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Abstract. An earlier analysis of pore-water salinity (chlorin-
ity) in two deep-sea cores, using terminal constraint methods
of control theory, concluded that although a salinity ampli-
fication in the abyss was possible during the LGM, it was
not required by the data. Here the same methodology is ap-
plied to δ18Ow in the upper 100 m of four deep-sea cores.
An ice volume amplification to the isotopic ratio is, again,
consistent with the data but not required by it. In particular,
results are very sensitive, with conventional diffusion values,
to the assumed initial conditions at−100 ky and a long list of
noise (uncertainty) assumptions. If the calcite values of δ18O
are fully reliable, then published enriched values of the ratio
in seawater are necessary to preclude sub-freezing tempera-
tures, but the seawater δ18O in pore fluids does not indepen-
dently require the conclusion.

1 Introduction

Based upon the work of McDuff (1985), Schrag and De-
Paolo (1993), Schrag et al. (1996, 2002), Adkins and
Schrag (2001, 2003), Insua et al. (2014), and several others,
on the properties of pore waters in abyssal cores, inferences
have been made about the salinity and temperature of the
regional and global abyssal oceans during the Last Glacial
Maximum (LGM). A summary of the central conclusion (e.g.
Adkins et al., 2002) would be that the deep ocean was al-
most everywhere near freezing temperatures, with an abyssal
salinity much above the global volume average, particularly
in the Southern Ocean.

Those inferences have become a part of the ongo-
ing discussion of climate physics, including the where-

abouts of global carbon during the LGM, and are a stan-
dard against which models are being tested: e.g. Otto-
Bliesner et al. (2006), Intergovernmental Panel on Cli-
mate Change (2013), and Kobayashi et al. (2015). Recently
Miller (2014) and Miller et al. (2015) have challenged this
interpretation showing, using a Monte Carlo method, that the
uncertainties of the inferences were too great to assert that the
LGM abyssal stratification could be determined with useful
accuracy.

Their conclusion was tested by Wunsch (2016; hereafter
W16) using salinity (chlorinity) data obtained from the pore
waters of two of the cores used by Adkins and Schrag (2003),
Miller (2014), and Miller et al. (2015; hereafter M15). In
contrast to the latter authors, the analysis was carried out in
the physically more direct context of standard control the-
ory: pore fluid data were treated as a “terminal constraint” on
the time-evolving pore-water properties.1 Using highly op-
timistic assumptions (a known one-dimensional advection–
diffusion model with perfect parameters, known initial con-
ditions, etc.), the uncertainties in the estimated abyssal salin-
ity through time supported the M15 inference. In general, the
very high local values of abyssal salinity, S, much above the
LGM volumetric mean, were possible within the uncertain-
ties of the salinity (chlorinity) data and the model but were
not required by the data and model.

The purpose of this present paper is to extend the W16
salinity analysis to the pore-water measurements of the oxy-
gen isotope ratio, δ18Ow; see Schrag and DePaolo (1993),
Adkins and Schrag (2001, 2003), Schrag et al. (2002), and

1Miller et al. (2015) used a Markov chain–Monte Carlo
(MCMC) approach. Whether this stochastic method is intuitively
more accessible than the one used here is a matter of taste.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1282 C. Wunsch: LGM oxygen isotopes

M15. The oxygen isotope tracer is of particular impor-
tance for the interpretation of the calcite ratio of δ18Oc in
foraminifera, to separate the ice volume effect (controlling
δ18Ow) from the temperature signature in δ18Oc during the
Last Glacial Maximum. As discussed by these authors, both
colder in situ water temperatures and increases in global ice
volume lead to an increase in δ18Oc (cf. Bradley, 1999,).
Unless the ice volume contribution in δ18Ow is sufficiently
large, some δ18Oc values imply sub-freezing deep-ocean
temperatures. Schrag et al. (2002) discuss the limits on the
required global volumetric mean increase in δ18Ow, with a
lower bound (Duplessy, 1978; Bradley, 1999) of 1.1 ‰ to
prevent below-freezing temperatures as inferred from δ18Oc.
A maximum change of 1.3 ‰ is found if the entirety is at-
tributed to a sea level drop of about 120 m at the LGM (Fair-
banks, 1989) with no associated temperature change. But as
Schrag et al. (2002) and others emphasized, no reason ex-
ists to believe that any kind of spatially uniform changes oc-
curred during the glacial and deglacial intervals. The tem-
perature change estimate leans on finding the small differ-
ence between two noisy numbers and involves the accuracy
of the average global ice sheet δ18O during the LGM, the ac-
curacy of the relationship between δ18Oc and water temper-
ature, the accuracy of the isotopic measure itself, and non-
negligible salinity effects, among other problems. Note, for
example, that near-surface Mg /Ca ocean temperatures of-
ten differ significantly from the oxygen isotope values (e.g.
Margo Project Members (2009). If the extreme δ18Oc val-
ues are interpreted literally, the ice volume contribution must
have been high enough to prevent freezing. The question here
is whether the δ18Ow data by themselves support that hypoth-
esis.

