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Abstract4

The problem of understanding linear predictability of elements of the ocean circulation is5

explored in the Atlantic Ocean for two disparate elements: (1) sea surface temperature (SST)6

under the storm track in a small region east of the Grand Banks and, (2) the meridional7

overturning circulation north of 30.5◦S. To be worthwhile, any nonlinear method would need8

to exhibit greater skill, and so a rough baseline from which to judge more complex methods is9

the goal. A 16-year ocean state estimate is used, under the assumption that internal oceanic10

variability is dominating externally imposed changes. Linear predictability is the story of11

time and space correlations, and some predictive skill exists for a few months in SST, with12

some minor capability extending to a few years. Sixteen years is, however, far too short for an13

evaluation for interannual, much less decadal, variability, although orders of magnitude are14

likely stably estimated. The meridional structure of the meridional overturning circulation15

(MOC), defined as the time-varying vertical integral to the maximum meridional volume16

transport at each latitude, shows nearly complete decorrelation in the variability across17

about 35◦N–the Gulf Stream system. If a time scale exists displaying coherence of the MOC18

between sub-polar and subtropical gyres, it lies beyond the existing observation duration,19

and that has consequences for observing system strategies and the more general problem of20

detectability of change.21

1 Introduction22

The ability to predict future climate is high on the agenda of many scientists (e.g., Meehl et23

al., 2009; Hurrell et al., 2010; Mehta et al., 2011). Claims that climate should be predictable24

1



on some time-scale often rest upon the assumption that it would arise from the long memory of25

the ocean–the atmosphere being assumed to lack such memory.26

At the present time, more specifically, there is wide community interest in the possibility27

of decadal prediction of some elements of the ocean circulation, including sea level changes28

(e.g., Yin et al., 2009), surface temperatures (Newman, 2007), and volume transports (Zhang29

and Wu, 2010; Msadek et al., 2010). Government funding agencies have issued calls for ac-30

tual forecasts to be made (see e.g., the websites of the US National Science Foundation and31

of the European Science Foundation). The comparatively short decadal time-scale raises the32

possibility of observational tests of actual predictions, something that is implausible with 5033

to 100 year forecasts–durations which exceed working scientific lifetimes, of model credibility,34

and the interval since about 1992 of global-scale ocean observations. The extent, however, of35

actual predictive skill for the ocean even on the decadal time-scale, much less the multi-decadal36

one, remains obscure, with divergences of IPCC model extrapolations being a disquieting sign.37

Some models are undoubtedly better than others, but which those are, and which fields are38

well-calculated, remains unknown. Branstator and Teng (2010) review much of the existing39

discussion.40

Almost all studies of oceanic and its potential in climate predictability have been based upon41

model calculations, and these have generally led to optimistic inferences (e.g., Msadek et al.,42

2010). Some modelling studies have, however, led to more cautious conclusions. For example43

Bingham et al. (2007) found little decadal meridional correlation between large-scale transport44

characteristics–implying that any predictive skill in one region would have little impact on45

larger scale, climatically important, components. In a study of the impact of noise disturbances46

on the meridional overturning circulation (MOC), Zanna et al. (2011) found, for an idealized47

configuration, that so-called non-normal error growth, particularly from small changes at depth48

in sub-polar regions, would limit MOC predictive skill to considerably less than one decade.49

In broader terms, predictability of the changes of any physical system involves several sub-50

elements, including: the extent to which boundary conditions are predictable; the degree to51

which variations arise from internal fluctuations with fixed or known boundary conditions; and52

the degree to which that internal variability is fundamentally linear or non-linear. In particular,53

any discussion of oceanic predictability confronts the awkward fact that the ocean tends to react,54

rapidly and energetically, to shifts in the overlying atmosphere, particularly to changes in the55

wind-field, most visibly in its upper reaches and often with little or no spatial correlation. (The56

most rapid response is the barotropic one, which is almost instantaneous over the whole water57

column.) A literature has emerged showing the coupling of the North Atlantic circulation to58

the North Atlantic Oscillation (NAO, or Arctic Oscillation, AO) index; see e.g., Deser et al.59
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(2010). Some of the most important elements of the ocean circulation, as they affect climate,60

such as the sea ice cover, or sea surface temperature (SST) are greatly modified by changing wind61

systems, and they in turn, modify the atmosphere. This inference directs attention to the more62

central question of whether the atmosphere is predictable on decadal time scales. No discussion63

is provided of the probability that externally imposed finite amplitude shifts will occur, such as64

the catastrophic collapse of the West Antarctic Ice Sheet (WAIS) and its numerous consequences.65

The purpose of this paper is to explore some of the simpler aspects of the ocean prediction66

problem employing, primarily, observations. The focus is on changes that are assumed, absent67

strong evidence to the contrary, as arising from intrinsic ocean variability, rather than that68

induced by global warming or other external drivers. Because there exist so many possible69

predictable elements, we arbitrarily focus first on sea surface temperature (SST), and then on70

the meridional overturning circulation (MOC) as exemplary of many of the issues. Attention71

shifts to the most stable components embodied in the oceanic baroclinic structure. Simple theory72

(Veronis and Stommel, 1956; Anderson et al., 1979) shows that, short of catastrophic external73

disturbances, and outside of the equatorial band, basic characteristics such as the thermocline74

depth and temperatures can be modified significantly only over many decades.75

Notwithstanding several claims for the existence of major shifts in the ocean circulation,76

there is no observational evidence in historical times of observed changes in basin-scale or larger77

basic oceanic stratification or transport properties that lie beyond what are best labelled “per-78

turbations” and for which linearization about a background state is a useful starting assumption.79

One can compare e.g., the RRS Challenger (Tizard et al., 1873) hydrographic section, New York80

to Puerto Rico, to recent sections nearby–without detecting any qualitative change. Rossby81

et al. (2010) note that no detectable shift in mid-latitude Gulf Stream properties has occurred82

over the last 80 years. It does remain possible that comparatively small changes in e.g., sea83

surface temperature or sea ice cover, can generate major regional or global atmospheric climate84

shifts–but if the oceanic component can be treated as essentially one of linear dynamics, a85

substantially simplified oceanographic problem is the result.86

The onset or suppression of such small spatial scale phenomena as rates, regions, and wa-87

ter mass properties of convective regions are almost surely important to prediction skill over88

long times as water mass production slowly accumulates. Convection and related processes89

would generally have a nonlinear component–as they depend upon threshold-crossing physics.90

Whether any existing nonlinear ocean model can reliably forecast such shifts is unknown. In91

any case, Gebbie and Huybers (2011) show that surface sources of abyssal ocean waters are far92

more widely distributed geographically than is conventionally believed.93

If the perturbation depiction has any merit, it leads to the question of whether there is any94
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linear forecast skill. If the answer is “yes”, then any nonlinear approach e.g., through particle95

filters, large ensembles, or simple runout of the of underlying GCM would have to exhibit a96

significantly increased skill-level relative to the linear ones to justify the added expense. If the97

answer is “no,” that there is no linear skill, one is led to understand how the nonlinear system98

might be able, nonetheless, to produce a significant improvement. In any case, as for most99

problems, it is worth exploring linear approximations before moving on to more complex forms.100

Theoretical prediction skill is not meaningful unless it is coupled with a discussion of the101

ability to detect it. Thus for example, a prediction that the meridional overturning circulation102

will weaken by 1 Sv in 10 years might be correct, but if neither the present nor the future103

values can be determined to that accuracy, at best one could say that the future value will104

not be distinguishable from the present one. Observational detection accuracy is a function of105

the scope and nature of the observation system, and of the structure of the variability noise in106

the ocean. Although it is touched on only tangentially here and is rarely discussed elsewhere,107

this issue of detectability is an essential ingredient in any useful discussion of forecast skill–and108

deserves study in its own right. A closely related, also rarely discussed, question has already been109

alluded to: what magnitude of change could be regarded as useful, for example, in producing a110

measurable contribution to future climate shifts?111

In proceeding, another difficult question concerns those elements one is trying to predict,112

and why? Myriad choices are phenomenological (sea surface temperature, sea level, meridional113

overturning,....), geographical (western North Atlantic, tropical eastern Pacific), seasonal (winter114

time SST versus summer time), and time horizon (SST with a one month lead time can be of115

intense interest to a weather forecaster, while the MOC state may be of interest only on 100+116

year scales and then only to scientists). Here two fields of interest to different communities117

(North Atlantic SST and the Atlantic MOC), are chosen, simplified as far as possible, and the118

methodologies sketched that can be applied in seeking more definitive answers.119

