ODP1093 Gersonde et al. (1999) Southern Ocean, SW Indian Ridge 3600

ODP1123 Carter et al. (1999) E. of New Zealand, Chatham Rise 3300

ODP1239 Mix et al. (2002) E. Tropical Pacific, Carnegie Ridge/Panama Basin 1400

Table 1: Cores from which chlorinity/salinity data were used, along with a reference to their initial

description in the Ocean Drilling Program (ODP) and with a geographical label. A nominal water depth

of the core-top is also listed.

terpreted as asking whether, given other knowledge of the LGM, the chlorinity data contradict58

their picture of that time?59

Conventional inverse methods derived from control theory are used: these have a more60

intuitive methodology and interpretation relative to those of the more specifically Bayesian61

Markov Chain Monte Carlo (MCMC) method of Miller et al. (2015). Although the MCMC62

method produces full probability densities for the results, interpretations almost always begin63

with the mean and variance, quantities emerging from the more conventional methods. As in64

the formal Bayesian approaches, prior knowledge with statements of confidence is both needed65

and readily used. (For modern physical oceanographers, parallels exist with understanding the66

establishment through time of the “abyssal recipes” formulation of Munk (1966) although the67

parameter ranges are far different.) The approaches here are those used by Wunsch (1988) for68

oceanic passive tracers and by MacAyeal et al. (1991) to infer temperatures in ice boreholes69

(and see MacAyeal, 1995) .70

Profiles71

To set the stage and to provide some context, Fig. 1 shows the positions of the cores discussed72

by AS03 plotted on a contour map of modern salinity at 3600 m depth. A bimodal histogram73

of those salinity values is shown in Fig. 2. Figs. 3 and 4 display the data available from five74

cores whose positions are shown on the chart. Considerable variation is apparent in both space75

(latitude and longitude) and time (that is, with water depth and depth in the core).76

Consider the Southern Ocean core ODP 1093 (see Gersonde et al., 1999, and Figs. 3, 5)77

analyzed by AS03 and by Miller et al. (2015). It was this core that displayed the highest78

apparent salinity during the LGM and which led to the inference of a strongly salinity-stratified79

ocean dominated by Antarctic Bottom Waters. (Its position on top of a major topographic80

feature, Fig. 5, raises questions about the one-dimensionality of the core physics, but that81
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problem is not pursued here.) The overall maximum of about 35.7 g/kg perceptible in the core82

is somewhere between 50 and 70 m depth below the core-top and is plausibly a residual of high83

salinity during the LGM (a very large value near 400 m depth is assumed to be an unphysical84

outlier). Initially, only the top 100 m of the measured cores, Fig. 4, will be dealt with here. The85

main questions pertain to the magnitude and timing of the maxima and their interpretations.86

Very great differences exist in the water depths of the cores (Table 1) and the physical regimes87

in which they are located are today very different. Differences amongst the core salinity profiles88

are unsupportive of simple global-scale change.89

In what follows, only the Atlantic Cores 1063 (about 4500 m water depth) and 1093 (about90

3600 m water depth) will be discussed. Notice (Fig. 4) that the maximum salinity observed in91

Core 1093 in the upper 100 m is at best at, but not above, the estimated oceanic LGM global92

mean salinity maximum of 37.08 g/kg of AS03.93

In Core 1063, at the northeastern edge of the Bermuda Rise, the apparent maximum occurs94

somewhere in the vicinity of 40 m core depth, with a value of about 35.35 g/kg–above the95

modern water mean–but well-below the LGM mean. Core 1063 was used to infer that the96

deep North Atlantic Ocean had not become as saline as in the Southern Ocean, and hence with97

the results from Core 1093, that the Southern Ocean had an extreme value of abyssal salinity,98

relative to the rest of the LGM ocean. Generally, the salinity of Core 1063 is lower than that of99

1093 except near the core-top where the variability in Core 1093 precludes any simple statement.100

Inferences from pore water profiles correspond to what in the control literature is known as a101

“terminal constraint” problem (e.g., Luenberger, 1979; Brogan, 1991; Wunsch, 2006–hereafter102

W06): In a physical system, the externally prescribed disturbances are sought that will take the103

system from a given initial state to a known, within error-bars, final state.1 Here the physical104

1A more intuitive analogue of this problem may be helpful, one based upon the terminal control problem for a

conventional robotic arm. An arm, with known electromechanical response to an externally imposed set of control

signals, has to move from a three dimensional position, 0 ±∆0 at time  = 0 to a final position  ±∆ at

time   In three-dimensions, there exists an infinite number of pathways between the starting and ending position,

excluding only those that are physically impossible (such as a movement over a time-interval physically too short

for transit between the two positions). Even if the trajectory is restricted to a straight line, there will normally

be an infinite indeterminacy involving speed and acceleration. The control designer “regularizes” the problem by

using a figure-of-merit e.g., by demanding the fastest possible movement, or the least energy requiring one, or

minimum induced accelerations etc. The designer might know e.g., that the arm must pass close to some known

intermediate position ±∆ and which can greatly reduce the order of the infinity of possible solutions. In the

case of the pore fluid, the initial “position” (initial pore fluid value,  (  )  is at best a reasonable guess, and no

intermediate values are known. The assumed prior control represents an initial guess at what controlling signals

can be sent, e.g., that a voltage is unlikely to exceed some particular value. The “identification” problem would

correspond to the situation in which the model or plant describing the reaction of the robotic arm to external

signals was partially uncertain and had to be determined by experiment. And perhaps the response would also
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system is an assumed advection-diffusion one, with the initial state being the salinity profile far in105

the past (perhaps -100,000 y), the terminal state is represented by data from the measured core106

pore-water. The disturbances sought are the abyssal water salinity–providing a time-varying107

boundary condition at the sediment-water interface. Readers familiar with advection-diffusion108

problems will recognize their dependence upon a long list of knowns, including the initial and109

boundary conditions, and the advective flows and diffusion coefficients governing the time-depth110

evolution. In the present case, flows and diffusion coefficients are expected to display structures111

varying in both space (depth in core) and time. In the best situation, only their terminal112

values can be measured in the core. The problem is further compounded by the dependence of113

advection and diffusion on the time history of the solid phase in the sediment containing the114

pore waters. Finally, and a question also ignored here, is whether a handful of core values can115

be used to infer global or regional mean properties (see Figs. 1, 2) with useful accuracy.116

For the time being, the problem is reduced to a basic skeletal framework to understand its117

behavior under the most favorable conditions.118

2 Models119

General discussion of pore fluid behavior in sediments can be found in Berner (1980), Boudreau120

(1997), Fowler and Yang (1998), Einsele (2000), Bruna and Chapman (2015) and in the papers121

already cited. Simplifying a complex subject, LGM pore fluid studies reduce the vertical profiles122

to the one-space-dimension governing equation, the canonical model,123




+




− 



µ





¶
= 0 (2)

Here  is an “effective” diffusivity, and  is a non-divergent vertical velocity within the core124

fluid relative to the solid phase. Note that if  6= 0 the diffusion term breaks up into two125

parts, one of which is indistinguishable from an apparent advective term, ∗ = − so that126

Eq. (2) is,127




+

µ
 − 



¶



− 

2

2
= 0 (3)

 depends upon the porosity, , and the tortuosity,  of the sediment through relations such as,128

2 = 1−  ≈ 18  ∝ 2 (4)

An upward increasing porosity (Fig. 6 and Eq. 4) produces, an apparent effective ∗ = −129

The oceanographers’ convention that  is positive upwards is being adopted, but here the origin is130

depend upon time, involving the changing mechanical configuration, as occurs for example, in controlling the

trajectory of aging spacecraft.
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at 100m below the sediment-water interface, and where a boundary condition must be imposed.131

Experiments (not shown) with  changing linearly by a factor of two showed little change from132

the constant  values.133

The core fluid is visualized as being contained in a vertical “pipe,” extending from  = 0 at134

the base of the pipe to  =  at the sediment-water interface. At that interface, it is subject135

to a time-dependent boundary condition  () =  ( =  )  0 ≤  ≤  representing (here)136

the salinity of the abyssal water and whose values through time are sought. The only available137

data are the measured profile at  =  over a depth range 0 ≤    ( ) where  is the date138

at which a core was drilled.  is here taken as 100m above the origin. Information about the139

initial condition, 0 () =  (  = 0)  and the boundary condition at  = 0 may, depending140

upon parameters, be essential.141

Sediment continues to accumulate and erode over the time history recorded in the core. Thus142

the sediment-water interface,  =  is time-dependent, and perhaps monotonically increasing.143

A somewhat typical sedimentation rate (they vary by more than an order of magnitude) might144

be about 5 cm/ky= 16× 10−12 m/s. Following Berner (1980) and Boudreau (1997),  is fixed145

to the moving sediment-water interface, meaning that the solid material directly exposed to the146

abyssal salinity would be 5 m displaced from the initial surface at the end of 100,000 y. The147

assumption is thus made that while the particulate material is displaced, the fluid in contact148

with the overlying sea water remains the same. With  () taken as a fixed point, a corresponding149