As in W16, the focus here is on the upper 100 m of the
cores, where the observed δ18Ow has its maximum, instead
of aiming for an overall analysis from the full pore-water data
depth range. Again, the emphasis is on understanding the ex-
tent to which the δ18Ow, by itself, implies large ambient val-
ues in the abyssal waters.

The general procedure here for both salinity and δ18Ow
is identical to that in W16, which has a broader discussion.
That is, any tracer c (z, t) in the pore waters is supposed to
satisfy a one-dimensional advection–diffusion equation:

∂c

∂t
+w (z, t)

∂c
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−
∂
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(
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)
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∂2c

∂z2 = 0. (1b)

Here, z is positive upwards from the base of the core data,
time runs forward, w is an advective flow relative to the sur-
rounding solid, but porous, medium, and k is a vertical dif-
fusion coefficient. No diagenetic reactive processes are in-
cluded (see, e.g., Berner, 1980; Schrag and DePaolo, 1993).
∂k/∂z, if non-zero, can be thought of as an effective ve-

Table 1. Notation used for initial, final, and boundary conditions.
In the discrete form, two time steps of the concentration c make up
the state vector, x(t), and corresponding imposed conditions. Tildes
over variables denote estimates.

Notation Variable Definition

Initial condition C0 (z) c (t = 0,z)
Boundary condition Ch (t) c (t,z= 0)
Terminal condition Cterm (z) c

(
t = tf ,z

)

locity, w∗, but it competes with the effects of variable k
in the last term of Eq. (1b). The derivation of this equa-
tion is not straightforward and involves numerous assump-
tions discussed by Berner (1980), Boudreau (1997), Dade
et al. (2001), Huettel and Webster (2001), Bruna and Chap-
man (2015), Voemans et al. (2016), and others. Because this
equation has been the model used by previous workers, it is
adopted here as a black-box framework for discussion of the
resulting uncertainties in the pore-water inferences with little
discussion of its probable violations. δ18Ow is a ratio of con-
centrations, but the denominator (the concentration

[16O
]
)

is treated as invariant so that a standard advection–diffusion
equation is still appropriate.

If k and w are known, Eq. (1) is a conventional parabolic
partial differential equation in z, t whose textbook solution
involves specifying (a) the initial conditions, (b) the bound-
ary condition at z= h (the fluid–solid interface), and (c) the
boundary condition at z= 0, the base of the pore-water data.
As discussed by Wunsch (2006), problems involving obser-
vations almost never coincide with the well-posed situations
described in most differential equations textbooks, and one
must specifically ask “what is known, and what has to be de-
termined?” In the present situation with real core data, apart
from the model, information is available only at the time
when the core was obtained, t = tf , and includes c

(
z, tf

)
=

C
(
z, tf

)
±1C

(
z, tf

)
, where C

(
z, tf

)
are the “true” termi-

nal values and 1C
(
z, tf

)
is an estimate of their uncertainty.

In many cores, the porosity and tortuosity of the solid phase
are also measured at time tf and are used to infer k

(
z, tf

)
,

also with some uncertainty (not always stated). The mea-
sured values, Cterm = c

(
z, tf

)
, are the terminal constraint on

the tracer. They represent the values to which the concen-
tration must converge through time – within error bars (here
also labelled “uncertainty”).

Because the core properties are measured only at time
tf , the initial conditions, C0 (z), are unknown and a plau-
sible guess is required. Two candidates suggest themselves:
(1) relying on the rough quasi-periodicity of Pleistocene
ice ages (see, e.g., M15), one can set C0 (z)= c

(
z, tf

)
±

1C (z, t = 0) , but where 1C (z, t = 0)�1C
(
z, t = tf

)
owing to the great uncertainty. Although the nominal initial
and terminal profiles are identical, the errors present in each
are assumed to be totally unrelated, the former being much
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greater than the latter. (2) Take the completely agnostic value
C0 (z)= 0±1C (z, t = 0), and attempt to determine the ini-
tial conditions from the data. (See Table 1 for the notation.)

What of the boundary condition Ch (t)= C (z= h, t)? De-
termining Ch (t) has been the focus of the existing litera-
ture, with inferred values being the estimates of LGM and
deglacial abyssal salinities and isotopic ratios, and this is
what led to the general inferences described above. As with
all estimation problems, it helps greatly to have a good (accu-
rate) a priori estimate of the true value. As outlined by Mc-
Duff (1985) and Adkins and Schrag (2001), plausibly both
oceanic salinity and δ18Ow would be controlled largely by ice
volume changes, and they and subsequent investigators have
usually taken a scaled version of the estimated sea level curve
as a sensible starting place. Because sea level curves are
sometimes based upon δ18O values in cores, which are pre-
sumably correlated with δ18Ow, we follow M15 in using their
estimate – one that avoided such data and, as shown in Fig. 1,
scaled for δ18Ow. An enrichment at the estimated global ice
maximum about −20 ky occurs. The curve, which will be
used as an a priori estimate, was allowed to range from−0.19
to 1.16 ‰, with a mean value over the last 1 ky of 0.43 ‰.
Let the guessed prior be written as C̃h (t)= Ch (t)±1Ch (t),
where 1Ch (t) is another uncertainty estimate.