Linear predictability is the story of correlations of fields in space and time and thus their120

estimates come to play the central role here. The observation-oriented approach, given the121

extremely limited duration of large-scale oceanic observations relative to a multi-decadal re-122

quirement, leads to the inference that one can hardly do more than state the problem. Resort123

to models can and is being made, but the same data duration limitations preclude real model124

tests.125
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2 An Ocean State Estimate126

To proceed as best we can, the ocean state estimate ECCO-GODAE, v3.73, is used. This127

estimate is discussed in detail by Wunsch and Heimbach (2007), Wunsch et al. (2009), and128

in other papers listed on the website, http://www.ecco-group.org. For present purposes, a129

sufficient description is that this state estimate is a near-global one over 16 years, from a least-130

squares fit using Lagrange multipliers to the comparatively large oceanographic data sets that131

became available beginning about 1992 in the World Ocean Circulation Experiment and later.132

Adjustable parameters include initial conditions and all of the meteorological forcing functions.133

The solution used is from this adjusted, and freely running, model. A partial discussion of the134

time-mean of the estimate can be found in Wunsch (2011); the character of that mean relative135

to dynamical equilibrium does have implications for predictability, and which will be touched136

on at the end.137

A terminology, “state estimate,” is used here to distinguish the result from estimates based138

upon versions of meteorological forecast techniques (“data assimilation”)–which lead to prod-139

ucts with physically impossible jumps and without global conservation principles. The results140

here are primarily governed by observations, distinguishing them from the pure model runs:141

Over the vast bulk of the oceans, the estimate is in a slowly time-evolving, volume and heat-142

salt-conserving, thermal-wind balance, largely constrained by in situ hydrography, Argo float143

profiles, and altimetric variability. It is thus a best-fit geostrophic, hydrostatic balance, in which144

absolute velocities are determined from the conservation equations subject to Ekman pumping145

and other surface forcing. Note that, among other data sets, monthly estimates of SST by146

Reynolds and Smith (1995) were used.147

Sixteen years is an extremely short period over which to determine multi-year or decadal148

predictive skill. The restriction to that time period is dictated by the extreme paucity of oceanic149

data prior to about 1992–when WOCE was underway. Ocean state estimates over intervals150

before 1992 (e.g., Wang et al., 2010) are from nearly unconstrained ocean models. Furthermore,151

the meteorological forcing fields used, even the most recent ones, have known major errors; see152

e.g., Bengtsson et al. (2004) or Bromwich et al. (2007).153

Because of the short-duration, a comparison will be made to the longer interval (28 years)154

Reynolds and Smith (1995; hereafter RS) SST estimate used, separately, without the interven-155

ing ECCO system. Such estimates are, however, not available for other fields of interest (the156

meridional overturning, the corresponding oceanic heat transports, etc.), and for them the state157

estimates must be used. The even-longer historical reconstructions of SST obtained prior to the158

arrival of globally orbiting satellites are also avoided here, as the space-time sampling errors are159
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far worse.160

3 Sea Surface Temperature (SST)161

SST is always of central interest to meteorologists and provides a convenient starting point for162

this investigation despite its being one of the most volatile and complex of all oceanic fields.163

Vinogradova et al. (2010) discuss the global behavior of SST (particularly its rate of change)164

in the ECCO solutions. Fig. 1 displays the time-mean SST over the 16-year duration of the165

ECCO estimate166

Woollings et al. (2010) have discussed elements of atmospheric storm track behavior re-167

sulting from greatly increasing the SST resolution in the Gulf Stream region–where dominant168

atmospheric cyclogenesis is thought to be most pronounced. The 1◦ version of the ECCO model169

does not have sufficient resolution to reproduce the details of the Gulf Stream south of New170

England, but it does do a reasonable job further north and east–in the sense of producing an171

acceptable misfit to the data. Here the initial region of generic discussion is the small area172

east of the Grand Banks depicted in Fig. 1, and which is close to being the eastern half of the173

Woollings et al. (2010) region of interest. For the area (which will be referred to as the “Grand174

Banks Box” or GBB, and denoted with a subscript G), the spatial average, TG (t) , is formed175

and is plotted in Fig. 2. The present focus on a small region contrasts with the notable effort176

by Davis (1976) directed at the largest-scale features in the Pacific Ocean.177

The time average of TG (t) is hTG (t)i = 9.6 ± 3.2◦C. A simple, and perhaps even useful,178

prediction of the temperature is its mean. In the present case, the annual cycle is so visually179

apparent (not true of most oceanographic variables), that one is immediately led to a discussion180

of its predictability. To the degree that it is purely periodic, one can extrapolate indefinitely into181

the future. On the other hand, every seasonal cycle differs at least slightly from every other one,182

and hence predictive skill will be imperfect. Fig. 3 displays the periodogram of TG (t), showing183

that the annual cycle typically has about 90% of the variance over 16 years, with a smaller184

contribution from the semiannual and higher harmonics. At this resolution, there is a sharp peak185

at the annual period, of bandwidth less than the resolution limit of 1 cycle/16 years, meaning186

that it is indistinguishable from a pure sinusoid. Note, however, that the background energy187

surrounding and under this peak is not negligible and this energy prevents perfect prediction188

of that component. (Methods exist, not necessary here, for predicting slowly changing annual189

cycles; e.g., Hannan, 1970).190

Using least-squares, the annual cycle and its first three harmonics were removed from the191

record, leaving a residual, T 0G (t) , shown in Fig. 4, and producing an annual cycle amplitude192
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of 4.3 ± 0.23◦C (the error is the formal one from the least-squares residuals). The variance of193

the complete record is 10.2◦C2, of which the deterministic annual cycle (and three overtones)194

accounts for 9.4◦C2 or 93% (see Table 1). Variance dominance by the annual cycle is a challenge195

to any model attempting to calculate either it, or the small deviations from it–should its196

details change with climate. Of the residual 7%, most (about 5% of the total variance) lies in197

periods longer than one year. Discussion of prediction now requires separating the problems at198

interannual and intra-seasonal time scales.199

3.1 A Formalism200

With the removal of the annual cycle and its harmonics, as well as the time-mean, the residual201

time series, T 0G (t) , can be assumed indistinguishable from a weakly stationary random process.
1

202

Many techniques exist for their prediction, and the literature is extremely large. Useful sum-203

maries can be found in Robinson (1981), Hamilton (1994), Nelles (2001), Box et al. (2008),204

von Storch and Zwiers (2001), and Priestley (1982, Ch. 10) among many others. General de-205

velopments are associated with the names of Wold, Kolmogoroff, Wiener, Levinson etc., but206

the most common formulation is through the development of autoregressive models of order207

N (AR(N)), moving averages of order M (MA(M)), and combined models (ARMA(N,M)),208

and their generalizations to non-stationary and nonlinear processes. Davis (1976, 1978, 1979)209

provides excellent summaries of climate applications.210

These linear methods, when new, were applied with a notable lack of success to ordinary211

weather and stock market prediction. With understanding of the chaotic nature of weather,212

the result is unsurprising. Rumors do persist that significant amounts of money can be made213

using these methods in the stockmarket over minutes to hour time-scales, but on longer times214

the stockmarket is not a stationary linear system. The present effort thus could be a quixotic215

one–except that the degree to which, and which elements of the ocean circulation are chaotic216

on decadal time scales, remains unknown. In any case, as argued above, there is little evidence217

of large-scale deviations from slight perturbations in the observed circulation, and linearity is a218

plausible starting point.219

Here we will use primarily the AR and MA formulations (briefly summarized in Appendix220

A) although the calculations are done in a slightly unorthodox manner to more directly empha-221

size the underdetermined nature of the problem. Consider any zero-mean time series variable,222

ξ (t) , which initially will be T 0G (t) . Suppose, to provide a specific example, that there exist L223

1Weak, or wide-sense, stationarity requires that the mean and second moments of the time series should be

time-independent.
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observations, including the present, and that it is an AR(2) process,224

ξ (t) = a1ξ (t− 1) + a2ξ (t− 2) + ε (t) , (1) {ar3}

where a1, a2 are unknown regression constants and ε (t) is near-Gaussian white noise of zero

mean and variance σ2ε . Unless otherwise stipulated, t, denotes the present time, and the time-

steps, ∆t are implicit in all expressions. The coefficients in Eqs. (1) are in practice a set of

simultaneous equations for the unknown a1, a2, ε (r),

ξ (t) = a1ξ (t− 1) + a2ξ (t− 2) + ε (t) (2) {ar4}

ξ (t− 1) = a1ξ (t− 2) + a2ξ (t− 3) + ε (t− 1)

ξ (t− 2) = a1ξ (t− 3) + a2ξ (t− 4) + ε (t− 2)

.