5 m error at the core-base,  = 0 is incurred, and will be ignored.150

The canonical model omits a complex set of boundary layers just below and just above151

the interface at the sea floor (e.g., Dade et al., 2001; Voermans, 2016), which in principle are152

observable at the core top, and which would affect the boundary condition there. These too,153

are being ignored.154

Scale Analysis—Orders of Magnitude155

Before doing any specific calculations, obtaining some rough orders of magnitude is helpful.156

Although every core is different, the time interval of most interest here is the LGM, taken to end157

nominally at  = −20 000 y= − 6 3×1011 s (20 ky BP) following which deglaciation begins.158

For several cores, AS03 estimated  ≈ 3× 10−10m2s and Miller (2014) a value of  ≈ 2× 10−10159

m2/s. In the purely diffusive limit with  ≈ 0 the -folding diffusion time to reach the whole160

core depth is 2 ≈ 16×106 y, with the latter value of  The -folding diffusion decay time at161

any depth is 2 where 2 is the vertical length scale of any disturbance in the profile. For  =10162

m, 2 ≈ 16 000 y not far from the time interval since the LGM. Depending directly upon the163

analytical sensitivities and the space/time scales of interest, a 100 m core can retain a signature164

of some disturbances dating back more than 1 million years, consistent with McDuff’s (1985)165
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Notation Variable Definition

Initial Condition 0 ()  ( = 0 )

Boundary Condition  ()  (  = 0)

Terminal Condition term ()  ( =   )

Table 2: Notation used for initial, final and boundary conditions and for algebraic expressions. In the

discrete form, two time-steps of the concentration  make up the state vector, (), and corresponding

imposed conditions, Tildes over variables denote estimates. Matrices are bold upper case letters, column

vectors are bold lower-case letters.

inference. In the shorter term, and as noted by Schrag et al. (2002), in a purely diffusive system166

the depth and attenuated amplitude of a local maximum represent competing dependencies on167

, with smalleer scale signals not surviving beyond about 20,000 y.168

Should the vertical velocity,  of fluid within the core become significant, additional time169

and space scales emerge–depending upon the sign of ; the position and amplitude of maxima170

are then no longer simply related. For   0 a boundary layer familiar from Munk (1966) of171

vertical scale,  appears with an establishment time of 2 Should  ≈ 2× 10−10 m/s= 6172

m/thousand years, the vertical scale is 1 m, with an establishment time of 5×109 s or about 150173

y. Two Péclet numbers appear, one based upon  the other upon . If   0 the advection174

time  is relevant and the combined  scales are unimportant.175

In a number of published results the initial conditions at some time,  = 0 in the core,176

0 ()  are simply assumed to be of little influence in the interpretation of the final profile177

 (  =  ) = term ()  with most attention focussed on determining the temporal boundary178

condition control,  ()  Whether the initial conditions are unimportant (the signal having179

decayed away) or dominant, given the long time scales within the core, will depend upon the180

magnitudes of   the sign of  as well as the core length.181

In principle,   values can be calculated from the available data and various hypotheses,182

both physical and statistical the–“identification problem.” Introducing further unknowns into183

what will be perceived as an already greatly underconstrained problem, leads necessarily to even184

greater uncertainty in the estimates ̃ ()  0 ≤  ≤   or of ̃0() (see Table 2 for notation;185

tildes are used to denote estimates.) The simplest problem, with known  produces a lower186

bound uncertainty on the results. Should that lower bound be too large for use, solving the187

nonlinear estimation problem involving  as additional unknowns to be extracted from the188

same limited data would not be justified.189

Analytical Reference Solutions190
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In the simplest case with  = 0 and  constant, a variety of analytical solutions to Eq. (2)

is available. These are again useful for understanding the solution structure. As a representative

calculation, set  = 0 and  = 2× 10−10m2s at zero-Péclet number. Let  () =  ()   ()

being the unit step (Heaviside) function, be the upper boundary value, and let 0 () be the

initial conditions. Fig. 7 displays the profiles from the analytical solution (Carslaw and Jaeger,

1986, p. 101) calculated as a summation here over 100 terms of a weighted cosine series, as a

function of time,


(1)

 ( ) = 1 +
2



∞X
=0

(
2 (−1)+1
(2+ 1)

+

Z 

0

0
¡
0
¢
cos

µ
(2+ 1)0

2

¶
0
)
× (5)

−(2+1)
2242 cos

µ
(2+ 1)

2

¶


for a unit amplitude surface boundary condition, zero flux at the bottom, and 0 () = 0. The191

terminal profile is also shown. Weighting, exp
¡−(2+ 1)2242¢  connects the dissipation192

rate to the vertical structure present in the solution,2 and which rapidly removes even moder-193

ately high wavenumber, (2+ 1)2 structures whether present in the initial conditions, or194

emanating from the boundary condition (here, with zero initial conditions, only the boundary195

step-function gives rise to high wavenumbers). Fig. 8 shows the decay time to 1% of the initial196

value as a function of vertical scale in the initial conditions or those induced by the boundary197

conditions. Vertical scales shorter than about 12 m will have decayed by 99% after 20,000 years198

and need not be considered with this value of 199

The equivalent solution for zero initial conditions and a periodic surface boundary condition,200

0 () = sin () is (Carslaw and Jaeger, 1986, p. 105),201


(2)

 ( ) =

(
cosh 2 (2)12  − cos 2 (2)12 
cosh 2 (2)12 − cos 2 (2)12 

)12
sin (+ )+ (6)

2

∞X
=0

 (−1)+1 2
244 + 24

−
222 sin

³


´

 = arctan

⎧⎨⎩ sinh
h
(2)12  (1 + )

i
sinh

h
(2)12  (1 + )

i
⎫⎬⎭

where here the lower boundary condition is  (0) = 0 and placed at  = −500 m. The first term202

is the steady-state sinusoidal profile, whose amplitude is shown in Fig. 10a as a function of203

depth for varying  and the above values of   The second term is the starting transient with204

2The scale used above, 2 describes the lowest wavenumber response.
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decay times shown in Fig. 10b. If the LGM were regarded as part of a quasi-periodic signal205

with the obliquity period of about 40,000 y, the signal would not penetrate much below 50 m.206

Even at 100 ky periods, no measurable signal reaches the base of a 100 m core.207

Analytical solutions also exist for the case  6= 0 but are not displayed here (see Wunsch,208

2002 for references).209

3 Representative Model Solutions210

An axiom of inverse methods is that full understanding of the forward problem is a necessary211

preliminary. In a conventional forward calculation, solutions depend directly and jointly upon212

all of:213

(1) The initial conditions, 0 () 214

(2) The top boundary condition here, ( =  ) =  ()215

(3) The bottom boundary condition involving ( = 0 ) and/or its derivatives (here always216

a no-flux condition)217

(4) Physical parameters,  .218

Conventionally, these values are all perfectly known with the solution changing if any of219

them does.220

In practice in the present case, only the final state of the solution,  () =  (  ) 221

is approximately available. The inverse problem involves making inferences about the state,222

 ( )  0 ≤  ≤  , 0 ≤  ≤  initial and boundary conditions, and the   parameters from223

the limited supply of information. Use of prior information (assumptions) with statements of224

confidence becomes crucial. If incorrectly formulated, so-called inverse solutions to diffusive225

systems can become extremely unstable and demonstrably stable methods are required.226

AS03 and subsequent authors have suggested that a good prior estimate of the boundary227

conditions on all cores consists of making 
a priori
 () proportional to the best-estimated sea level228

curve. Fig. 11 shows the calculated global mean salinity over 120,000 years (Miller, 2014; Miller,229

et al., 2015) from a number of sources (their Table 1), and Eq. (1). Between about −70 000 y230

  − 25 000 y, values higher than 35 g/kg are estimated owing to the reduction in sea level,231

reaching a maximum at a sea level minimum near  = −20,000 y. After that, the deglaciation232

leads to an estimated fall.3233

3Adkins and Schrag (2003) used a considerably more structured estimated sea level curve. But because prior

to -20 ky it was based upon measured 18O, which is one of the tracers under consideration in these cores Miller

(2014), Miller et al. (2015) chose to avoid any possibility of circular reasoning. Much of the small scale structure

present in the former curve would not survive the difffusive process in the core. Large scale structures are

qualitatively the same in both approaches.
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Thus, following the previous literature, the top boundary condition is, for now, assumed234

to be 
a priori
 () and the bottom boundary condition to be one of zero diffusive flux. Initial235

conditions are problematic. The purely diffusive numerical calculation and the analytic solutions236

both show that disturbances at the surface will not penetrate significantly below about 40 m237

depth in 100,000 years. Structures in Figs. 3, 4 below that depth cannot have arisen from238

the core surface in the last 100 ky. At least four possibilities suggest themselves: (1) The239

structures are simply the noise in the core from measurements (see AS03 for of the technicalities240

and difficulties of shipboard measurements) or from processes not yet included in the model241