The bottom boundary condition is problematic. With fi-
nite diffusion and/or an upward directed w, structures below
the measured pore fluid depth can propagate into the mea-
sured domain. A separate or combined calculation would
be required for determining those unknown structures, and
we again follow previous investigators in using a zero-flux
boundary condition at z= 0. The problem can easily be
reformulated to determine that boundary condition instead
of, or in addition to, Ch (t), and noting that, in general,
∂c(0)/∂z 6= 0 in the data.

2 Estimation structure

Following W16, the problem is written in discrete numerical
form using a DuFort–Frankel method (Roache, 1976) with
the exception that now k will be treated explicitly as a linear
function of z with a factor-of-2 variation, but it makes little
quantitative difference to the results; see the Appendix. W16
described three, equivalent, stable methods for solving the re-
sulting terminal constraint estimation problem.2 Again, with
the goal of finding the most optimistic estimates of uncer-
tainty, w and k are treated here as perfectly known, all data
being used to compute the control variable, which is the cor-
rection to the guessed a priori Ch (t) and its uncertainty. Here
only the so-called Rauch–Tung–Striebel (RTS) smoother al-
gorithm is used, as it produces rigorous uncertainty estimates
(rigorous up to the model choice, including the prior uncer-
tainties). With k,w known and time-independent, the prob-

2Anyone interested in the rigorous mathematics of such prob-
lems in continuous space and time is urged to consult Lions (1971).

lem is a linear one, with the model written in “state-space”
form as

x (t +1t)= A (t)x (t)+B (t)q (t)+0 (t)u (t) ,
t = 0,1t,21t, . . ., (N − 1)1t,
tf = (N − 1)1t. (2)

A is the 2M × 2M “state transition” matrix (a function of
w,k), q (t) represents the prescribed boundary conditions
and B= 0 distributes the boundary condition over the req-
uisite grid points.3 Here q = q (t) is a scalar and B is a vector
of all zeros except with unity at the top boundary point – the
core–ocean interface or

B= 0 = [0,0, . . .0,0,1]T , (3)

that is, zero vectors except for the last point. The state vec-
tor, and hence the terminal data, has the dimension 2M,
where M is the number of vertical gridpoints in z. u (t)
is the “control” and is the adjustment that will be made
to q (t) to render the state as consistent as possible with
the terminal data conditions. The state vector is x (t)=
[c (z, t −1t) ,c (z, t)]Twith discretized vector 0≤ z ≤ L, in
1z. The numerical scheme requires two time levels in
x (t). In the present special case, matrices A,B, and 0 are
here all taken to be time-independent and perfectly known,
and q (t)= q (t) and u (t)= u (t) are scalars representing
the abyssal water δ18Ow prior and adjustment respectively.
(Many extensions of this formalism exist, including those for
non-linear systems.)

An equation governing the observations, y (t) , is written,

E (t)x (t)+n (t)= y (t) , (4)

where n (t) is the noise in the observations. In the present spe-
cial case, E (t)= 0, t < tf , and E

(
tf
)
= I2M , where I is the

identity matrix (that is, observations exist only at the terminal
time). R is the covariance matrix of the error (uncertainty) in
the terminal data, and P0 is the corresponding values for the
initial conditions.

The estimation equations are described more fully in W16.
Full specification of the system includes these equations plus
all of the a priori estimates of uncertainty in parameters, ini-
tial conditions, measurement noise, etc.

2.1 Identification

Standard control theory and state-space methods (e.g. Good-
win and Sin, 1984; Franklin et al., 1998; Wunsch, 2006) com-
monly distinguish between two problems associated with

3The notation is that bold lower-case letters indicate column
vectors; bold upper-case letters (Latin or Greek) are matrices, and
the superscript T means the transpose. Vectors and matrices some-
times reduce to scalars.
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Figure 1. Prior estimate of the ocean–sediment interface boundary condition on δ18Ow, derived from the sea level curve of Miller et
al. (2015). The maximum a priori value for the LGM is 1.15± 1 ‰ and the minimum, calculated very approximately from the data in
Fig. 2 is −0.2± 1 ‰, consistent with previous such estimates in the references (e.g. Miller et al., 2015). Time zero for integrations starts at
−100 ky. Vertical dashed line indicates a range of 1 ‰ between the nominal modern value and the change to the LGM described by Schrag
et al. (2002).
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Figure 2. Modern δ18Ow at 3500 m (from LeGrande and Schmidt, 2006) with superimposed core positions (black circles). Note, however,
that the core tops are not generally at this depth (Table 2). G. Gebbie (personal communication, 2015) concluded that the structures in this
chart are overly sensitive to the method used for gridding. Region of little or no data in the Southern Ocean is bounded by the thick black
line.

Eqs. (2) and (4), that of “identification” and “state-space and
control estimation.” The identification problem in this case
reduces to answering the question: “What values of the pa-
rametersw,k are the best ones to use in modelling the data?”
The formalism following from Eq. (2) is sufficiently gen-
eral to include representations of the space–time structure
of k

(
z, tf

)
, w

(
z, tf

)
– if equations governing their time–

space evolution are available. In the absence of such infor-
mation, the simplest, but arbitrary and optimistic, assump-
tions range from assuming constant values in one or both of
space and time to, at the opposite extreme, assuming a white-
noise structure in both space and time ending with the struc-
tures observed at the terminal time in the core. The former
assumption under-parameterizes the true variability, and the
latter introduces an enormous number of further unknown
parameters relative to the available data. Various intermedi-
ate assumptions can be made.