.

ξ (t− (L− 3)) = a1ξ (t− (L− 2)) + a2ξ (t− (L− 1)) + ε (t− (L− 3)) ,

for L− 2 equations in L unknowns (a1, a2, and L− 2 of the ε (r)). Re-write Eq. (2) in standard
matrix vector notation as,

Ex= y, E =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξ (t− 1) ξ (t− 2) 1 0 . 0 0

ξ (t− 2) ξ (t− 3) 0 1 . 0 0

. . 0 0 . 0 0

. . . . . . .

ξ (t− (L− 2)) ξ (t− (L− 1)) 0 0 . 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (3) {ls2}

x=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

ε (t)

ε (t− 1)
.

ε (t− (L− 3))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ (t)

ξ (t− 1)
ξ (t− 2)

.

.

ξ (t− (L− 3))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a formally underdetermined problem and which can be solved in numerous ways, including those225

commonly used in regression problems (e.g., Box et al., 2008; Priestley, 1982). The present226

formulation as a set of simultaneous equations differs from conventional least-squares (Priestley,227

1982, P. 346) only in treating the ε (r) as explicitly part of the solution, rather than as residuals228

of the formally over-determined problem for a1, a2 alone. Here, for several reasons, we choose this229

depiction (Wunsch, 2006): the formal regression problem, when many more physical variables230
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are reasonably introduced (e.g., the SST time series at all latitudes, or the wind field), rapidly231

becomes very underdetermined even in the conventional formulation; least-squares makes simple232

the computation of uncertainties in the parameters (a1, a2, ε (r)); and one can easily “color” the233

noise ε (t) either by modification of the identity matrix appearing in E (which would make234

it an ARMA), or by introducing column weighting (solution covariance) matrices. Extension235

to arbitrary order AR processes is readily carried out. The normal equations governing the236

least-squares solutions of Eq. (3) involve the sample autocovariances of the ξ, known as the237

Yule-Walker equations.238

For convenience in prediction, it is helpful to know that any stationary univariate AR can239

be converted into an MA, of form,240

ξ (t) =
∞X
p=0

bpε (t− p) = ε (t) + b1ε (t− 1) + b2ε (t− 2) + ... (4) {ma1}

For known ai, the bi can be obtained by algebraic long division,241

1 + b1z + b2z
2 + ... =

1

1 + a1z + a2z2 + a3z3 + ....
, (5) {zpoly}

and vice-versa. The bi can also be determined directly without first calculating the ai. The MA242

form produces the τ−ahead prediction error (PE) as,243 ¿³
ξ̃ (t+ τ)− ξ(τ + τ)

´2À
= σ2ε

τX
p=0

b2p, b0 = 1, (6) {pe1}

the tilde denoting the prediction. This equation is obtained by substituting ξ (t+ τ) into the244

left-hand-side of Eq. (6) and replacing the unknown and unpredictable ε (t+ 1) , ..., � (t+ τ) by245

their zero-means. If the bi are sufficiently small, there will be rapid convergence to the asymptote246

of the variance of ξ (r):
­
ξ2
®
= σ2ε

P∞
p=0 b

2
p. Like an N−order AR, any practical MA will have a247

finite order, M. Generally speaking if M is small, N will be large, and vice-versa, and with the248

trade-off becoming part of the discussion of representational efficiency. Note that stationarity,249

which we are assuming, requires that the polynomials in Eq. (5) should both be convergent250

when |z| = 1 (they are “minimum phase” in the signal processing terminology). Prediction251

error cannot exceed the variance of the time series–linear prediction cannot produce an error252

exceeding that from using the mean value.253

Linear predictive skill for processes having a known power density spectrum can be deter-254

mined either by first computing the corresponding autocovariance and proceeding directly to the255

Yule-Walker equations, or more elegantly by using the Wiener-Kolmogoroff spectral factorization256

method (see Robinson, 1959, P. 105, or Priestley, 1982, Ch. 10). The spectral approach shows257

explicitly the connection between linear predictive power and the degree of frequency structure.258
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A time series with a flat (white) spectrum is unpredictable at any lead-time, τ, except for its259

mean value; structured spectra, including generic red noise, correspond to some additional linear260

predictive capability; and line spectra (pure periodicities) have infinite predictive time horizons.261

Many time series in nature are a mixture of these and other characteristics, and the fraction of262

the total variance that is predictable, and over what lead time, depends upon the details of the263

spectrum.264

4 Months-Ahead Prediction265

This autoregressive machinery is now used to estimate how predictable is T 0G (t) (Fig. 4) about266

its mean, when sampled at monthly intervals? The red spectrum (an approximately -2.5 power267

law) of the residual (Fig. 3) shows that there is some predictability, dominated by the lowest268

frequencies. Because monthly and interannual physics are likely to be distinct, the question will269

be attempted in two stages: monthly mean samples and monthly forecasting and, annual mean270

samples and annual forecasting.271

Because the solution to Eqs. (3) produces the same result as the conventional methods,272

standard statistical tests (e.g., Ljung, 1999; Priestley, 1982) can be used to infer that T 0G (t)273

can be represented as an autoregressive process with order between 3 and 6 (the tests differ).274

Because an AR(3) captures almost as much of the variance as do the higher order models, and275

is the simplest, we choose that as a reference case. The result, from solving the least-squares276

problem is,277

T 0G (t+ 1) = 0.92 (0.71)T (t)−0.29 (0.1)T (t− 1)+0.22 (0.07)T (t− 2)+ε (t+ 1) , ∆t = 1month,

where the parenthetical number is the standard error, with σ̃2ε = 0.2
◦C2.278

Directly estimating the MA form produces, alternatively,279

T 0G (t) = 1.0ε (t) + 0.92ε (t− 1) + 0.556ε (t− 2) + 0.465ε (t− 3) + 0.469ε (t− 4) + ...,

and which is slowly convergent. These MA forms were used to calculate the prediction error,280

which grows month-by-month (Fig. 5, Table 1) ultimately asymptoting after about 8 or 9 months281

to the full variance of T 0G (t) . (Recall that the total variance after removal of the annual cycle282

and its overtones is about 0.7◦C2–and represents the maximum prediction error relative to the283

mean.) One might reasonably infer that there is useful (at the level of a few tenths of a degree284

error) linear predictive skill out to 4 or 5 months in the future, but not much beyond. Whether285

such skill is useful would depend upon the purpose of the prediction.286
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4.1 Comparison to the Satellite Record287

Using the Reynolds and Smith (1995; RS) fields from this area, one can extend a similar SST288

record out to 28 years. Details are not shown here, but a summary statement is that while the289

monthly results differ in detail from those found for the ECCO-estimated record, there is no290

qualitative difference, except that the apparent trend is more conspicuously reversing in recent291

years (Fig. 6 and Table 1).292

5 Interannual Behavior293

Interannual behavior of the record is highly problematic: 16 samples (annual means) is far too294

short to make much of any inference about correlation and prediction ability. The textbooks295

already cited show how to calculate standard error statistics for the AR or MA coefficients, ai, bi,296

etc., and which depend directly on the autocovariances–assuming roughly Gaussian behavior.297

To make the issue concrete, however, a small ensemble example for an AR(1)–the structure298

with the fewest possible parameters other than white noise–is displayed in Appendix B and the299

instability of the estimates from such small samples is obvious. We proceed here by restricting300

the representation to an AR(1)–with the results interpreted cautiously as indicative only of301

orders of magnitude.302

5.1 Predicting Annual Averages of T 0G (t)303

Fig. 6 shows the annual averages, T̄ 0G (t) , of the residuals of T
0
G (t) for both the state estimate and304

the RS values. The state estimate shows a visible trend and a zero-order puzzle is the question of305

whether that trend is a true secular one induced by global warming (defined here as extending306

uniformly far beyond the record length), or a mere low frequency fluctuation manifested by307

red noise (see Wunsch, 2010, for more discussion of the difficulties of trend determination, and308

further references). Here it will arbitrarily be assumed that this signature is indeed a component309

of red noise, as the longer RS record suggests, and thus will contribute to the predictive skill of310

the interannual signal.311

The one-year-ahead prediction error is approximately 0.03◦C2 rising to 0.2◦C2 after about312