(time-space-dependent   or clathrate formation, for example). (2) The structures arise from242

the memory of the initial conditions. (3) A purely diffusive model is inadequate. (4) The243

structures are the result of upward diffusion/advection across the base of the core,  = 0 noting244

in particular that  (0)  in general does not vanish. All of these possibilities could be at245

work.246

The simplest interpretation of the solutions discussed by AS03 and others is based on as-247

sumption (1): that all structures other than the deep overall maximum represent errors in the248

data, and that only the gross maximum feature must be reproduced. In contrast, a more agnostic249

approach is taken here, in which an attempt is made to understand the extent to which some250

or all of the additional core-data features can be regarded as signals. For example, if structures251

in the initial conditions can persist in the core, they should be visible at the terminal time.252

Some of the published solutions have taken the sensible approach of maximum ignorance, and253

set 0 () =constant, where the constant might be the modern mean salinity. In that situation,254

either all of the terminal structure arises from  ()  and/or non-uniform initial conditions are255

nonetheless also required by the terminal data. Another possibility is based upon the description256

of the glacial-interglacial cycles as being quasi-periodic, with glaciations recurring at intervals257

lying between 80,000 and 120,000 y, leading to a second plausible hypothesis that the initial258

condition at  = −100 ky is close to the observed terminal profile of the individual core (Fig. 3).259

Except where specifically stated otherwise, this quasi-periodic condition, but with different un-260

certainty estimates applied to the initial and terminal data, is used throughout this study. The261

initial condition uncertainty is always larger than the terminal one. A similar initial condition262

(set at -125 ky) was used by Miller et al. (2015).263
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4 Terminal Constraint Inversions264

4.1 Numerical Model265

Eq. (2) is now rendered into discrete form, simplifying the representation of noise processes.

Discretization can be done in a number of ways. Here we follow Roache (1976; cf. Wunsch,

1987) in the use of what Roache calls the Dufort-Frankel leapfrog method. A uniform vertical

grid, at spacing ∆ indexed in 0 ≤  ≤  − 1 and at time intervals ∆ produces,

 (+∆) =  (−∆) + −1 () + +1 ()  (7)

 = 1 (1 + 2)   = 1 (1 + 2) (2+ ̄)   = 1 (1 + 2) (2− ̄) (8)

with  = ∆∆2 ̄ = ∆∆ plus the boundary conditions,  () =  ()  1 ()−0 () = 0266

The latter is an assumed no flux condition at the base of the core. Stability requires   05267

Defining a state vector, x () = [c (−∆)  c ()] involving two time-steps, Eq. (7) has the268

canonical form (e.g., Stengel, 1986; Brogan, 1991; W06),269

x (+∆) = Ax () +Bq () + Γu () (9)

(Notation is that bold capitals are matrices, and bold lower case letters are column vectors.)

For this particular discretization,

A=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0−1 I−1
0 0   0 0 0   0

 0 0 0  0

0  0   0

0 0  0  0

     

0 0 0   0

0 0 0 0 0 0

0  0 0  0

 0  0  0

0  0   0

     

0 0 0 0  

0 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x () = [1 (−∆)  2 (−∆)    (−∆)  1 ()  2 ()    ()]

The dimension of square matrix A is 2 × 2 because of the need to carry two time-levels.270

Row  +1 forces an assumed no-flux condition at the bottom, and row 2 is all zeros, because271

the boundary condition is set at that grid point by putting B2 = 1, B = 0, otherwise272

(here B is a 2 × 1 column vector) and q () =  () is the imposed scalar 
a priori
 (). In a273

conventional calculation of x (), Γ is set to zero, but along with u () reappears in the inverse274

or control calculations, representing the controls when elements of q are regarded as unknown.275

u () =  ()  a scalar, with scalar variance  ()   is now always a discrete value.276
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As a demonstration of the numerical model, let the time-step be ∆ = 4× 109 s (127 years),277

 = 100 m, and ∆ =1 m,  = 2 × 10−10 m2s,  = 0 for the Heaviside boundary condition,278

 () = 1 0 ≤  ≤  and zero initial condition, with result shown in Fig. 7 and the terminal279

state compared to the analytic solution. Consistent with the scale analysis and the analytic280

solution, the signature of the surface boundary condition has not reached beyond about 50 m281

after 100,000 years.282

Now consider the quasi-periodic initial condition with the same   Fig. 9 shows the results283

after 100 ky of forward model integration. The smallest scales present in the initial condition284

have vanished–as expected. However, much of the intermediate and largest structures at the285

terminal time originate with the initial conditions. In contrast, also shown is the state when286

 = −||. In that situation, the initial conditions are swept downward, out of the core, before287

the terminal time.288

When  6= 0 qualitative changes in the solutions occur. With   0 confinement of289

disturbances from 
a priori
 () towards the surface is even more marked than for the purely290

diffusive case. When   0 structures in  () can be carried much further down into the core291

than otherwise. The magnitude and sign of  thus become major issues.292

4.2 Inversions/Control Solutions293

Miller (2014) also discussed the linear time-dependent inverse problem of determining  () 294

the modification to  () = 
a priori
 () and chose to solve it by “Tikhonov regularization.” (Here295

both q and u are scalars–a special case). Although that method is a useful one for deterministic296

problems, it does not lend itself to a discussion of data and model error, nor of the uncertainties297

of the results owing to noise. Determining a best-solution involves not only the core physical298

properties and time-scales, but also the analytical accuracies, and systematic down-core errors.299

Consider the problem of determining  () =  () +  () (that is,  ()) from the terminal

values x ( )  which involves assuming here that c ( − 1) = c ( ) =  (). Now, Γ = B

and  () is sought. Several standard methods exist. One approach is to explicitly write out

the full set of simultaneous equations governing the system in space and time, recognizing that

the only information about the state vector are its final values x ( )  and a guessed initial

condition, x (0). In practice, neither will be known perfectly, and a covariance of the error in

each is specified, here called P (0) and R ( ) respectively. Writing out the full suite of governing
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equations, setting ∆ = 1 for notational simplicity but with no loss of generality,

x (0) + n (0) = C0 () (10)

x (1)−Ax (0)− Γ (0) + n (1) = B (0)
x (2)−Ax (1)− Γ (1) + n (2) = B (1)
x (3)−Ax (2)− Γ (2) + n (3) = B (2)



−Ax ( − 1)− Γ ( − 1) + n ( ) = −Cterm () +B ( − 1) 

where all unknowns are on the left of the equals sign, and all known fields are on the right.300

Vectors n () represent the presence of errors in the starting and ending profiles and their301

propagation through the system. The Γ () terms are the controls and which, more gener-302

ally, include the model error, but here are specifically accounting only for the uncertainties in303

B ()   () = 
a priori
 (). Equations (10) are a set of linear simultaneous equations which is,304

however, extremely sparse; unless  or  become very large, they can be solved by several305

methods for dealing with underdetermined systems. This route is not pursued here, but the ex-306

istence of the set shows that any other method of solution is equivalent to solving it, and which307

can help greatly in the interpretation. The special structures present in the equations permit308

rapid and efficient solution algorithms not requiring explicitly inverting the resulting very large,309

albeit very sparse, matrix (a generalized-inverse would be involved in practice), and which is the310

subject of the next sections.311

5 Lagrange Multipliers-Pontryagin Principle312

5.1 Formulation313

One approach uses ordinary least-squares and Lagrange multipliers to impose the model (Eq. 9)

with an error represented by the controls, and minimizing the weighted quadratic misfit between

the calculated value of x (0) and x0 and between the calculated x ( ) and C

 = (x̃ (0)−C0 ()) P (0)−1 (x̃ (0)−C0 ()) + (x̃ ( )−Cterm) R ( )−1 (x̃ ( )−Cterm)+

(11)

−1X
=0

ũ () Q−1ũ () 

respectively. Tildes denote estimates, but are sometimes omitted where the context makes clear314

what is being described. The third term renders the problem fully determined as a constrained315
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least-squares problem, by simultaneously minimizing the weighted mean square difference be-316

tween  () and its prior value (here written as zero), and with a result that is a form of the317

“Pontryagin Principle.” The figure of merit in the 2 norm attempts to minimize the mean318

square deviation of  () from the prior, which as written here is zero, while simultaneously319

minimizing the squared difference from the assumed initial and final conditions in what is just320

a form of least-squares. (Other figures-of-merit such as maximum smoothness can be used. The321

problem can be reformulated too, using different norms such as 1 or ∞; see the references.)322

Because the system of equations (10) has a special block structure, a closed form solution can323

be obtained (W06, P. 218+, or the Appendix here) and which makes explicit the relationships324

between the initial and final states, and the control, all of which are subject to modification.325

5.2 Using Lagrange Multipliers326

With  = 0 pure diffusion, and the quasi-periodic initial condition taken from Core 1093, an327

integration is started at  = −100 000 y using the a priori () in Fig. 11 with result shown in Fig.328