Identification must be done, at least in part, before estima-
tion. In the present situation, the identification step is simply
assumed to have been properly carried out by previous au-
thors, who used one-dimensional structures, various orders
of magnitude for w,k, and governing equations. In what fol-
lows, the importance of this identification process will be
apparent. (The data used for identification should be inde-
pendent of the data used subsequently for state estimation
and control. Otherwise the statistical measures that follow
become more complex.)

2.2 State estimation and control

If the identification problem has been solved, producing a
useful model (or “plant” in the engineering control litera-
ture), available data can be used instead to determine the ad-
justed boundary condition C̃h (t)= q (t)+ ũ (t), and the best
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estimate of the full state variable x (t)→ [c (z, t)]. This sec-
ond problem was addressed in W16 – in which guesses were
made of the most appropriate model and the terminal con-
straint problem then solved by standard sequential methods
(Lagrange multipliers (adjoint) and the RTS smoother). It
was argued then that the uncertainty of the resulting C̃h (t)
was so great, despite using all of the terminal data to de-
termine it, that little could be said about the abyssal water
salinity change during the LGM and the subsequent deglacia-
tion. Using some or all of the same data to also determine
k (z, t) ,w (t) could only further increase the uncertainty of
the estimate ũ (t). This result was consistent with M15.

2.3 Observability and controllability

Control methods introduce the concepts of observability and
controllability (Wunsch, 2006; Marchal, 2014) as well as a
series of related ideas such as “reachability” (see Goodwin
and Sin, 1984). Here, “observability” means that the obser-
vations are adequate to perfectly reconstruct the initial condi-
tions. “Controllability” implies that the system can be driven
from any initial condition to an arbitrary terminal value.

The extent to which the terminal data are determined by
the initial conditions is an important issue here. Thus (e.g.
Wunsch, 2006) with a single observation at the end time and
in the absence of any external disturbance, the observability
matrix, a special case, is

O= I2NAtf = Atf ,

and with Ch (t)= 0 would, if Atf is of full rank, permit exact
solution of

x
(
tf
)
=Ox (0) ,

for x (0). Loss of information about the initial conditions will
arise directly from the dissipative nature of diffusion or, if
there is a negative w, from the sweeping out of informa-
tion by advection from the region of observation. Using k =
10−10 m2 s−1, w = 0, 1t = 127.3 years, and tf = 7861t y,
L= 100 km and 101 grid points in z, the rank of O is 24
(A has rank 100, the number of non-surface-boundary grid
points in the vertical). Thus a “range” of 24 structures in the
initial conditions can be inferred from the terminal data, and
76 will lie in its null space. With these parameters, the system
is not fully observable and the question is whether the null
space is of serious concern or not. (Structures in the terminal
state null space of O are not determined by the initial con-
ditions and might be provided by the control instead. Struc-
tures in its range can be provided by the initial conditions,
but can also be provided by the control.) Loss of informa-
tion between the starting and ending times is intuitively sen-
sible: small vertical-scale structures in x (0) do not survive
measurably over 100 000 years in a diffusive system. Large
vertical-scale structures can and do survive; see the analytical
solutions in W16 and the cases analysed below.
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Figure 3. The four δ18O profiles used here along the mean value to
the depth of the shallowest record (core 1123). Recall that the tops
of the cores lie at different water depths.

Suppose that the initial condition were zero. Then con-
trollability would answer the question of whether any choice
of control in Ch (t)= q (t)+ u (t) would carry the system to
the terminal data Cterm (z). The controllability matrix 2 (e.g.
Wunsch, 2006) is

2=
{

I2N ,A,A2, . . .,Atf−1t
}
0. (5)

The system is controllable only to the extent that 2 is full
rank, M, for tf −1t = (N − 2)1t. In the present case, from
the definition of 0 (Eq. 3), the rank is estimated as about 33.

Neither of these concepts depends on the actual data. The
formalisms can be used to find explicit descriptions of the
terminal data structures determinable from the initial condi-
tions and controls. Here we proceed instead by direct con-
struction of the solutions, having inferred that there will
be a strong dependence on both initial conditions and con-
trols, with some inevitable residuals (the null spaces) to be
regarded as “noise.” A fuller discussion of controllability
and observability depends upon understanding whether the
smaller, but non-zero, eigenvalues of A and its powers are
sufficiently large compared to the unclear noise level. The
observability and controllability approach is outlined here
because it is an open-ended analysis method for any future
discussions of the present problem and one that is largely in-
dependent of the particular data available.

