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E” is the transpose of E. Equations (20) have nonzero solutions (termed the singular
values) 4;, | = 1, L, where L is the rank of E. These solutions are ordered starting with the
largest A. For each singular value 4, there corresponds a singular vector U,, i = 1,1 and a
singular vector ¥, j = 1,J, so normalized that

I J
Z UpUy = 0y, Z VaVy = Oy
i=1 =1
U and Vare normalized ‘empirical orthogonal functions’. They are evaluated once and for
all for a given configuration.
In equation (19), the expression

1
(U 6TY A= ), UpdT/d = 6T) (21)
i=1
yields an ordered dataset 87, with L(< I) independent pieces of information, derived as a
linear weighted sum of the measured dataset 8T;, i = 1,I. The desired perturbations 6C r
are obtained as a sum of L orthogonal vectors ¥V}, each weighted by §T;'.

It can be shown (see references) that equation (19) is the particular solution to equation
(18) with the minimum square perturbations SC76C; owing to the singular nature of E,
there are, of course, an infinite number of other solutions that differ from the one we have
chosen by arbitrary multiples of all vectors satisfying EV; =0, | = L, J, and about which
we have no information. [ These null space vectors normally contain higher wavenumbers
than solution (19).] In principle, one can always obtain a unique answer by reducing the
resolution to the point where the system becomes fully determined. The singular value
decomposition explicitly shows which linear combinations of §C are determined.

Some numerical inversion experiments for configuration A are displayed in Fig. 8; the
top left panel deals with the case of perfect measurements. The lower number in each grid
area is 6C;, chosen at random and uncorrelated with the value in any other grid area.
These values were used to compute the direct problem—the values of 6T, i = 1,16. The
upper numbers are the result of inverting (18) by (19). The correlation between the ‘true’
and inferred value of 6C is 0.81. A similar inversion (not shown) of a rank 13 system does
better as one might expect ; it gives a correlation of 0.91.

In some grid areas, the inversion has obviously done extremely well; in others the
inferred value is rather far from the true value. We need some method of knowing where
we can expect good results and where bad results. Notice that there is still no error in the
measurements.

This question can be examined in terms of the response to a unit perturbation in box j,
and zero elsewhere: 6C; = d;;. We are dealing with a system of rank L in a vector space
of dimension J; equation (19) tells us how to represent a vector in this space in terms of a
set of expansion vectors ]

L
5jju = Z djul VI+8 = ajj(}+8’
=1

i, be represented by only L
components of ¥, in J-dimensional space? The error ¢ must be orthogonal to the
expansion vectors V;. This condition leads to

8. =

Jio

where a;, are constant coefficients. How well can §
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Fig. 8. Result of inversion of configuration A, Fig. 7. Lower numbers in each grid area are the

‘true’ values of 6C; in ms™' (from which 6T, values were computed). Upper numbers are the

values determined by inversion using equation (19). Mean-square errors in §7; are taken as ¢*

= 0,0.01s% 0.05s% and 0.1s?, respectively. The correlation between true and inferred values of oC;
is p = 0.81,0.76, 0.62 and 0.49, respectively.

which is the jth column of VV”. (V is the J x L matrix whose columns are 1)

Figure 9 (left) is a plot of the 7th column of VVT; e.g. the response to a unit input in
grid area j, = 7. The inferred value 8C, is only 0.8. The failure to come up to unity
indicates an inadequate resolution, and this is apparent also from the sidelobes in
neighboring grid areas. The diagonal element of V VT (Fig. 9, right) gives the inferred
value in any grid area j, from a unit input in this same grid area j,. It is evident that the
value 0.8 is characteristic of the central ocean area; at the left and right margin the
resolution is somewhat poorer. The nearly uniform values suggest that the under-
determined nature of configuration A is such that no single grid area is very well resolved
nor very poorly resolved.
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