9. Although a rough comparability to the core values occurs in the top 10-20m, they diverge329

qualitatively below that depth, both in the large-scale structures and in the high wavenumbers330

apparent in the core data. The first question to be answered is whether it is possible to modify331


a priori
 () within acceptable limits, ±√ so as to bring the two terminal profiles together332

within estimated error?333

The second immediate question is whether the smaller scale structures in the core data are334

real structures or noise (issue (1) above)? Assume that they are uncorrelated white noise of RMS335

amplitude approximately 0.1 g/kg, and allowing the control  () to have the possible large RMS336

fluctuation of 1 g/kg . The initial conditions are assumed to have a white noise (in depth) RMS337

error of 1.7 g/kg, the terminal data RMS uncertainty is 0.1 g/kg, and the result is shown in Fig.338

12. Assuming that none of the structures visible in the core data, except the maximum in the339

vicinity of 40m from the core bottom, are just noise, this solution is a qualitatively acceptable340

one. AS03 noted, that their solutions above the maximum in depth did not produce a good fit.341

Much of the terminal state here is controlled by the initial conditions, not  ()  except for the342

last few thousand years in the very upper parts of the core.343

Introducing   0 exacerbates the confinement of the core-top disturbances to the upper344

core placing even more emphasis on the initial conditions.. On the other hand, permitting345

  0 here  = −|| m/s succeeds in producing a slightly better fit overall (see Fig. 14) and346

increases the sensitivity to  () (using the same prior statistics, held fixed throughout this347

paper). The modification required to 
a priori
 () is also shown along with the resulting total348

 () + ̃ () This result decreases the maximum salinity estimated to 35.75 g/kg and delays its349
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timing to about -12,000 y, and is followed by a large variability. Notice that the estimated350

maximum salinity again lies below the LGM average–implying high salinities elsewhere. This351

solution is also a formally acceptable one, and if taken at face value, moves the salinity maximum352

several thousand years before that in the prior, and still below the LGM mean. The central353

question at the moment is whether any of the variations in  () =  () + ̃ () are significant?354

Further discussion of this result is postponed pending the calculation of its uncertainty.355

The large negative value of  or ∗–required to carry information downward from the356

core top before diffusion erases the observed structures–is counter to the conventional wisdom357

that the appropriate model is nearly purely diffusive. No claim is made that the model here is358

“correct,” only that if the magnitude of  is much smaller, or that it is positive upwards, then359

the canonical model cannot explain any of the pore-water salinity properties below about 20360

m unless they originate in the initial conditions. On the other hand, the physics of fluid-solid361

interaction through hundreds of thousands of years is sufficiently unclear (see the references362

already cited) that ruling out large negative  is premature, particularly in partially saturated363

cores where the effects of sea level-induced pressure changes of hundreds of meters of water have364

not been accounted for. Violation of any of the other basic assumptions, including especially,365

that of a one-dimensional-space behavior, could render moot the entire discussion.366

The Lagrange multiplier formalism does permit an affirmative answer to the question of367

whether a model can be fit to the top 100m of the core data within a reasonable error estimate?368

The stable flow of information, nominally “backwards” in time from the terminal state is partic-369

ularly apparent (Eq. A1) via the transposed matrix A (the “adjoint matrix”). But it neither370

answers the question of whether this model is “correct” (or “valid” in modelling jargon), or if371

the model is nonetheless assumed correct, how uncertain is the estimate, ̃ () =  () + ̃ ()?372

We next turn to this latter question.373

6 Smoothers374

A great advantage of the Lagrange multiplier approach is that it is computationally very efficient,375

not involving calculation of the uncertainty of ũ ()  (the adjustment to 
a priori
 ()) nor of376

the intermediate time values of the profiles in x̃ ()  On the other hand, the absence of those377

uncertainties is the greatest weakness of the estimated state and controls in problems such as378

this one. The need to find formal uncertainties leads to the alternative approach based upon379

the idea of “smoothers”, which are recursive estimation methods for calculating the state and380

control vectors using data from a finite time-span. Several different smoothing algorithms exist381

depending upon the particular need. Perhaps the easiest to understand is the so-called RTS382
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(Rauch-Tung-Striebel) algorithm which involves two-passes through the system in time.383

To start the RTS algorithm, a prediction algorithm known as the Kalman filter is used,384

beginning with the initial conditions and their uncertainty, employing the model (Eq. 9) to385

predict the state at the next time when more observations become available (perhaps many386

time-steps into the future). By weighting the prediction inversely to its uncertainty and the387

observations inversely to their errors, a new estimate is made combining the values appropriately,388

and determining the covariance matrix of the new combined estimate. With that new estimate,389

further predictions are made to times of new data. (Note that the state estimate jumps every390

time a new model-data combination is made, meaning that at those times the model evolution391

equation fails.) After arriving at the final data time,  , another algorithm is used to step392

backwards in time to  = 0 using the later-arriving data to correct the original predicted and393

combined values of x (), and estimating the control vector  () necessary to render the model394

exactly satisfied at all time-steps. Uncertainty estimates are required in the calculation for both395

state vector and control.396

Because several covariance matrices are square of the dimension of x (), for large systems the397

computational load can become enormous. Calculating the error covariance matrix of the state398

predicted by the Kalman filter is equivalent to running the model 2 times at every time step,399

and which is why true Kalman filters and related smoothers are never used in real atmospheric400

or oceanic fluid systems. Nonetheless, in the present context, realistic calculations are feasible401

on modest computers. The state vector solution from the Lagrange multiplier method and from402

the RTS smoother can be shown to coincide (e.g., W06, P. 216) and the uncertainties may be403

of little interest as long as the controlling solution is physically acceptable.4404

6.1 Using the Filter-Smoother405

Consider again Core 1093. The Lagrange multiplier method shows that with  = 0 or −||406

consistency can be found within varying estimated errors between the model and the measured407

terminal state. Those solutions, which minimize the square difference from 
a priori
 ()  are not408

unique, and as in least-squares generally, an infinite number of solutions can exist, albeit with409

all others having a larger mean-square. The question to be answered is what the uncertainty of410

any particular solution is, given the existence of others? To do so, the filter-smoother algorithm411

is now invoked.412

4For example, in operating a vehicle such as an aircraft, that a useful control exists may be the only concern,

and with its non-uniqueness being of no interest.
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6.2 The Filter Step413

With the same initial condition and 
a priori
 () as before, the model is run forward, one time414

step of 4×109s (127 y), from Eq. (9) as before, but with a slightly different notation,415

x̃ (+∆−) = Ax̃ (−) +B () + Γ̃ ()  (12)

with the minus sign showing that no data have been used in the model prediction one time-step416

into the future. This prediction based upon the state estimate at the previous time, and B ()417

set by 
a priori
 ()  For now, Γ̃= 0 Simple algebra shows that the error covariance (uncertainty)418

of this one-step prediction is,419

P (+∆−) = AP ()A + ΓQΓ  (13)

where the first term arises from errors in the state estimate, x̃ ()  and the term in ΓQΓ rep-420

resents the error from the unknown deviation,  ()  from  ()  The estimated prior covariance421

Q is here being treated as time-independent, and is also a scalar, . The progression is started422

with the given P (0)  P (+∆−) is the uncertainty at time  if no data at  +∆ are used,423

and if no data are available then, P (+∆) = P (+∆−) 424

Let there be a time 0 when measurement of the full profile is available, written for generality425

as,426

y
¡
0
¢
= Ex

¡
0
¢
+ n

¡
0
¢
 (14)

With a full profile observation, E = I the identity matrix. n (0) is the zero-mean noise in each427

profile measurement, and with error covarianceR (0). Evidently, at 0 two estimates of the state428

vector, x (0) can be made: x̃ (0−) from the model prediction, and x̃data (
0) = E+y (0)  where429

E+ is a generalized-inverse of E, but here is the identity, I. Their corresponding uncertainties430

are P (0−)  and R (0)  The gist of the Kalman filter is to make an improved estimate of x̃ (0)431

by using the information available in these two (independent) estimates. With a bit of algebra432

(see any of the references), the best new estimate is the weighted average,433

x̃
¡
0
¢
= x̃

¡
0−¢+K ¡0¢ £y ¡0¢−Ex̃ (−)¤  (15a)

K
¡
0
¢
= P

¡
0−¢E

£
EP

¡
0−¢E +R

¡
0
¢¤−1

(15b)

and the new combined estimate has an uncertainty covariance matrix,434

P
¡
0
¢
= P

¡
0−¢−K ¡0¢E ¡0¢P ¡0−¢ (16)

(variant algebraic forms exist). In the absence of data at 0, x̃ (0) = x̃ (0−) ; P (0) = P (0−)435

because no new observational information is available. In this linear problem, Eqs. (13, 16)436
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are independent of the state x ()  and the uncertainties can be determined without calculating437

x̃ () (and which is already available from the Lagrange multiplier solution).438

In the present situation, only one time, the last one, exists where observations are available.439