3 The data

Figure 2 displays the positions of the five cores for which
δ18Ow data were available (courtesy of M. Miller, personal
communication, 2015, and see Table 2) superimposed upon
the modern δ18Ow distribution at 3500m from the GISS web-
site; see LeGrande and Schmidt (2006). The modern range
at this depth is roughly from −0.3 to 0.3 ‰, plus outliers.
An artificial boundary for the Antarctic-origin bottom wa-
ters, owing to a lack of data, is visible (see LeGrande and
Schmidt, 2006), as is the relatively strong gradient in the
Atlantic Ocean. Any calculated global spatial average from
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Table 2. Cores from which salinity (chlorinity) data were used, along with a reference to their initial description in the Ocean Drilling
Program (ODP) and with a geographical label. A nominal water depth of the core top is also listed.

Core no. Reference Location Water
depth (m)

ODP981 Jansen et al. (1996) NE Atlantic, Feni Drift/Rockall 2200
ODP1063 Keigwin et al. (1998) Bermuda Rise 4600
ODP1093 Gersonde et al. (1999) Southern Ocean, SW Indian Ridge 3600
ODP1123 Carter et al. (1999) E. of New Zealand, Chatham Rise 3300
ODP1239 Mix et al. (2002) E. Tropical Pacific, Carnegie Ridge/Panama Basin 1400
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Figure 4. δ18O in core 1239, eastern equatorial Pacific, showing
apparent undersampling near the core top and likely related to the
intense dynamical variations expected on the equator and continen-
tal margins. These data were not further used here. Position of zero
in depth is arbitrary.

four locations for this or any other depth would have a large
uncertainty. For reference purposes, a straight area-weighted
average of the gridded values in Fig. 3 is −0.013 ‰.

Measured terminal porosity in each of the cores is dis-
played in W16. Figure 3 shows the δ18Ow measurements
with depth, with the exception of core 1239, which is shown
in Fig. 4.

The visible fluctuations in all cores exceed the estimated
analytical accuracy of 0.03 ‰ (Adkins and Schrag, 2001),
but the extent to which they represent real changes in bound-
ary conditions through time, their initial conditions, and
fluxes from below the measured core depth, as opposed to
a variety of noise processes in the formation of a core under-
going active sedimentation, remains obscure. One of the ma-
jor issues is whether structures other than the visible overall
maximum, presumably at the LGM, are signals to be under-
stood or mere noise to be suppressed.

Differences among the core δ18Ow do not easily support an
hypothesis of any kind of globally uniform variation in the
bottom water concentration, Ch (t)= q (t)+ u (t) anywhere
below about 100 m core depth. Visually, cores 1093 and 1239
are qualitatively different from the other three, with 1239
showing very large excursions near the core top and 1093
having roughly constant values with depth, but with superim-
posed structures. Undersampled core 1239 has extreme val-
ues represented primarily by single point excursions, likely
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Figure 5. Measured salinity minus 35 g kg−1 (blue solid curves)
and δ18Ow (red dashed) in four cores. With the possible exception
of core 1093 in the upper 100 m, the two data sets are quite distinct
and hence inconsistent with a common advection–diffusion equa-
tion and boundary and initial conditions. The zero is set arbitrarily
at 100 m.

connected to the extreme volatility of dynamical properties
in the equatorial Pacific Ocean, and is not further discussed
here. The remaining three cores all have a visual maximum of
greater or lesser definition at a depth of some tens of metres.
Whether other features are noise or signal is an imponder-
able. Differences in core water depths must always be borne
in mind as well.

Variations among the cores imply that there need not be
any overall, that is global, control on their time histories. (See
the cautionary statements in Schrag et al., 2002.) Dynamics
and modern oceanographic structures (as in Fig. 2) instead
support the accepted inference of different time histories of
the values of δ18Ow in the bottom waters, consistent with the
different core profiles.

Figure 5 shows normalized versions of the oxygen isotope
and salinity data in the cores. If these two properties satisfy
the same advection–diffusion Eq. (1), they must have differ-
ent temporally varying boundary and/or initial conditions or
be subject to possible biogeochemical interactions not treated
here.

Begin as in W16, in which the observed core provides the
terminal constraint, and the initial condition is assumed to be
the same as the terminal one, but with a larger error estimate.
In the absence of any more compelling possibility, the same
sea level curve is used, but scaled as in Fig. 1.
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Figure 6. The mean of four core δ18O values and their formal stan-
dard deviation with 3 degrees of freedom. Values differ from zero
at 1 standard deviation only in the interval from about 10 to 70 m
depth. Only the top 100 m of data are used in the analysis here.

3.1 The average δ18Ow core

Knowledge of oceanic dynamics and the modern distribution
as well as the core δ18Ow data in Fig. 3 make it very unlikely
that a globally uniform shift in the oxygen isotope ratio ever
occurred. Injection of ice melt, precipitation, and evapora-
tion necessary to remove and create continental ice sheets
controlling the porewater δ18Ow involve primarily oceanic
surface properties, and the timescale to reach any kind of dy-
namic and kinematic equilibrium over the entire ocean vol-
ume requires thousands of years (e.g. Wunsch and Heim-
bach, 2008; Siberlin and Wunsch, 2011; Gebbie, 2012).