4 years (see Fig. 7 and Table 1). If a linear trend is first removed, neither the order nor313

theprediction error (PE) are changed significantly. The RS results, not discussed, are very314

similar. All that should be inferred is that linear predictive methods suggest some skill out to315

about 5 years with errors of a few tenths of a degree. Whether any more sophisticated system316

can do better remains, as of this writing, unknown.317
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5.2 Predictability–A Caveat318

The reader is reminded that this study is based upon a “hindcast” skill, meaning that the same319

data are used to determine the time series structure as are used to test its prediction skill.320

Hindcast skill is inflated relative to true forecast skill by a significant amount. Davis (1976) has321

a clear discussion of the issue. As he notes, an accurate estimate of the skill inflation is only322

simple with large-sample statistics and, in particular, for interannual behavior, the estimated323

SST used here is a very small sample. It is useful, in many cases, to withhold part of the data324

set as a way of emulating an independent record for testing skill, perhaps by dividing it into two325

pieces–an identification section and a test section. But the “red” nature of the spectra observed326

shows that there will exist significant correlations between the used and withheld portions of327

the time series, and again a rigorous calculation becomes difficult. We leave the discussion at328

this point–as a warning that estimates here, particularly of the interannual forecast skill, are329

optimistic ones.330

6 The Meridional Overturning Circulation (MOC)331

That the Atlantic MOC has become the center of so many studies, theoretical and observational,332

is largely the result of the propagation of “conveyor belt” or “ribbon” pictures of the circulation,333

whatever their physical reality might be. The MOC does provide a rough measure of the intensity334

of the circulation in data and models. MOC connection to climate variability is, however, at best335

indirect, and determining the volume or mass transport in the North Atlantic as a whole can be336

done only by use of a model. A number of papers (e.g., Lorbacher et al., 2010) claim the existence337

of useful covariances between MOC values and some observables such as sea surface height,338

except these are also untested model results. Another immediate issue is the definition of what339

is meant by the MOC, as the literature contains usages calculating it at very different latitudes,340

integration depths, and averaging times. Here we take advantage of a global system to define341

it–in the Atlantic Ocean–as a function of all latitudes from the Cape of Good Hope (about342

30◦S) northward to the northern limits of the present model (79.5◦N). It is, more specifically,343

calculated as the zonal integral at monthly intervals, continent to continent, of the meridional344

velocity, the density being treated as constant, consistent here with the Boussinesq version of345

the model,346

V (y, z, t) =

Z xL(y)

0
v (x, y, z, t) dx (7) {meridtrans1}

(in practice, spherical coordinates are used). At any latitude, at any time, the MOC is then347

arbitrarily defined as the maximum of the integral from the surface to a time and space varying348
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depth zmax (y) ,349

Vmoc (y, t) = max
zmax(y,t)

Z 0

zmax(y,t)
V (y, z, t) dz (8)

Fig. 8 displays the time average value, hVmoc (y, t)i as well as the depth, zmax, where, on350

average, the maximum is reached (Fig. 9) . A geographical maximum of about 16Sv is reached351

at northern mid-latitudes and drops rapidly with latitude beyond about 50◦N. At the present352

time, it is not possible to provide a useful uncertainty estimate for these values, but the general353

structure–mass-conserving thermal wind-balance–appears very robust to both variations in354

the data base and in model parameters. The meridional flows, V, were discussed in some detail355

by Wunsch and Heimbach (2006, 2009).356

How much does V (y, z, t) vary with time? Jayne and Marotzke (2001) infer, consistent357

with what is found here, that the seasonal volume variability arises primarily in the surface358

Ekman layer. Fig. 10 shows the meridional transport January anomaly values every two years,359

indicating variations of up to about 4Sv, but only very locally–mainly in the vicinity of the360

equator, and at about 40◦N. The variations in the anomaly of Vmoc (y, t) are shown in Fig. 11 at361

three latitudes, where the integration depth is kept fixed at zmoc (y), that is not time-varying.362

These integrals have a range, except in the far north, of about ±5Sv and are noisy on monthly363

time scales. Temporal variances of V at all latitudes are depicted in Fig. 12. The power densities364

for three latitudes are shown in Fig. 13. At most latitudes, there is a significant annual cycle and365

its harmonics, especially in the low-latitude Ekman layer. Otherwise, the spectral densities are366

nearly white beyond the annual period–boding ill for decadal linear predictability. The smallest367

low frequency energy is found at 50.5◦N, a result consistent with the linear dynamical behavior368

there requiring much longer adjustment times. High latitude power densities are dominated369

by the annual cycle and not by the interannual variability (out to 16 years). In general, these370

spectra are “flat” by geophysical standards, being not very far from white noise.371

Variances of the MOC, computed for the monthly means over all 111 latitudes are 27Sv2 =372

(5.1Sv)2 and the annual means have variance 1.5Sv2 = (1.2Sv)2 providing a rough idea of373

the temporal variability and the observational challenge. At 50.5◦N alone, the corresponding374

variances are 10.5Sv2 = (3.2Sv)2 , and 1.8Sv2 = (1.3Sv)2 .375

A small visible trend appears early on in the values at some latitudes, a trend which disap-376

pears as one moves away from the starting time. No data precede the start time of 1992; hence377

the early years are much more weakly constrained than the later ones–which are controlled in378

considerable part by the data preceding the particular time of estimation.379

Fig. 14 shows the correlation coefficient matrix, Rij , between the annual mean variations380

in the MOC at all latitudes, i, j. Making the mildly optimistic assumption that each of the381
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annual mean values is an independent variable at any latitude, at 95% confidence, one must382

have |Rij | > 0.5, approximately, to distinguish the value from zero. A change takes place across383

about 35.5◦N where all linear correlation is lost between values on either side of that latitude384

(the approximate Gulf Stream position). The North Atlantic subtropical gyre shows some385

marginally significant correlation with the South Atlantic, but no correlation with the North386

Atlantic subpolar gyre (consistent e.g., with the pure model results of Bingham et al., 2007)387

except for a slight hint of a finite relationship between 75◦N and the South Atlantic. Within388

the subtropical gyre, correlation decays to insignificant levels beyond separations of about 20◦of389

latitude. (A more elaborate analysis by E. Haam, personal communication, 2011, using a Monte390

Carlo simulation (Haam and Huybers, 2010), suggests that the small band of higher correlation391

between about 75◦N and the South Atlantic, visible as horizontal and vertical stripes in Fig. 14,392

is statistically significant. An oceanic physical mechanism for “skipping over” the intermediate393

latitudes is not obvious, and one probably must look to the atmosphere for an explanation.)394

A problem with correlation analyses is that they lump together all time scales, often having395

very diverse physics. One might hypothesize that the low correlations found here are the result396

of noisy high frequencies. To address this issue in part, Figs. 15 and 16 show the coherence as397

a function of frequency between the 50.5◦N MOC and its values at 25.5◦N and 20.5◦S. They398

show, to the contrary, that the only marginal coherence is at periods shorter than one year (at399

the annual period the conventional statistics do not apply as sinusoids are always coherent).400

Evidently (on this decadal time scale), annual mean MOC determinations south of about 35◦N401

carry no (linear) information about its behavior poleward of that latitude at any frequency now402

testable.403

One could search the system for correlations. For example, it is conceivable that there is404

correlation between the meridional transports lying between some pair of isopycnals, at two405

different latitudes, even though the total transport shows nothing significant. If one searches a406

large number of possible combinations, some apparently significant relationship will necessarily407

be found. If there are 100 possible combinations, then using a 95% level-of-no-significance with408

proper probability densities, about 5% should show apparent, but spurious, correlation. This409

direction is not pursued.410

6.1 Predicting the MOC411

Monthly predictions of the MOC have no obvious utility and they are not discussed here; only the412

annual means are now considered. Wunsch and Heimbach (2009) discuss the annual cycle of the413

MOC–and which is primarily a near-equatorial phenomenon, extending to considerable depth.414

Hypothetically, one could imagine using each of the 111 time series at 1◦ latitude spacing, with415
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time lags of one year and longer, as regression variables to predict e.g., the value at some specific416

latitude(s). With 16 sample points at any fixed latitude, one would be seeking the equivalent of417

the expansion of a 16-dimensional vector in 111 non-orthogonal vectors–as in Appendix C–a418

markedly underdetermined problem. Although we will return to this problem, consider instead419

the more well-determined one of predicting from the present and past values at one particular420

latitude. As for SST, the main problem is having only 16 samples,421

The MOC at 50.5◦N is arbitrarily chosen as the initial target prediction–on the basis of422

a large literature claiming that modifications in the high latitude transports are a key climate423

control parameter. This latitude is close to the one with the largest defined MOC and is just424

south of the region where the mean MOC declines very rapidly. Thus consider the problem of425

predicting the MOC at 50.5◦N one year into the future, using the calculated history at that426

latitude. The spectral estimate in Fig. 13 is not very different from white noise at long periods,427

and one anticipates only some modest degree of prediction skill. Fig. 17 shows the error growth428

using an AR(1) deduced from the measurements at 50.5◦N alone (and see Table 1).429