Thus the model is run forward from the assumed initial conditions and two boundary conditions,440

making a prediction of x̃ (0 =  −)  using the predicted profile from Eq. (12), along with an441

estimate of the error of that prediction (Eq. 13). Then from the weighted averaging in Eq. (15),442

a final profile is determined that uses both the information in the a priori model and in the data,443

paying due regard to their uncertainties.444

6.3 The Smoothing Step445

The Kalman filter is seen to be an optimal5 predictor and, contrary to widespread misinter-446

pretation, is not a general purpose estimator. The intermediate state x̃ () = x̃ (−)     447

is estimated without using any knowledge of the observed terminal profile and so cannot be448

the best estimate. x̃ () does not satisfy the governing equation at the times when the pre-449

dicted estimate and that from the data are combined and ũ () is not yet known. Thus in this450

particular algorithm (others exist, including direct inversion of the set, Eqs. (10)), the filter451

step is followed by the RTS algorithm, as written out in the Appendix and in the references.452

The calculation steps backward in time from the final, best estimate x̃ ( ) and its uncertainty,453

P ( )  comparing the original x̃ ( −∆) (Eq. 15) and the prediction made from it, with the454

improved estimate now available at one time step in the future, which is both x̃ ( ) and its455

uncertainty. The RTS algorithm leads to a third, smoothed, estimate, x̃ (+)  (in addition456

to the existing x̃ ()  x̃ (−)) and ũ () from the recursion given in the Appendix. The result457

includes the uncertainty, P (+)  of the smoothed state, and Q (+) for ũ ()  Together, x̃ ()458

and ũ () satisfy the model at all times. At   filtered and smoothed estimates are identical.459

In the present special case, as in many control problems, the major changes in the scalar ̃ ()460

occur near the end, as the terminal data are accounted for. Those data change x̃ ( −∆) and461

its uncertainty, leading to a change in its immediate predecessor, x̃ ( − 2∆)  etc., commonly462

with a loss of amplitude the further the estimate recedes in time from the terminal data.463

7 Results464

7.1 Top 100 m465

Core 1093466

5The term “optimal” is only justified if the various statistics are correctly specified.
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Fig. 12 displays the inferred modification, ̃ () to 
a priori
 () and its standard deviation467 q

Q̃ (+) The terminal state itself is identical to that in Fig. 9 from the Lagrange multiplier468

method. The maximum value of  () occurs at -12ky with a value 35.8±07 With an a priori469

uncertainty of Q = (1g/kg)2, the information content of the terminal state alone is unable,470

except near the very end, to much reduce it. If the same calculation is done using Q = (01471

g/kg)2 (not shown) the uncertainties are correspondingly reduced by producing a different ̃ (),472

but the smaller permissible adjustments to 
a priori
 () increase the terminal misfits. The a priori473

uncertainties are directly determining the accuracy with which  () can be inferred from these474

data. A residual ̃ () uncertainty of ±(0.5-1 g/kg)2 precludes any interesting inference about475

LGM salinity changes.476

That the general structure of the solution is nearly independent of the prior control is shown477

by Fig. 13 in which the prior was made a uniform value of the mean value of 
a priori
 (). Only478

in the last 20 ky does any structure appear, and it remains below the estimated LGM mean.479

A similar calculation with a very high prior of 37 g/kg (not shown), with  = −|| is reduced480

below the LGM mean in the last 20 ky. The inability here to obtain values as high as those found481

by AS03 and others lies in part with the requirement that the near-core-top data should also be482

fit, data that generally require a strong decrease in  () in the last tens of thousands of years.483

Should the core-top data be regarded as noise, perhaps the result of unresolved boundary layers484

in the sediment, higher values of  could be obtained, particularly if the initial conditions are485

made uniform, and near-perfect, and so unchangeable by the estimation procedure.486

Fig. 14 shows the result obtained by choosing the sea level prior, but allowing  = −|| m/s487

with the initial conditions nearly completely ineffective in the final state. The fit to the terminal488

state is somewhat improved, but the uncertainties for ̃ () remain O(1 g/kg) except at the very489

end.490

Core 1063491

For core 1063, with  = 0 and the same value of  the results are shown in Fig. 15. The state492

estimate is generally within the estimated prior uncertainty. Control ̃ () produces the maximum493

at about -20ky, of 35.55± 0.85 g/kg, with a value for the total well-below the estimated LGM494

mean, but with an uncertainty encompassing it. The specific estimated maximum lies below495

that for the Southern Ocean core, consistent with the AS03 result, but here both nominally fall496

below the average. Following that maximum, a considerable variation again occurs, but it is497

without statistical significance.498

The considerable structure in the estimated control (bottom water salinity) that emerges499

during the deglacial period is interesting, if only in its general variations (none of which are500
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statistically significant). During deglaciation, the injection of ≈ 125 m of freshwater and the501

shift in the entire ocean volume to the modern lower salinity, along with the major change in502

atmospheric winds and temperatures, must have generated a host of regional circulation and503

salinity shifts and with complicated spatial differences. Differences found here between the two504

cores do not support an hypothesis of any globally uniform shifts in abyssal salinity–although505

they cannot be ruled out.506

Deeper Core Data507

Using the values of  above, the purely diffusive system cannot explain disturbances down-core508

deeper than about 50m or from before about -20,000 y. If the possibility that the effective509

 = −|| is accepted, signals can penetrate from the surface far deeper into the sediments.510

Assume that the deeper structures are signal, and not measurement or geological noise. Then511

the smoother calculation was carried out for Cores 1093 and 1063 using data from -300 m to512

the surface with a start time of  = −200 ky, a 100 ky periodic a priori () and with results513

shown in Figs. 17, 18. The Southern Ocean core shows early excursions even exceeding the514

LGM mean at about -38 ky, while the Atlantic Ocean core is consistently below both the prior515

and the LGM mean. Although it is tempting to speculate about what these apparent excursions516

imply–attaching them to events such as the Bølling-Allerød, Heinrich events, etc.–none of517

them is statistically meaningful, and far more data would be needed to render them so.518

Because the uncertainty, ̃, of the control remains dominated by the prior assumption of519

independent increments in  ()  the estimated values ̃ () remain largely uncorrelated. A520

plausible inference is that on the average over the LGM and the deglaciation that the near-521

Bermuda abyssal waters were considerably fresher than those near the Southwest Indian Ridge522

and to that extent supporting previously published inferences, but not the conclusion that the523

salinity in the latter region was above the global-volume mean.524

8 Modifications and Extensions525

Thus far, the models used have been purely nominal, one-dimensional with constant in space526

and time diffusion and fixed  either zero, or  = −|| Neither of these models is likely very527

accurate; both parameters are subject to variations in time and space, including higher space528

dimensions which would permit non-zero values of  The central difficulty is that using529

some of the information contained in either 
a priori
0 ()  or in term () to find  or  necessarily530

further increases the calculated uncertainty of ̃ ()  More measurements with different tracers531

would help, as would a better understanding of the time-depth properties of pore fluids in abyssal532
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cores. More sophisticated use of the prior covariances (functions of depth and time) could also533

reduce the uncertainties–but only to the extent that they are accurate.534

9 Summary and Conclusions535

Reproducing pore-water chlorinity/salinity observations in a deep-sea core involves an intricate536

and sensitive tradeoff of assumptions concerning diffusion rates,  magnitudes and signs of the537

fluid vertical velocity,  prior estimates of lower and upper boundary conditions, and in some538

cores, the nature of the initial conditions, the one-dimensional behavior of an advection-diffusion539

equation and, crucially, strong assumptions about the nature of the recorded noise. Most previ-540

ous inferences with  = 0which have led to a picture of the abyssal ocean as particularly saline,541

have been based essentially on the assumption that only the salinity maximum appearing at542

tens of meters from the core-top is signal, and does not originate with the initial conditions. All543

remaining structures are supposed noise of unspecific origin.544

In the more general, approach used here, initial condition structures in a purely diffusive 100545

m core can persist for more than 100 ky, greatly complicating the inference that the terminal546

data are controlled by the sea level changes of the past 20 ky alone. When observed structures547

beyond the gross maximum in salinity are treated as signals related to abyssal water properties,548

a statistically acceptable fit can be obtained by permitting a substantial downward fluid flow,549

  0 and which removes the initial conditions from the system. The abyssal water property550

boundary condition (the system “control” in the present context) however, then displays a551

complex and rich structure, none of which is statistically distinguishable from the LGM mean552

salinity. Terminal time conditions, term ()  only weakly constrain the time history of the553

control,  ()  insufficient in the two cores analyzed to reduce salinity uncertainties below554

about ±0.5 g/kg at any time before a few hundred years ago. This inference is consistent with555

that of Miller et al. (2015), using the same pore-water data, but a different analysis methodology.556

That the Southern Hemisphere ocean was heavily salt-stratified in the abyss, with values well557

above the LGM mean, remains a not-implausible assumption about the last glacial period ocean,558

one depending upon the claim that initial conditions have little or no effect at the core terminal559

state data or upon other data not used here. If that assumption is take at face value, it raises560

the question of what the initial conditions were in practice and why their effects are invisible at561