As a simplified context for later discussion of the individ-
ual cores, a start is made by averaging the four cores dis-
played in Fig. 3, with the result also shown there, and limited
to the depth of the shallowest record (138 m). An average
core does not exist in nature but provides a generic data set
to discuss the methodology and results. In any core, one can
guess at the structures to be treated as a noise process rather
than as signal. Averaging is a data-based noise reduction pro-
cess, in which incoherent small vertical-scale features will
tend to be suppressed. With four examples, the standard er-
ror of the result, shown in Fig. 6, is very large, having at most
only 3 degrees of freedom. Nonetheless, we proceed. No at-
tention has been paid to differences in sedimentation rate or
other depth controlling processes. Results will be used as a
framework for later discussion of the individual cores. Be-
cause of the linearity of the problem, the final estimation un-
certainties do not depend upon the data themselves. In ad-
dition, the control solution for the average core will be the
same as averaging the controls of the individual cores – if
the same statistics are used for them.

The analysis follows much of the earlier literature in set-
ting w = 0. Results from assuming a purely diffusive re-
sponse, “near-periodic” initial conditions (initial conditions
set to the data), and a constant Ch (t)= 0 are shown in Fig. 7.
P0 = (2‰)2I, Q= (2 ‰)2.A very large initial condition un-
certainty,±2 ‰, is assigned to both initial conditions and the
control. The terminal data uncertainty is the calculated stan-
dard deviation of the four cores. Unless specifically stated

otherwise, k is linearly increasing over the top 100 m core
depth with values 5× 10−11

− 10−10 m2 s−1 in all cases.
The fit to the terminal state is statistically acceptable, with

an isotopic maximum at 60–70 m. On the other hand, no sig-
nificant LGM maximum appears in the control – instead, the
smoother places most of the structure into the initial condi-
tions – which, consistent with the observability discussion,
persists as a local maximum through the 100 ky time inter-
val. This result emphasizes the ambiguity of initial condi-
tions and control.

Examples such as this one render concrete a number of in-
terlocking elements of the problem. (1) Noise or uncertainty
covariances for the initial conditions, the terminal data, and
the prior Ch (t) are as much a part of the model as is k and
the underlying partial differential equation or the data them-
selves. Their choices determine what is regarded as signal
and what is noise. (2) Consider an extreme case. By setting
the initial conditions equal to the terminal data within some
uncertainty and letting k→ 0, a completely acceptable so-
lution would be found by fixing the control as the constant
Ch (t)= Cterm (z= 0) . In the limit, all of the initial condition
structure is maintained to t = tf . The only reason to preclude
such a solution is the requirement that k > 0. (3) In producing
a local maximum at the depth inferred to be the properties of
the LGM, the governing equation produces a tight trade-off
between a large value of k, permitting adequate penetration
to the observed depth, versus its strong tendency to dimin-
ish the amplitude of the resulting maximum (cf. Adkins and
Schrag, 2003). Whether both amplitude and depth can be si-
multaneously reproduced, with a simple rule for k, has to
be determined in each case, and a judgment may have to be
made as to which, if either feature, is the more robust element
in the data.

In contrast to the quasi-periodic initial and final condi-
tions, Fig. 8 shows the result when the initial condition was
taken to be zero: the system responds by reconstructing the
near-periodic initial condition. Again, the residual is accept-
able. Initial conditions are very important with these diffu-
sivity values and the time interval.

Now consider what happens when the prior is taken to be
the scaled sea level curve of Fig. 1, with zero initial condi-
tions, and as shown in Fig. 9. The terminal fit is once again
acceptable, and the control adjustments are very small. The
standard inference of enhanced δ18Ow by an order of 1 ‰
at about −20 ky relative to today is also consistent with the
model and the data. A maximum at about−20 ky, now a con-
ventional inference, is possible. But as in W16 for salinity, an
LGM maximum is not required by them but becomes an as-
sumption to rationalize temperature data.

The strong dependence upon the initial condition is strik-
ing. It can be suppressed as shown in Fig. 10 where the ini-
tial condition was set to zero, with a minute uncertainty, and
the terminal uncertainty was strongly downweighted in the
vicinity of the depth of the local maximum. Then as shown
in the figure, a solution reproducing the terminal maximum
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Figure 7. Purely diffusive solution for the mean core, to 100 m depth, with k linearly increasing from 5×10−11 to 10−10 m2 s−1; w = 0.
The prior boundary condition is Ch (t)= 0 and the initial condition is the same as the terminal data, with larger uncertainties. Final values
are all within 1 standard deviation of the estimated error bar. Apart from a small increase in u (correction to Ch (t) with time), the system
reproduces the terminal constraint largely by adjusting the initial conditions. (a) Kalman filter (KF) solution from initial conditions and no
control adjustment. (b) Final smoothed estimate over 100 ky. (c) Residual (solid line) at the terminal time between the estimate and the
terminal data, and the 1 standard deviation uncertainty limits. (d) The total control q(t)+ ũ(t) (dashed) and prior q(t) (solid) as well as the
estimated maximum and minimum of LGM δ18Ow. (e) u(t), only for the last 5 ky and showing the sharp drop in its uncertainty near the
terminal time. Standard errors lie off-scale except at the very end. (f) KF prediction of the terminal data (same as a conventional forward
calculation from the initial conditions and a priori Ch (t), solid line), the terminal data (dash–dot), and the RTS fit to the data.

is found, with a time-varying control over almost the entire
record whose changes are interesting but not readily inter-
pretable. Uncertainty in ũ (t) still greatly exceeds any useful
range.