Had there appeared significant correlations or coherences between 50.5◦N and other lati-430

tudes, it would be reasonable to seek predictive power from observed variations in the MOC431

at all latitudes. The absence of such correlations shows that linear predictability will be slight.432

Experiments using singular vectors (not shown; Appendix C describes them), as expected did433

not produce any useful outcome.434

It is, of course, possible that the existing 16-year interval is untypical of the longer-term435

behavior of the Atlantic Ocean and/or that linear predictive skill would emerge with much longer,436

multi-decadal or centenary, records, but these are purely speculative claims. The utility for437

prediction from existing duration, geographically widely separated, field observations is doubtful.438

6.2 Correlation with SST439

Study of the MOC has often been justified on the basis that its variability is linked to climate440

change, sometimes in truly dramatic fashion (“hosing” and “shut-down”). Thus the question441

arises as to whether there is any relationship between the MOC variations estimated here, and442

the SST of the region previously discussed. One simple measure is the correlation coefficient443

between the MOC and GBB SST variations, depicted in Fig. 18, which repeats Fig. 14, but such444

that the last row and column now represent the annual mean SST time series. The calculation is445

shown for the case of the raw SST and where, also, its visible, linear, trend was removed by least-446

squares. One might infer that there is a marginally significant negative correlation between the447

low latitude MOC (0± 10◦ latitude) and the GBB SST. The result is, however, dependent upon448

the presence of the trend in SST, and which destroys the assumption of annually independent449
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changes. Any inference of correlation is extremely fragile and not supportive of a relationship450

between MOC and SST on the time scales accessible here. Determining whether there is such a451

relationship on much longer time scales will have to wait on extended observations.452

7 Discussion453

Linear predictability in space-time systems is the story of the covariance structure. It is thus454

useful to compare the results for the MOC here with the entirely different approach and inferences455

of Msadek et al. (2010) as an example of a pure model approach. They concluded that the MOC456

is predictable with some skill out to 20 years, using an unconstrained, coupled climate model457

run for 1600 years. Apart from the very much longer analysis time, their mean MOC is 25 Sv458

rather than the approximate maximum of 16 Sv found here. Their MOC spectrum (their Fig.459

1) is steeply red from about two year periods to about 20 years, culminating in a narrow-band460

spectral peak near 20 years. That their inferred predictability is larger than found here, at461

about 20 years, would be a consequence of their narrow spectral peak at that period–if it is462

real. This prediction skill is likely primarily a linear one, because low frequency narrow-band463

processes have an intrinsic long memory–extended correlation times; as the peak-width becomes464

narrower, one converges to a deterministic component with an infinite prediction horizon. In465

contrast, the spectra computed here tend to indicate a white noise behavior beyond about466

15-year periods with no indication of a narrow band spectral process, although no definitive467

statement can be made from the available observations.468

This disagreement between the two sets of results focuses one on the central conundrum of469

climate change studies: (1) It is difficult to compare a 16-year data-constrained estimate to a470

1600-year unconstrained one. (In their study of 136 years of North Atlantic SST data, Tourre471

et al. (1999) did not report any obvious 20 year spectral excess, although all the caveats about472

data quality before the polar-orbiting satellite era will apply, and even that recent system is473

imperfect.) Conceivably, the present 16-year interval of the ECCO estimates is unrepresentative474

e.g., of the historical strength of the MOC, and one might postulate that it was more typically475

closer to the 25Sv of the Msadek et al. (2010) model than to the ECCO values of the WOCE era.476

Such an enhanced value, however, would imply a much increased geostrophic transport, which477

dominates the upper limb of the MOC –mostly in the Gulf Stream system. Within historical478

times, such a large strength is probably ruled out by existing coastal sea level and wind-strength479

records, but no quantitative estimate has been made. (2) Conceivably the more nearly white480

spectrum that we infer at periods of a few years is also untypical of a hypothetical much longer481

record. How does one know?482
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A general comment, applicable also to the present results, is that most models are much483

less noisy than is the real world, either entirely lacking in the eddy field and internal waves,484

or commonly underestimating them. In the present case (e.g., Wunsch, 2008; Kanzow et al.,485

2009) and in calculations such as Msadek et al. (2010), one should infer that all estimates of486

predictability (or its relative, detectability) skill are probably upper bounds.487

Poor prediction results in the fields discussed here does not mean that the corresponding488

variable is not predictable: sometimes the best prediction is just the sample mean, with a stan-489

dard error given from the variance of the variable. That is, given observing system limitations,490

and the great oceanic noisiness, the best prediction may well be that the field will be indistin-491

guishable from present values–and that estimate may still be a useful one. A nonlinear method,492

one that was independent of any linear space-time correlation, might well do better, although493

the nonlinearity would have to be one operating on statistical moments higher than the second.494

Note that methods exist for transforming some nonlinear time series into linear forms (e.g.,495

Hamilton, 1994, etc.).496

One can modify and extend the methods here in a large number of ways. The singular value497

decomposition (see Appendix C) is identical in its u vectors to the conventionally defined EOFs,498

and emerges naturally as part of the least-squares/regression problem. These individual orthog-499

onal structures of the variability have been used by Davis (1978) and many others. Generally500

speaking, any particular EOF (singular vector) will have a fraction, depending upon the degree501

of spatial correlation, of the total variance, and if it displays significant predictability (e.g.,502

Branstator and Teng, 2010), it will only be for that fraction of the expected variance–perhaps503

large enough to be useful to someone if its skill can be tested.504

The dual (adjoint) model calculations of Heimbach et al. (2011) represent a running lin-505

earization of the governing equations about the time-varying state. Regarded as Green function506

solutions, they can be used either directly in predictions, or as a guide in choosing the relevant507

regressor fields, locations, and time-scales. They do show the strong sensitivity of North At-508

lantic shifts to disturbances in distant ocean basins at earlier times. On time scales of decades509

and longer, variability in the Atlantic is a summation of disturbances emanating from the en-510

tire global ocean. No single region dominates the later changes in the North Atlantic, and for511

understanding and prediction, a global, long-duration observing system is required.512

As noted in the Introduction, the present results apply only to the temporally statistically513

stationary components. A major shift in the controlling boundary conditions–such as a massive514

ice melt event, or an increase in greenhouse gases–would render the process non-stationary–515

changing its mean, and likely its higher statistical moments as well. The issue for those inter-516

ested in decadal and longer predictability is whether those external controls are predictable and517
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whether they dominate the variance contributed by what here is assumed to be intrinsic changes518

in the ocean. Such external predictability, if it exists, is primarily independent of purely oceanic519

processes and their long memory components. A long memory has the consequence, however,520

of producing changes today or in the future as the result of forcings and fluctuations occurring521

long ago (Heimbach et al., 2011), greatly complicating the interpretation of ongoing changes.522

The results here have all been biased towards an optimistic outcome: using the estimated523

fields both to determine the optimal linear predictors and to test them; usually retaining appar-524

ent trends; and by employing very large scale integrals such as basin-wide transports. Consistent525

with the earlier study of the linear predictability of the North Atlantic Oscillation (NAO; Wun-526

sch, 1999), little skill beyond a year is found. Major elements of the ocean circulation are of527

course, predictable far beyond that time interval: it is a very safe prediction that the thermo-528

cline depth, the net heat content, etc. will be little changed in a decade or longer, probably529

undetectably so, given the nature of the observing system and the natural noise.530

In their comparison of three different model calculations of the Atlantic MOC, Bingham et531

al. (2007) drew conclusions that are broadly similar to those found here, albeit differing in the532

details. They found essentially no correlation in their three models between the MOC in the533

subpolar and subtropical gyres, but did succeed in identifying a weak (relative to the overall534

variability) lowest singular vector (EOF) representing a coupling of the two. The duration535

of observations required to detect it was not estimated, but would clearly be extremely long536

compared to any existing records.537

Lack of correlation seen between the subtropical and subpolar regions can be understood538

in rather simple terms: as discussed e.g., in Wunsch (2011) for the same state estimate, the539

dynamical time scales for adjustment of disturbances grows very rapidly with latitude beyond540

about 40◦, so that finding simple lag correlations between gyres would be very surprising. Over541