? With this particular type of core data, reducing the resulting uncertainty requires among562

other elements, providing a prior estimate, 
a priori
 ()  with smaller levels of uncertainty (better563

than 0.1 g/kg), a requirement for which little prospect exists.564

The uncertainties derived here are all lower bounds, and are based in part upon the assump-565
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tion of perfectly known, simple, core profiles of   These parameters can, in a formal sense, be566

treated as further unknowns as a function of depth and time, but if the information contained567

in the terminal chlorinity data is used to estimate their values, the uncertainties of ̃ () will568

become even larger. No claim is made that the chosen parameters here,  = 2×10−10m2s, and569

 = −|| m/s are “correct”, merely that they give a reasonable fit to the terminal data. If the570

equivalent of  is measured at the terminal time in the cores (via the porosity and tortuosity)571

the measurement errors are necessarily greater than the zero values used here in treating it as572

perfectly known. A further generalization estimates the uncertainty covariances as part of the573

calculation (“adaptive” filtering and smoothing; see e.g., Anderson and Moore, 1979), but it574

again necessarily further increases the estimated state and control vector uncertainties.575

Of particular use would be pore water properties in regionally distributed cores. It would then576

become possible to better understand the background structures (are they regional covarying577

signals, or are they noise particular to one core?) and their geography. Such additional data578

would be a major step towards expanding the data base to the point where an accurate global579

average would become plausible.580

Numerous interesting questions arise, at least within a theoretical framework. How the581

dynamical and kinematical response to an excess of evaporation, leading to formation of the582

continental ice sheets would have worked its way through the entire ocean volume, raising the583

mean by about 1 g/kg is far from obvious. Equally obscure is how the global volume salinity584

mean re-adjusted itself, much more rapidly, to its lower modern value through the excess runoff585

in the deglaciation. Complex transient behavior would be expected with time scales exceeding586

thousands of years. Amongst many such interesting issues, note that much of the salt in the587

modern upper North Atlantic Ocean arises from the highly saline Mediterranean Sea outflow.588

Paul et al. (2001) have discussed possibilities for LGM salinity changes there, also from pore589

fluid data. Whether any of the world-wide symptoms of these major re-adjustments can be590

detected in paleoceanographic data remains a challenging question.591

To answer the two questions posed in the Introduction: An LGM ocean with greatly inten-592

sified salinity in the abyssal Southern Ocean is not required by the pore-water chlorinity data593

and, such an ocean is not contradicted by the pore water data within the large lower-bound594

residual error estimates.595
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Appendix-Control Algorithms601

The algorithms for the Lagrange multiplier (or adjoint) solution, and for the filter-smoother are602

written out here for reference purposes; cf. W06.603

Lagrange Multipliers604

Assume a model (Eq. 9) with a state vector x ()  and a terminal data set, x ( )  having

error covariance R ( )  x̃ (0) is the initial condition with uncertainty P (0)  and assuming for

notational simplicity that none of A, B or Γ is time-dependent. The covariance of the control,

u (), is Q ()  Let the objective or cost function be Eq. (11), the model is adjoined (appended)

to  using a set of vector Lagrange multipliers, μ ()  Generating the normal equations by

differentiation in ordinary least-squares, μ () satisfy a time-evolution equation

μ (− 1) = Aμ ()   = 1 2   (A1a)

μ ( ) = R
−1 (x̃ ( )− x ( ))  (A1b)

time appearing to “run backwards." The unknown controls are then,605

u () = −QΓμ (+ 1) (A2)

and606 n
I+A(−1)ΓQΓA(−1)R−1

+ A(−2)ΓQΓA(−2)R−1 + · · ·+ ΓQΓR−1
o
x̃( )

= A x̃(0) +
n
A(−1)ΓQΓA(−1)R−1

+ A(−2)ΓQΓA(−2)R−1 + · · ·+ ΓQΓR−1
o
x 

(A3)

explicitly relates the estimated terminal state, x̃( ) to the desired one, x Eq. (A1a) is then607

solved for μ ()  and the entire state then follows from Eqs. (A2, 9). See W06, p.218+).608

RTS Smoother609

The RTS smoother uses a Kalman filter in the forwards-in-time direction, with the equations

in the main text. In the time-reverse direction, the algorithm is more complicated in appearance

because it takes account of the time-correlations in the error estimates that were built up in the
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filter sweep. The resulting system, in the notation of W06, p. 208, is,

x̃ (+) = x̃ (+)L(+ 1) [x̃(+ 1+)− x̃(+ 1−)]  (A4a)

L(+ 1) = P()A()P(+ 1−)−1 (A4b)

ũ(+ 1) =M(+ 1)[x̃(+ 1+)− x̃(+ 1−)] (A4c)

M(+ 1) = Q()Γ () P(+ 1−)−1 (A4d)

P(+) = P() + L(+ 1)[P(+ 1+)−P(+ 1−)]L(+ 1)  (A4e)

Q̃(+) = Q() +M(+ 1)[P(+ 1+)−P(+ 1−)]M(+ 1)  (A4f)

 = 0 1   − 1

Data do not appear, all information content having been used in the forward sweep.610

24



References611

Adkins, J.F., Ingersoll, A.P., Pasquero, C., 2005. Rapid climate change and conditional612

instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quat.613

Sci. Revs. 24, 581-594.614

Adkins, J.F., McIntyre, K., Schrag, D.P., 2002. The salinity, temperature, and 18O of the615

glacial deep ocean. Science 298, 1769-1773.616

Adkins, J.F., Schrag, D.P., 2003. Reconstructing Last Glacial Maximum bottom water617

salinities from deep-sea sediment pore fluid profiles. Earth Planet. Sc. Letts. 216, 109-123.618

Anderson, B.D.O., Moore, J.B., 1979. Optimal Filtering. Prentice-Hall, Englewood Cliffs,619

N. J.620

Berner, R.A., 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press,621

Princeton, N.J.622

Boudreau, B.P., 1997. Diagenetic Models And Their Implementation: Modelling Transport623

And Reactions In Aquatic Sediments. Springer, Berlin; New York.624

Brogan, W.L., 1991. Modern Control Theory, 3rd Ed. Prentice-Hall/Quantum, Englewood625

Cliffs, N. J.626

Bruna, M., Chapman, S.J., 2015. Diffusion in Spatially Varying Porous Media. SIAM J.627

Appl. Maths 75, 1648-1674.628

Carslaw, H.S., Jaeger, J.C., 1986. Conduction of Heat in Solids. Oxford Un. Press.629

Carter, R.M., McCave, I.N., Richter, C., Carter, L., et al., 1999. Proc. ODP, Init. Repts.,630

181.631

Dade, W.B., Hogg, A.J., Boudreau, B.P., 2001. Physics of flow above the sediment-water632

interface, in: Boudreau, R.D., Jørgensen, B.B. (Eds.), The Benthic Boundary Layer. Transport633

Processes and Biogeochemistry. Oxford University Press, New York.634

Einsele, G., 2000. Sedimentary Basins: Evolution, Facies, and Sediment Budget, 2nd, Ed.635

Springer, Berlin ; New York.636

Forget, G., Campin, J.-M., Heimbach, P., Hill, C., Ponte, R., Wunsch, C., 2015. ECCO637

version 4: an integrated framework for non-linear inverse modeling and global ocean state esti-638

mation. Geosci. Model Dev. 8, 3071—3104.639

Fowler, A.C., Yang, X.S., 1998. Fast and slow compaction in sedimentary basins. SIAM J.640

App. Maths. 59, 365-385.641

Gersonde, R., Hodell, D.A., Blum, P., et al., 1999. Proc. ODP, Init. Repts., 177642

Huybers, P., Wunsch, C., 2010. Paleophysical oceanography with an emphasis on transport643

rates. Annu. Rev. Mar. Sci. 2, 1-34.644

25



Insua, T.L., Spivack, A.J., Graham, D., D’Hondt, S., Moran, K., 2014. Reconstruction of645

Pacific Ocean bottom water salinity during the Last Glacial Maximum. Geophys. Res. Letts.646

41, 2914-2920.647

Jansen, E., Raymo, M.E., Blum, P., et al., 1996. Proc. ODP, Init. Repts., 162: College648

Station, TX (Ocean Drilling Program), 49—90. doi:10.2973/odp.proc.ir.162.103.1996.649

Keigwin, L.D., Rio, D., Acton, G.D., et al., 1998. Proc. ODP, Init. Repts., 172: College650

Station, TX (Ocean Drilling Program), 251—308. doi:10.2973/odp.proc.ir.172.106.1998.651

Kobayashi, H., Abe-Ouchi, A., Oka, A., 2015. Role of Southern Ocean stratification in652

glacial atmospheric CO2 reduction evaluated by a three-dimensional ocean general circulation653

model. Paleoceanography 30, 2015PA002786.654

Luenberger, D.G., 1979. Introduction to Dynamic Systems. Theory, Models and Applica-655

tions. John Wiley, New York.656

Macayeal, D., 1995. Challenging an ice-core paleothermometer. Science 270, 444-445.657