When the sea level prior is used in this situation (not
shown), the final total control is visually very similar to that
shown in Fig. 9. This result suggests that suppression of the
initial conditions as unknowns brings the system closer to
producing a unique control, but a zero initial state is not eas-
ily justified.

3.2 Core 1063

In turning to the individual cores, all of the problems aris-
ing in the discussion of the mean core remain, including the
sensitivity to the assumptions about the initial conditions, in
turn depending upon the values, structures, and signs ofw,k;
whether the prior is the sea level curve or is agnostically flat;
and the uncertainties assigned to the initial conditions, the
abyssal value priors, and the terminal data, among others.
With the freedom implied to choose somewhat arbitrarily
amongst these variables, the number of potential numerical
experiments for each core becomes overwhelming and de-

creasingly informative. Thus, only a handful of examples for
the different individual cores is shown.

None of the five cores is obviously “typical”, but core
1063 on the Bermuda Rise, a focus of the study of Adkins
and Schrag (2001), has the characteristic maximum at depth
with a quasilinear decrease with depth. Again, only the upper
100 m are considered.

Figure 11 shows the Core 1063 solution with quasi-
periodic boundary conditions when it is forced to the water
column maximum by greatly reducing the estimated error in
its vicinity, with the sea level prior. The fit near the maximum
is, as forced and expected, good, but the smaller-scale struc-
tures are not reproduced. The same situation but with the flat
zero prior is shown in Fig. 12. This solution is marginally
better than for the sea level prior, but no LGM maximum
appears in the control. In terms of the residuals, this solu-
tion effectively treats all structures in the top 100 m of the
core, except for the maximum excursion, as a noise process.
If that inference is accepted, then a posteriori, an estimate of
the variance of the noise structure in the core data has been
made.
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Figure 8. Same as Fig. 7 except that the initial condition was zero with a large uncertainty, rendering the Kalman filter solution zero until
the very end when the terminal data are encountered so that the prediction is zero. The smoothed solution is very similar to that with a
near-periodic initial condition, and the initial condition is roughly reconstructed.
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Figure 9. The mean core, upper 100 m, and zero initial conditions but with the sea level prior in Fig. 1. The small adjustment, u (t) ,
demonstrates that the terminal data are also consistent with the inference of a very high δ18Ow at about −20 ky with an increment exceeding
1 ‰ between the LGM and the present. Note, however, the very large uncertainties remaining in ũ (t) .

3.3 Core 1093

Core 1093, in the Southern Ocean on the Southwest Indian
Ridge, was the main basis of the inference of a strongly
salinity-stratified abyssal ocean during the LGM. For the top
100 m of δ18Ow, Fig. 13 shows that once again the quasi-
periodic initial conditions with a flat prior can reproduce the
terminal constraint but with no requirement of a maximum
in q (t)+u (t) . The initial condition carries most of the struc-

ture. With the sea level prior (not shown), a maximum in the
control near −20 ky is again found, but without statistical
significance.

3.4 Cores 981, 1123

Similar results emerge from the remaining two cores, and so
only representative solutions are shown in Figs. 14 and 15,
both for the case of quasi-periodic initial conditions, the flat
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Figure 10. Using the full 140 m of the average core, with the zero initial conditions prevented from changing significantly with very small
uncertainty and a flat prior, a solution reproducing the δ18Ow maximum at depth through the arbitrarily reduced values of the terminal data
uncertainty, R. All other features are treated as errors. ũ (t) is now distributed over most of the 100 ky, but with no statistical significance
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Figure 11. Core 1063 with the sea level prior, periodic initial conditions, and a solution forced to reproduce the local maximum through the
terminal uncertainty estimate (small R). All residual structures would be noise of an unknown nature. The Ch (t) maximum does exceed the
estimated volumetric global mean, but the uncertainties remain close to ±2 ‰. Again, pinched error bars in (c) show the forcing to the local
maximum visible in (f). This solution is most like those discussed in the earlier literature, fitting only to the local maximum and treating all
other structures as noise.

prior, and forcing to the terminal time δ18Ow peak at depth.
As in the other cores, the dependence on the initial conditions
is clear. Both show a significant adjustment, u (t), near the
terminal time, but neither requires an LGM peak, although
the sea level prior is also acceptable (not shown).

4 Discussion

To a very great extent, the results of analysing these cores
depend very directly upon a long list of assumptions of which
a rough summary would include the following:
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Figure 12. Core 1063 with a flat prior, quasi-periodic initial–final conditions, and with the terminal data uncertainty matrix R structured to
emphasize the range of depths of the core maximum. Position and magnitude of the maximum are good. All other structures are then inferred
to be a noise process. Compare Fig. 11.

Figure 13. Core 1093 with a quasi-periodic initial condition, a flat prior, and terminal uncertainties forcing solution to the δ18Ow at depth.
Total control is flat, until the very end.