16 years, the subtropical gyre was found to be in near equilibrium with the wind forcing, while542

subpolar regions were not–consistent with the time-scale growth.543

Climate change is a global phenomenon, integrating at any given location changes originating544

from diverse regions of the globe, not just locally, and the spatially de-correlating local responses545

represent a summation over all times and space. If there is a timescale beyond which the MOC546

shows large meridional coherences and/or coherence with SST as in the conveyor “ribbon”547

cartoons, it appears to lie beyond the duration of any existing record. Sustenance over many548

decades (Rossby et al., 2005, is an example) of globally distributed, top-to-bottom, observations549

is urgently required, although a “hard-sell.”550
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Appendix A. The Vector Least-Squares Approach to Prediction556

Scalar Time Series557

Much of the conceptual underpinning of the standard regression methods can be simplified558

through a vector-least-squares point of view. The advantage is that least-squares permits a559

very general, and flexible, method to deal with, among other problems, the underdetermined560

problem of more regressors than regressees, and introduces the empirical orthogonal functions561

(EOFs) naturally via the singular value decomposition. Nothing that follows is original, but is562

a heuristic description of discrete stationary time series as discussed in innumerable textbooks.563

Consider a stochastic zero-mean anomaly, ξ (t = tnow) , where tnow represents the instant in564

time when the value of ξ is known, as are its past values, and one seeks to predict its future565

behavior. The time scale is chosen so that the interval is ∆t = 1. Form a vector from ξ (t) as566

ξ (t) = [...ξ(t− q), ξ(t− q + 1), ..., ξ(t− 1), ξ(t)]T

that is constructed from its formally infinite past and terminating at t = tnow. Let L be the actual567

number of observed elements, including the one at the present time. Superscript T denotes the568

transpose in the convention that, unless otherwise stated, all vectors have column form. Define569

a second vector in which everything is shifted to the right, dropping the most recent value,570

ξ (t− 1) = [...ξ(t− q), ξ(t− q + 1), ..., ξ(t− 2), ξ(t− 1)]T

–and which of necessity, in practice will have only L− 1 non-zero elements. The collection of571

all such vectors, ξ (t− p) = [...ξ(t− q), ξ(t− q+1), ..., ξ(t− p− 1), ξ(t− p)]T is a generally non-572

orthogonal set, noting that in observational practice the last one, ξ (L) , will have only one non-573

zero element. This, and other, observed long-lagged vectors will thus be poor approximations574

to the theoretically defined semi-infinite vector.575

Now consider another formally defined vector derived from ξ(t), ξ (t+ τ) as a semi-infinite576

one, τ > 0,577

ξ (t+ τ) = [...ξ (t+ τ − q) , ..., ξ (t+ τ − 1) , ξ (t+ τ)]T ,

that is displaced in the opposite time direction relative to ξ (t) and including the unknown future578

values579

ξ (t+ 1) , ξ (t+ 2) , ..., ξ (t+ τ) .

ξ (t+ τ) is just another vector, and unless it is orthogonal to the collection of known past vectors,

ξ (t− p) , p ≥ 0, one should be able to at least partially represent it in those non-orthogonal
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vectors,

ξ (t+ τ) = (9) {vector1}

α (τ) ξ (t) + α (τ + 1) ξ (t− 1) + ...+ α (τ +K) ξ (t−K) + ε (t+ τ) , K ≤ L− 1.

The α (τ) are simply the coefficients of the vector expansion, and for a stationary process would580

depend only upon τ, and not t. ε (t+ τ) is an error representing any elements of ξ (t+ τ) that581

are orthogonal to the expansion vectors (and which are the τ−lead-time “prediction error”).582

Determining how far back into the past, t−K, one should carry Eq. (9) is an important part of583

the inferential process. Clearly asK approaches L, the number of zero elements in the expansion584

vectors grows, and the particular ξ (t−K) will be a poor representation of the true vector. One585

prefers, K << L. Similarly, physical insight comes into the discussion, as Eq. (9) is a finite586

difference equation and will typically be an approximation to some partial differential system587

describing the time (and space) evolution of the elements ξ (t+ τ) .588

The simplest case is K = 1, and τ = 1, and writing it out in full, one has,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξ (t− 1)
ξ (t− 2)

.

.

ξ (t− (L− 1))

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
a1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε (t)

ε (t− 1)
.

.

ε (t− (L− 2))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ξ (t)

ξ (t− 1)
.

.

ξ (t− (L− 2))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (10) {vector2}

or, E1x+ ε= d, x = a1, (11)

The maximum number of equations is L−1, involving the past data as far back as ξ (t− (L− 1))) .589

An alternative formulation is Eq. (3) in the text:

Ex= y, E =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξ (t− 1) 1 0 . 0 0

ξ (t− 2) 0 1 . 0 0

. 0 0 . 0 0

. . . . . .

ξ (t− (L− 1)) 0 0 . 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (12)

x=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1

ε (t)

ε (t− 1)
.

ε (t− (L− 2))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ (t)

ξ (t− 1)
ξ (t− 2)

.

.

ξ (t− (L− 2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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which identifies the values of ε (r) as explicit unknowns. Now E = {E1|I}.590

The conventional least-squares solution is (e.g., Wunsch, 2006),

x̃=ã1 =
¡
ET
1E1

¢−1
ET
1 d

=
1/L

PL−2
q=0 ξ (t− q − 1) ξ (t− q)

1/L
PL−2

q=0 ξ (t− q − 1)2
(13) {ls1}

which minimizes ε̃T ε̃. The one-step prediction error (PE) is, ε̃ = d−E1x̃. The tildes are used591

as a reminder that the solution is an estimate. As in any other least-squares problem, one must592

test the residuals, ε̃, for a white-noise character. If ε̃ passes that test, it is described simply by its593

variance, σ2ε . Ordinary least-squares (e.g., Lawson and Hanson, 1995; Wunsch, 2006) produces594

estimates of the expected error in x̃, etc. Quantities such as (1/L)
PL−1

q=1 ξ (t− q + 1) ξ (t− q)595

in Eq. (13) are the empirical autocovariances of ξ (t) and the most conventional approach to596

these problems (e.g., Box et al., 2008; Priestley, 1982) formulates the problem explicitly by597

invoking the covariances–which are the dot (inner) products of the expansion vectors in the598

Yule-Walker equations. To the extent that the autocovariances are not independently known599

e.g., from a theory, most estimation algorithms in practice resort to forms of least-squares. Note600

that vectors generated from white noise sequences are orthogonal. The Kolmogoroff-Wiener-601

Levinson-... approach is recovered by letting L → ∞, that is, the theory assumes the infinite602

past is known, while practice copes with a finite observed past.603

Suppose ε̃ fails the white noise test. The obvious remedy would be to try using a second604

vector, ξ (t− 2) , in the expansion to remove more of the structure, so that,605

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξ (t− 1) ξ (t− 2)
ξ (t− 2) ξ (t− 3)

. .

. .

ξ (t− (L− 2)) ξ (t− (L− 1))

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
"
a1

a2

#
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε (t)

ε (t− 1)
.

.

ε (t− (L− 3))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ξ (t)

ξ (t− 1)
.

.

ξ (t− (L− 3))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (14) {vector4}

represents an AR(2) process, which in scalar form is,606

ξ (t) = a1ξ (t− 1) + a2ξ (t− 2) + ε (t) . (15) {ar2}

Suppose a satisfactory (acceptable) fit has been found and so that one has estimates, ã1, ã2, and607

σ̃2ε . Omitting the tildes, but remembering always that all parameters are estimates, one can608

consider the one-step ahead prediction problem. In Eq. (15) everything is known at time t+ 1609

except ε (t+ 2) , which has zero-mean. Thus the best prediction is,610

ξ̃ (t+ 1) = a1ξ (t) + a2ξ (t− 1) + 0,
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and whose mean square error would be
D
ε (t+ 1)2

E
= σ2ε . The two-step ahead prediction would611

be612

ξ̃ (t+ 2) = a1ξ̃ (t+ 1) + a2ξ (t) + 0

and for which the prediction error variance is
¡
a21 + 1

¢
σ2ε . This process can be continued in-613

definitely, the prediction error variance increasing monotonically with the prediction horizon,614

but never exceeding the variance of ξ (t) itself: the worst prediction is ξ̃ (t+ τ) = 0 and whose615

expected error is the variance of ξ,616

­
ξ
¡
t0
¢
ξ
¡
t0
¢®
= R (0) =

σ2ε (1− a2)

(1− a21 − a22)(1− a2)− 2a21a2
.