Macayeal, D.R., Firestone, J., Waddington, E., 1991. Paleothermometry by control methods.658

J Glaciol 37, 326-338.659

McDuff, R.E., 1985. The chemistry of interstitial Waters, Deep-Sea Drilling Project Leg-86.660

Initial Reports of the Deep Sea Drilling Project 86, 675-687.661

Miller, M.D., 2014. The Deep Ocean Density Structure at the Last Glacial Maximum. What662

Was It and Why? PhD Thesis Cal. Tech., p. 136.663

Miller, M.D., Simons, M., Adkins, J.F., Minson, S.E., 2015 The information content of pore664

fluid 18O and [Cl−]. J. Phys. Oc. 45, 2070-2094.665

Mix, A., Tiedemann, R., Blum P., 2002. Initial Reports, Proc. Ocean Drilling Prog., 202.666

Munk, W.H., 1966. Abyssal recipes. Deep-Sea Res. 13, 707-730.667

Paul, H.A., Bernasconi, S.M., Schmid, D.W., McKenzie, J.A., 2001. Oxygen isotopic com-668

position of the Mediterranean Sea since the Last Glacial Maximum: constraints from pore water669

analyses. Earth Planet. Sci. Letts. 192, 1-14.670

Roache, P.J., 1976. Computational Fluid Dynamics. Hermosa, Albuqurque, N.M.671

Schrag, D.P., Adkins, J.F., McIntyre, K., Alexander, J.L., Hodell, D.A., Charles, C.D.,672

McManus, J.F., 2002. The oxygen isotopic composition of seawater during the Last Glacial673

Maximum. Quat. Sci. Revs. 21, 331-342.674

Schrag, D.P., Depaolo, D.J., 1993. Determination of delta-o-18 of seawater in the deep ocean675

during the last glacial maximum. Paleoceanog. 8, 1-6.676

Schrag, D.P., Hampt, G., Murray, D.W., 1996. Pore fluid constraints on the temperature677

and oxygen isotopic composition of the glacial ocean. Science 272, 1930-1932.678

Stengel, R.F., 1986. Stochastic Optimal Control. Wiley-Interscience, N. Y.679

26



Voermans, J., Ghisalberti, M., Ivey, G., 2016. Coherent vortex structures at the sediment-680

water-interface, 11th International Symposium on Ecohydraulics, Melbourne, Australia, pp.681

unpaged, in press.682

Wunsch, C., 1987. Using transient tracers: The regularization problem. Tellus, 39B, 477-492.683

Wunsch, C., 1988. Transient tracers as a problem in control theory. J. Geophys. Res., 93,684

8099-8110.685

Wunsch, C., 2002. Oceanic age and transient tracers: Analytical and numerical solutions.686

J. Geophys. Res., 107, 304810.1029/2001jc000797.687

Wunsch, C., 2006. Discrete Inverse and State Estimation Problems: With Geophysical Fluid688

Applications. Cambridge University Press, Cambridge ; New York.689

27



1. Core positions–white circles– used by Miller et al. (2015), Adkins and Schrag (2003).690

Shown on a chart of the modern 20-year average salinity at 3600 m from the ECCO 4 state691

estimate (e.g., Forget et al., 2015). The focus of attention here is on the North Atlantic core near692

Bermuda and the South Atlantic one southwest of the Cape of Good Hope. A modern average693

salinity calculated from these 5 positions might be useful but would not be very accurate. See694

Table 1 for descriptive references of each core, and the greatly varying water depths at each site.695

In the modern ocean, the North Atlantic at 3600 m is more saline than the Southern Ocean.696

The modern full volume average salinity is about 34.7 g/kg. The average value at this depth697

today is about 34.75 g/kg (not area weighted) and about 34.74 g/kg when weighted. A suite of698

charts for modern salinity and other properties in section and latitude-longitude form is available699

in the online WOCE Atlas. Variations are complex and defy a simple verbal description. In700

particular note that strong zonal structures in salinity exist in the abyssal Southern Ocean; it701

is not zonally homogeneous.702

2. Histogram of the modern ocean salinity at 3600m as a time average over 20 years from the703

ECCO state estimate (Forget et al., 2015). Perhaps the glacial ocean was more homogeneous?704

The two modes roughly correspond to North Atlantic Deep Water and Antarctic BottomWaters.705

The probability of an accurate global average from any handful of values is low and note that706

the core tops here lie at considerably different water depths (Table 1).707

3. Salinity, g/kg over the full measured depth in each of the five cores. This paper focusses708

on Cores 1063, 1093 plotted as thicker lines. See Table 1 for a reference and geographical label709

for each core. Vertical dashed lines are the approximate modern global volume mean salinity,710

34.7 g/kg and the approximate LGM value of 35.7 g/kg. and dotted line fragment shows the711

LGM maximum value of  () estimated for this core by Adkins and Schrag (2003).712

4. Same as Fig. 3 except expanded to show only the top 100m. The maximum measured713

value in core 1093 lies near the estimated LGM mean of 35.7 (vertical dashed line), but does not714

exceed it except slightly in short, possibly noise, events. Thick lines are the data from the two715

cores analyzed, 1063, 1093. Approximate modern mean salinity of 34.7 g/kg is also shown as a716

vertical dashed line. The salinity increase with depth in the much fresher Core 1239 is almost717

as large as that appearing in Core 1093. Near surface, the core is either undersampled, or the718

data are extremely noisy.719

5.Location of ODP Core 1093 on the Southwest Indian Ridge. See Gersonde et al. (1999).720
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6. Measured porosity from all five cores. Tortuosity is assumed to follow Eq. (4). In721

the present calculations the corresponding diffusivity,  is taken to be constant with depth.722

Experiments with linear  produced only slight changes from the solutions with a constant723

value.724

7. Time-depth profile of a numerical solution using a Dufort-Frankel method (Roache, 1976)725

(a), and the analytic solution from Carslaw and Jaeger (1986, P. 101) for a zero-initial condition,726

(b) for  = 0  = 2× 10−10m2 in a 100 meter length “core” over a duration of 100,000 years.727

Panel (c) shows the terminal profile in the two solutions which are visually indistinguishable.728

Time scale zero is at -100 ky BP.729

8. Time for a particular vertical scale to decay to 1% of its initial value (from Eq. 5).730

Horizontal dashed line is at 20 ky.731

9. (a) Forward solution, with pure diffusion, using the quasi-periodic condition: starting732

with the observed Core 1093 at  = −100 ky and forced by  () = 
a priori
 ()  Much of the733

terminal structure originates with the initial conditions, although some small scale-structure is734

lost in the terminal-time profile (solid line) in (c). (b) Shows the forward calculation with the735

same initial and boundary conditions, except now  = −|| m/s. All of the initial condition736

data is swept out of the system before the end. (c) Observed terminal data (dashed) and the737

two terminal states for  = 0 and  = −||738

10. (a) Amplitude (Eq. 6) of the steady-periodic state component of  () for different forcing739

periods using the same value of . Short period (“high” frequency) responses rapidly diminish740

with depth. A 500 m depth was used because of the dependence on the zero boundary condition741

at the core bottom. (b) 99% decay times of the transient element of periodic surface forcing742

against vertical scale. Horizontal dashed line is at 20 ky.743

11. Estimated global mean salinity from the sea level change curve (Miller, 2014, Miller et744

al., 2015, from a variety of sources). The direction of the time axis has been converted to the745

physics convention from the geological “age”. This curve becomes the prior boundary condition746


a priori
 () Dashed lines are the estimated volume average modern (lower) and LGM salinities747

(upper), the latter the value used by Adkins and Schrag (2003). Here the time scale represents748

time before the present.749

12. (a) Kalman filter solution, Core 1093, pure diffusion ( = 0) and the sea level prior.750

The filter solution is identical to that shown from the pure forward calculation in Fig. 9 except,751
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nearly invisibly, near the terminal time. (b) Estimate of the state vector after application of752

the smoothing algorithm, and which changes the state as far back as its initial conditions. (c)753

Deviation of the terminal state estimate from the core data, along with one standard errors754 p
 ( ) =

p
 ( +) (d) 

a priori
 () (solid), and the estimated  () =  () + ̃ () (dashed).755

Horizontal dashed lines are the modern and LGM global means, the latter the AS03 estimate.756

The estimated value of  () remains below the global mean LGM salinity, as the deep maximum757

is controlled by the initial conditions in contrast to the solution of AS03 which reached 37.1 g/kg.758

(e) Last 5000 years of ̃ ()  and the one standard deviation uncertainty from ±
p
 () Except759

at the very end, ̃ (+) differs negligibly from  () (f) Terminal state from the Kalman filter760

just prior to the invocation of the terminal data (identical to the forward solution; solid line.761

Dashed line is the core data, dotted line the terminal state. Note that the Lagrange multiplier762

solution, the Kalman filter solution, and the smoothed solution are identical at  =  763