1. Physics and chemistry are one-dimensional.

2. Sedimentation rates are constant.

3. Rules for diffusivity, porosity, and tortuosity are accu-
rate.

4. Advection and diffusion without chemical reaction pro-
cesses is adequate.

5. Initial conditions are similar to the terminal measure-
ments but with a larger uncertainty.

6. k(z, t),w(z, t) are time-independent (and equal to the
estimated terminal value).

7. Structures in the terminal values are (are not) signals or
are (are not) noise, and accuracy is dominated by ana-
lytical accuracy (or not).

8. Lower boundary condition at z= 0 is one of no flux,
with no important upward diffusion or advection from
below the data depth.
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Figure 14. Results for Core 981 in the northeast Atlantic Ocean using a flat prior and quasi-periodic boundary conditions for a solution
forced to produce the maximum at depth by uncertainty variance weighting.

Figure 15. Results for Core 1123, east of New Zealand, for a flat prior, quasi-periodic initial conditions, and forcing to the δ18Ow peak at
depth.

9. The scaled sea level curve is a useful prior boundary
condition estimate of the order of±1 g kg−1 for salinity
and ±1 ‰ for δ18Ow.

10. Variance estimates for the uncertainties in the terminal
data and in the initial conditions are approximately cor-
rect.

11. The complex boundary layers at the sediment–water in-
terface are adequately replaced by a simple concentra-
tion boundary condition.

An intimate connection exists in the solutions between the
physical model (advection and diffusion) and the statisti-
cal model (the several uncertainty estimates), which governs
the division between signal and noise in the data. For the
range of k used here, the competition between dominance by
the initial conditions and the changes induced by the con-
trol can produce a realistic maximum at depth only by inter-
preting everything except the gross shape as an unexplained
noise structure. This inference may well be correct but is
not proven. The great sensitivity to initial conditions can be
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Figure 16. Comparison, for a 100 m deep core of the numerical
solution with k0 = 10−9, k1 = 10−11 m s−1, and a 20 000-year pe-
riod, with the analytical solution (A2). The analytical solution with
constant k = 10−9 m2 s−1 is also shown.

reduced, as in W16, by assuming a significant downward-
directed advection velocity, w < 0. Support for such an hy-
pothesis would have to come from a great deal more knowl-
edge of the fluid–sediment dynamical model.

The overall inference here, consistent with both M15 and
W16, is that the conventional picture of a very cold, highly
saline abyssal ocean during the LGM remains possible but is
not a requirement of the existing data. If LGM δ18Ow is in-
sufficiently enhanced, then taken at face value, the δ18Oc data
implies some oceanic temperatures below the freezing point.
That issue might be sufficient to be convincing evidence that
high δ18Ow must have occurred, but the dependence upon the
reliability of the interpretation of the foraminifera data will
be plain. A full discussion of the uncertainties of those data
does not seem to be available, although regression lines with-
out error estimates are in use (e.g. Bradley, 1999). A grow-
ing literature (e.g. Marchal and Curry, 2008; Huybers and
Wunsch, 2010; Burke et al., 2011; Gebbie, 2012; Amrhein et
al., 2015; W16; M15) attempting to quantify inferred circu-
lation differences between the LGM and the modern period
increasingly finds it difficult to distinguish any qualitative or
even quantitative changes. Such findings do not disprove hy-
potheses of major change to water mass volumes, including
cold, strong abyssal salinities during the LGM, but only re-
inforce the need for far more data than are now available – if
the hypotheses are to become factual.
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Appendix A: Numerical tests

Consider a purely diffusive system, with k = k0+k1z, that is
growing linearly from the bottom of the core, z= 0, to the
top at z= h. The governing equation is

(k0+ k1z)
∂2c

∂z2 + k1
∂c

∂z
−
∂c

∂t
= 0, (A1)

subject to the periodic boundary condition, Ch (t)=
c (z= 0, t)= cos(σ t) , σ = 2π/20 000 years, with t in years.
Setting c = ĉ (z)exp(−iσ t), and making the substitution,
ζ = k0+ k1z, a form of Bessel’s equation is found (Olver,
2010)

d2ĉ (ζ )
dz2 +

1
ζ

dĉ (ζ )
dz
+
iσ ĉ (ζ )
k2

1ζ
= 0,

with solution

ĉ (ζ )= aJ0

(
2
√
iσ

k1
ζ

)
+ bY0

(
2
√
iσ

k1
ζ

)
, (A2)

where J0,Y0 are the Bessel functions, noting the singular be-
haviour as k1→ 0 (Kelvin functions can also be used). The
upper and lower boundary conditions are

aJ0

(
2
√
iσ

k1
(k0+ k1L)

)
+Y0

(
2
√
iσ

k1
(k0+ k1L)

)
= 1, z= L

aJ1

(
2
√
iσ

k1
k0

)
+Y1

(
2
√
iσ

k1
k0

)
= 0, z= 0

and solved for a,b,where the identities J ′0 =−J1, Y
′

0 =−Y1
were used. Figure 16 the comparison between the numerical
and analytical solutions, as well as the result with constant k
in place of the linear form used in this paper.
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