See the references. Alternatively, one can transform ξ (t) into the MA form as described in the617

text.618

The formal coefficient matrices E1 or E involve the observed ξ (t) and inevitably contain619

errors. Linear least-squares treats E as perfectly known, but many methods are available for620

discussing and remedying the bias and other errors introduced by errors in E, leading to non-621

linear methods (e.g., Total Least Squares; Van Huffel and Vandewalle, 1991), but which are not622

discussed here.623

Appendix B An Ensemble AR(1)624

An artificial AR(1), x (t+ 1) = 0.3x (t)+ε (t) , was generated for 160 samples (10-times the now625

available record length). The corresponding MA form has, exactly, bj = 0.3j , j = 0, 1, ...626

Thus a1 is known exactly, as is ε (t) (generated using a pseudo-random Gaussian algorithm627

with variance of 1). The resulting record was then divided into 10 segments each of 16 samples628

(i = 1 to 16), and the resulting system solved for ã(i)1 and the estimated ε(i) (t). The record629

variance is
D
ξ (r)2

E
= σ2ε/

¡
1− a21

¢
. Fig. 19 shows the results of this experiment: The values of630

the estimated ai and equivalently the bi can and do differ substantially from the known exact631

values and the calculated prediction error, measured either as one-time step ahead, or as the632

segment record variance, varies by more than a factor of 3 from one realization to the next.633

They do not vary by an order of magnitude, and so one might interpret any results with the634

real records (below) as providing an order of magnitude estimate.635

The variability of these estimates is known from the textbook discussions to depend upon the636

magnitude of a1 (and that in turn depends directly upon the lag one covariance). With a1 = 0.3,637

only about 9% of the variance from one time step to the next is correlated. Fig. 20 shows similar638

results for a1 = 0.9 where about 80% of the variance would be so correlated. The coefficients639
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determined from each realization are more stable, but the prediction error (PE) growth (Fig.640

21) with time is more rapid because small errors will persist longer, and the variance of ξ (r) is641

also greater, being proportional to 1/
¡
1− a21

¢
.642

Appendix C. Vector AR and Singular Value Decomposition643

Consider now a generalization whereby ξi0 (t) is e.g., the MOC at latitude i0, and one makes644

the plausible assumption that it is correlated with, and hence predictable from, its L present645

and past values at several other latitudes, j = 1 to J (including i0). As an example, consider a646

vector AR(2), using only two latitudes, i0 and j, and one can write e.g.,647

ξi0 (t) = a1ξi0 (t− 1) + a2ξi0 (t− 2) + b1ξj (t− 1) + b2ξj (t− 2) + ...+ ε (t) ,

or in matrix-vector form,⎡⎢⎢⎢⎢⎢⎢⎢⎣

ξi0 (t)

ξi0 (t− 1)
ξi0 (t− 2)

.

ξi0 (t− (L− 3))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (16) {vectorar1}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξi0 (t− 1) ξi0 (t− 2) ξj (t− 1) ξj (t− 2)
ξi0 (t− 2) ξi0 (t− 3) ξj (t− 2) ξj (t− 3)
ξi0 (t− 3) ξi0 (t− 4) ξj (t− 3) ξj (t− 4)

. . . .

. . . .

ξi0 (t− (L− 2)) ξi0 (t− (L− 1)) ξj (t− (L− 2)) ξj (t− (L− 1))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎣
a1

a2

b1

b2

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε (t)

ε (t− 1)
ε (t− 3)

.

.

ε (t− (L− 3))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(17)

where j is any other MOC time series at any latitude (or anyother measured variable anywhere).648

The bi should not be confused with the MA coefficients used in the text. If the vector AR is649

order N, and there are J measured time series (including the one being predicted), the equation650

set (16) has L − 1 equations in J (L− 1) formal unknowns (not counting the ε (r)). Thus651

an AR(1) using all 111 latitudes at one degree spacing between 30◦S and 80◦N of estimated652

MOC would have 111 unknowns in each of the 16 annual mean observations, leaving it greatly653

underdetermined, with an increasing number of unknowns with any higher order AR.654

The singular value decomposition (SVD) can be used to solve such underdetermined problems655

(e.g., Wunsch, 2006). The coefficient matrix made up of the expansion vectors (the regressors),656
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is written in canonical form as657

E =λ1u1v
T
1 + λ2u2v

T
2 + ...λKuKv

T
K , (18) {svd2}

where the ui,vi are the orthonormal singular vectors, and the λi are the singular values. K ≤ 15,658

is the maximum possible rank of E here. The ui are often known as empirical orthogonal659

functions (EOFs) and corresponding vi are the temporal coefficients. λ2i is the contribution to660

the squared norm of E.661

In the present case, the singular value decomposition shows that E is formally of full rank,662

K = 15, and at full rank, E is exactly represented by 15 pairs of orthonormal vectors in Eq. (18).663

A more plausible estimate of the useful rank is either 9 or 13, depending upon how large the664

noise is estimated to be. K = 9 suggests approximately nine independent pieces of information665

amongst the 111 latitudinal values of the MOC at a one-year time lag. The SVD solution is,666

x̃ = v1
¡
uT1 y/λ1

¢
+ v2

¡
uT2 y/λ2

¢
+ ...+ vK

¡
uTKy/λK

¢
, (19) {svdsol1}

but results from this approach are not shown here, as they founder on the same too-short record667

duration.668
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Figure and Table Captions780

Table 1. Summary statistics. Variances are either in ◦C2(for SST) or Sv2 for the meridional781

overturning circulation (MOC). PE is the prediction error. The record variance is not the sum of782

the component variances because the monthly values include the low frequency variability. Some783

prediction error values are omitted as being of no particular interest. GBB denotes the Grand784

Bahama Bank square, and ECCO is the consortium Estimating the Circulation and Climate of785

the Ocean. MA(M) indicates that the prediction error was deduced by converting the AR(1)786

model into an MA of order M.}787

Fig. 1. Sixteen year time mean sea surface temperature (SST, in ◦C) from the ECCO-788

GODAE estimate in the North Atlantic. Small white square, called the Grand Banks Box–789

GBB, is used as protypical of the areal prediction problem.790

2. The Grand Banks Box (GBB) area average temperature, TG (t) (solid curve), the best-791

fitting annual cycle including its first three harmonics (dashed), and the monthly residuals of792

the annual cycle (dotted). Start is 1992.793

3. (a) Periodogram of TG (t) for the ECCO estimate (dashed) and longer Reynolds and Smith794

(1995) time series (solid curve). (b) Cumulative integral of the periodgrams in (a) normalized795

to a sum of 1, so that the dominance by the annual peak in both cases is clear. (c) Spectral796

estimates for both time series after removal of the annual cycle and its harmonics. The annual797

peak is so narrow as to be indistinguishable at this resolution from a pure sinusoid. At low798

frequencies, a power law of frequency to the power −2.5 is approximately correct.799

4. Monthly values of T 0GBB (t) , (start is 1992) residual of the area average GBB SST, after800

removal of the annual cycle and its harmonics. The visual trend, if secular–meaning extending801

far beyond the record length–contributes to the apparent predictability as it is here treated as802

part of a red noise process. (Repeated from Fig. 2.)803

5. Prediction error out to 6 months for T 0GBB (t) . Note that the variance of the monthly804

means of T 0GBB (t) is 0.7
◦C2, which is the maximum prediction805

6. Annual mean values for the Reynolds and Smith (1995)–solid line and the ECCO results806

in the GBB (dashed).807

7. Prediction error growth in years for T 0GBB (t) from an AR(1) converted to an MA(5).808

Total variance is 0.78◦C.809
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8. Zonal and time mean meridional transport (not the stream function). The upper 200m810

has a particularly complex structure at low latitudes (see Wunsch and Heimbach, 2009).811

9. The maximum meridional transport, integrated from the sea surface, averaged over 16812

years (upper panel). Lower panel shows the depth where the time-mean value is obtained.813

10. Monthly values of V (y, z, t) in Sverdrups (106m3/s) for a succession of Januarys showing814

the typical interannual variability occurring at depth. Year 2 is 1993. The origin of these small815

meridional scale features is not explored here, but may be associated with response to the Ekman816

forcing in shallow water areas (e.g., Davis, 2010).817

11. The monthly MOC anomaly without the annual mean cycle at 25◦N and 50◦N (a) and818

at 20◦S (b). Little visual similarity is apparent.819

12. MOC variances (solid curve), the annual contribution (with harmonics) as a function of820

latitude in Sv2 (dashed line), and the residual after removal of the annual cycle (dotted).821