13. Core 1093 with a constant (“flat”) prior of 34.93 g/kg, the mean of 
a priori
 () (a) The764

solution as run forward in the Kalman filter sweep. (b) The same solution as modified by the765

smoothing sweep. (c) Deviation of the terminal state (either from Lagrange multipliers or the766

Kalman filter or the smoother) from the core data. (d) Flat, a priori control  () (solid line)767

and the final estimated  () =  () + ̃ ()  (e) Last 5000 years of ̃ () and the one standard768

deviation uncertainty. (f) Comparison of the prediction, x̃ ( −)  x̃ ( +) = x̃ ( )  and the769

Core 1093 data.770

14. Same as Fig. 12 except for  = −|| m/s. Again ̃ () is always below the LGM mean.771

15. Same as Figs. 12, except for Core 1063 on the Bermuda Rise. The terminal state does772

not well-match the core data in terms of depth and this solution probably should be rejected.773

16. Core 1093 (Southwest Indian Ridge) results using 300m length,  = −|| and an initial774

time of -200 ky with the sea level curve treated as twice periodic over 100 ky. (a) The misfit to775

the core data and (b,c) the final control are shown. Now structure appears as far back as -60776

ky, and includes an excursion above the LGM mean at around -38ky although not statistically777

significant.778

17. Same as Fig. 17 except for Core 1063 on the Bermuda Rise.779
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Figure 1: Core positions–white circles– used by Miller et al. (2015), Adkins and Schrag (2003). Shown

on a chart of the modern 20-year average salinity at 3600 m from the ECCO 4 state estimate (e.g., Forget

et al., 2015). The focus of attention here is on the North Atlantic core near Bermuda and the South

Atlantic one southwest of the Cape of Good Hope. A modern average salinity calculated from these 5

positions might be useful but would not be very accurate. See Table 1 for descriptive references of each

core, and the greatly varying water depths at each site. In the modern ocean, the North Atlantic at 3600

m is more saline than the Southern Ocean. The modern full volume average salinity is about 34.7 g/kg.

The average value at this depth today is about 34.75 g/kg (not area weighted) and about 34.74 g/kg when

weighted. A suite of charts for modern salinity and other properties in section and latitude-longitude

form is available in the online WOCE Atlas. Variations are complex and defy a simple verbal description.

In particular note that strong zonal structures in salinity exist in the abyssal Southern Ocean; it is not

zonally homogeneous.
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Figure 2: Histogram of the modern ocean salinity at 3600m as a time average over 20 years from the

ECCO state estimate (Forget et al., 2015). Perhaps the glacial ocean was more homogeneous? The two

modes roughly correspond to North Atlantic Deep Water and Antarctic Bottom Waters. The probability

of an accurate global average from any handful of values is low and note that the core tops here lie at

considerably different water depths (Table 1).
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Figure 3: Salinity, g/kg over the full measured depth in each of the five cores. This paper focusses on

Cores 1063, 1093 plotted as thicker lines. See Table 1 for a reference and geographical label for each

core. Vertical dashed lines are the approximate modern global volume mean salinity, 34.7 g/kg and the

approximate LGM value of 35.7 g/kg. and dotted line fragment shows the LGM maximum value of  ()

estimated for this core by Adkins and Schrag (2003).
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Figure 4: Same as Fig. 3 except expanded to show only the top 100m. The maximum measured value

in core 1093 lies near the estimated LGM mean of 35.7 (vertical dashed line), but does not exceed it

except slightly in short, possibly noise, events. Thick lines are the data from the two cores analyzed,

1063, 1093. Approximate modern mean salinity of 34.7 g/kg is also shown as a vertical dashed line. The

salinity increase with depth in the much fresher Core 1239 is almost as large as that appearing in Core

1093. Near surface, the core is either undersampled, or the data are extremely noisy.

Figure 5: Location of ODP Core 1093 on the Southwest Indian Ridge. See Gersonde et al. (1999).
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Figure 6: Measured porosity from all five cores. Tortuosity is assumed to follow Eq. (4). In the present

calculations the corresponding diffusivity,  is taken to be constant with depth. Experiments with linear

 produced only slight changes from the solutions with a constant value.
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Figure 7: Time-depth profile of a numerical solution using a Dufort-Frankel method (Roache, 1976) (a),

and the analytic solution from Carslaw and Jaeger (1986, P. 101) for a zero-initial condition, (b) for

 = 0  = 2× 10−10m2 in a 100 meter length “core” over a duration of 100,000 years. Panel (c) shows
the terminal profile in the two solutions which are visually indistinguishable. Time scale zero is at -100

ky BP.
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Figure 8: Time for a particular vertical scale to decay to 1% of its initial value (from Eq. 5). Horizontal

dashed line is at 20 ky.
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Figure 9: (a) Forward solution, with pure diffusion, using the quasi-periodic condition: starting with

the observed Core 1093 at  = −100 ky and forced by  () = 
a priori
 ()  Much of the terminal structure

originates with the initial conditions, although some small scale-structure is lost in the terminal-time

profile (solid line) in (c). (b) Shows the forward calculation with the same initial and boundary conditions,

except now  = −|| m/s. All of the initial condition data is swept out of the system before the end. (c)

Observed terminal data (dashed) and the two terminal states for  = 0 and  = −||
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Figure 10: (a) Amplitude (Eq. 6) of the steady-periodic state component of  () for different forcing

periods using the same value of . Short period (“high” frequency) responses rapidly diminish with depth.

A 500 m depth was used because of the dependence on the zero boundary condition at the core bottom.

(b) 99% decay times of the transient element of periodic surface forcing against vertical scale. Horizontal

dashed line is at 20 ky.
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Figure 11: Estimated global mean salinity from the sea level change curve (Miller, 2014, Miller et al.,

2015, from a variety of sources). The direction of the time axis has been converted to the physics con-

vention from the geological “age”. This curve becomes the prior boundary condition 
a priori
 () Dashed

lines are the estimated volume average modern (lower) and LGM salinities (upper), the latter the value

used by Adkins and Schrag (2003). Here the time scale represents time before the present.
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Figure 12: (a) Kalman filter solution, Core 1093, pure diffusion ( = 0) and the sea level prior. The filter

solution is identical to that shown from the pure forward calculation in Fig. 9 except, nearly invisibly,

near the terminal time. (b) Estimate of the state vector after application of the smoothing algorithm, and

which changes the state as far back as its initial conditions. (c) Deviation of the terminal state estimate

from the core data, along with one standard errors
p
 ( ) =

p
 ( +) (d) 

a priori
 () (solid), and the

estimated  () =  ()+ ̃ () (dashed). Horizontal dashed lines are the modern and LGM global means,

the latter the AS03 estimate. The estimated value of  () remains below the global mean LGM salinity,

as the deep maximum is controlled by the initial conditions in contrast to the solution of AS03 which

reached 37.1 g/kg. (e) Last 5000 years of ̃ ()  and the one standard deviation uncertainty from ±
p
 ()

Except at the very end, ̃ (+) differs negligibly from  () (f) Terminal state from the Kalman filter

just prior to the invocation of the terminal data (identical to the forward solution; solid line. Dashed line

is the core data, dotted line the terminal state. Note that the Lagrange multiplier solution, the Kalman

filter solution, and the smoothed solution are identical at  =  
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Figure 13: Core 1093 with a constant (“flat”) prior of 34.93 g/kg, the mean of a priori () (a) The

solution as run forward in the Kalman filter sweep. (b) The same solution as modified by the smoothing

sweep. (c) Deviation of the terminal state (either from Lagrange multipliers or the Kalman filter or

the smoother) from the core data. (d) Flat, a priori control  () (solid line) and the final estimated

 () =  () + ̃ ()  (e) Last 5000 years of ̃ () and the one standard deviation uncertainty. (f)

Comparison of the prediction, x̃ ( −)  x̃ ( +) = x̃ ( )  and the Core 1093 data.
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Figure 14: Same as Fig. 12 except for  = −|| m/s. Again ̃ () is always below the LGM mean.
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Figure 15: Same as Figs. 12, except for Core 1063 on the Bermuda Rise. The terminal state does not

well-match the core data in terms of depth and this solution probably should be rejected.
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Figure 16: Same as Fig. 15 except for a constant prior a priori () 

40



−0.2 −0.1 0 0.1 0.2
0

50

100

150

200

250

300

g/kg

M
E

TE
R

S

(a)

−70 −60 −50 −40 −30 −20 −10 0
−1.5

−1

−0.5

0

0.5

1

1.5

2

KY

g/
kg

(c)

0 10 20 30 40 50 60 70 80 90 100
34.5

35

35.5

36

KY

g/
kg

(b)

Final control

Figure 17: Core 1093 (Southwest Indian Ridge) results using 300m length,  = −|| and an initial
time of -200 ky with the sea level curve treated as twice periodic over 100 ky. (a) The misfit to the core

data and (b,c) the final control are shown. Now structure appears as far back as -60 ky, and includes an

excursion above the LGM mean at around -38ky although not statistically significant.
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Figure 18: Same as Fig. 17 except for core 1063 on the Bermuda Rise.
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