13. Power density spectral estimate of monthly MOC values at three latitudes. The an-822

nual cycle and its harmonics are visible, as is the low frequency asymptote toward white noise823

behavior. This spectral density is, overall, nearly flat. The annual peak is broadened by the824

multi-tapers used to form the estimated spectrum and the very lowest frequency estimate has a825

known negative bias.826

14. Correlation matrix with latitude of the annual mean MOC (left panel). Right panel827

is an expanded color scale version of the left panel, showing only the apparently statistically828

significant values. No negative correlations are significant.829

15. Coherence amplitude and phase between 20.5◦N and 50.5◦N. Significant coherence van-830

ishes at periods longer than one year. High frequency coherence is in large part that of the831

annual cycle and its harmonics and for which the level-of-no-significance shown is inappropriate.832

16. Coherence between the monthly MOC at 20.5◦S and 50.5◦N. Apart from the annual833

cycle, where the conventional statistics do not apply, there is no significant coherence.834

17. Prediction error of the MOC as a function of year at 50◦N from a univariate AR(1).835

18. Correlation coefficient between the maximum MOC through time (annual means) with836

the GBB SST (left panel). The last row and column are the SST correlations. Omitting837

the last row and column repeats the values in Fig. 14. Right panel shows the same results838
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but with a linear trend removed from SST, thus reducing the correlations. No values below839

magnitude 0.5 are statistically significant. (These correlations are with the MOC defined as840

integrated to the time-mean maximum depth. Results with the time-varying integration depth841

are indistinguishable.)842

19. ã(i) from each 16-element segment of the record in Fig. 19 (a) panel; true value is a = 0.3;843

(b) the estimated uncertainty in those values and (c) the variance in the 15 samples estimates844

of ε (t) in the segment. The correct value is 1.845

20. Same as Fig. 19 except for a = 0.9.846

21. The 10 different realizations of the estimated MA coefficients for a = 0.9 (left panel), and847

the corresponding prediction error growth through time (right panel). Each line corresponds to848

a different 16 time step realization. True values are shown as ‘o’.849
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Variab le GBB SST (ECCO)
◦
C
2

GBB (Reynolds & Sm ith)
◦
C
2

MOC at 20
◦
S Sv

2
MOC at 25

◦
N Sv

2
MOC at 50

◦
N Sv

2

Total Record 10.2 9.9 6.5 10.2 10.5

Annual cycle 9 .45 (93% ) 8.8 2.1 2.9 3.6

Record w/o annual cycle 0 .78 0.7 (7% ) 4.4 7.2 7.0

Annual averages 0.50 (5% of the total) 0 .36(3.6% ) 1.9 2.2 1.8

One month PE 0.2 0.3 (MA(3) and MA(10)) 2.4 MA(4) 6.5 MA(4) 5.6 MA(4)

Six month PE 0.6 0.7 - - -

One year PE 0.2 (AR(1) w ith trend) 0.05 (MA(4)) 0.5 MA(4) 0.2 MA(4) 0.8 MA(4)

Three year PE 0.4 0.3 - - 1.5

Table 1: Summary statistics. Variances are either in oC2 (for SST) or Sv2 for the meridional overturning

circulation (MOC). PE is the prediction error. The record variance is not the sum of the component

variances because the monthly values include the low frequency variability. Some prediction error values

are omitted as being of no particular interest. GBB denotes the Grand Bahama Bank square, and ECCO

is the consortium Estimating the Circulation and Climate of the Ocean. MA(M) indicates that the

prediction error was deduced by converting the AR(1) model into an MA of order M. {TableKey}

{table}
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Figure 1: Sixteen year time mean sea surface temperature (SST, in ◦C) from the ECCO-GODAE estimate
in the North Atlantic. Small white square, called the Grand Banks Box–GBB, is used as protypical of

the areal prediction problem. {sst_time_mean
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Figure 2: The Grand Banks Box (GBB) area average temperature TG (t) (solid curve), the best-fitting
annual cycle including its first three harmonics (dashed), and the monthly residuals of the annual cycle

(dotted). Start is 1992. {sst_areaavg&r
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Figure 3: (a) Periodogram of TG (t) for the ECCO estimate (dashed) and longer Reynolds and Smith

(1995) time series (solid curve). (b) Cumulative integral of the periodgrams in (a) normalized to a sum

of 1, so that the dominance by the annual peak in both cases is clear. (c) Spectral estimates for both

time series after removal of the annual cycle and its harmonics. The annual peak is so narrow as to be

indistinguishable at this resolution from a pure sinusoid. At low frequencies, a power law of frequency to

the power −2.5 is approximately correct. {area_periodo_
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Figure 4: Monthly values of T 0GBB (t) , (start is 1992) residual of the area average GBB SST, after

removal of the annual cycle and its harmonics. The visual trend, if secular–meaning extending far

beyond the record length–contributes to the apparent predictability as it is here treated as part of a red

noise process. (Repeated from Fig. 2.) {sst_area_noan
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Figure 5: Prediction error out to 6 months for T 0GBB (t) . Note that the variance of the monthly means
of T 0GBB (t) is 0.7

◦C2, which is the maximum prediction error. {gbb_pe_ma6.ep

37



0 5 10 15 20 25 30
7

8

9

10

11

YEAR

o
C

Figure 6: Annual mean values for the Reynolds and Smith (1995)–solid line and the ECCO results in
the GBB (dashed). {area_annmeans
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Figure 7: Prediction error growth in years for T 0GBB (t) from an AR(1) converted to an MA(5). Total

variance is 0.78◦C. {pred_error_ar
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Figure 8: Zonal and time mean meridional transport (not the stream function). The upper 200m has a

particularly complex structure at low latitudes (see Wunsch and Heimbach, 2009). {moc_timemean_
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Figure 9: The maximum meridional transport, integrated from the sea surface, averaged over 16 years

(upper panel). Lower panel shows the depth where the time-mean value is obtained. {mocmax&deptht
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Figure 10: Monthly values of V (y, z, t) in Sverdrups (106m3/s) for a succession of Januarys showing the
typical interannual variability occurring at depth. Year 2 is 1993. The origin of these small meridional

scale features is not explored here, but may be associated with response to the Ekman forcing in shallow

water areas (e.g., Davis, 2010). {moc_every2yea
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Figure 11: The maximum monthly MOC anomaly without the annual mean cycle at 25◦N and 50◦N

(a) and at 20◦S (b). Little visual similarity is apparent. {moc_3lats_ts_
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Figure 12: MOC variances (solid curve), the annual contribution (with harmonics) as a function of

latitude in Sv2 (dashed line), and the residual after removal of the annual cycle (dotted). {var_all_lats&
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Figure 13: Power density spectral estimate of monthly MOC values at three latitudes. The annual

cycle and its harmonics are visible, as is the low frequency asymptote toward white noise behavior. This

spectral density is, overall, nearly flat. The annual peak is broadened by the multi-tapers used to form

the estimated spectrum and the very lowest frequency estimate has a known negative bias. {moc_pd_3lats.
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Figure 14: Correlation matrix with latitude of the annual mean MOC (left panel). Right panel is an
expanded color scale version of the left panel, showing only the apparently statistically significant values.

No negative correlations are significant. {moc_latcorr_a
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Figure 15: Coherence amplitude and phase between 20.5◦N and 50.5◦N. Significant coherence vanishes
at periods longer than one year. High frequency coherence is in large part that of the annual cycle and

its harmonics and for which the level-of-no-significance shown is inappropriate. {moc_coher25n5
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Figure 16: Coherence between the monthly MOC at 20.5◦S and 50.5◦N. Apart from the annual cycle,

where the conventional statistics do not apply, there is no significant coherence. {moc_coher21s5
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Figure 17: Prediction error as a function of year at 50◦N from a univariate AR(1). {pemoc50nfroma
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Figure 18: Correlation coefficient between the maximum MOC through time (annual means) with the

GBB SST (left panel). The last row and column are the SST correlations. Omitting the last row and

column repeats the values in Fig. 14. Right panel shows the same results but with a linear trend removed

from SST, thus reducing the correlations. No values below magnitude 0.5 are statistically significant.

(These correlations are with the MOC defined as integrated to the time-mean maximum depth. Results

with the time-varying integration depth are indistinguishable.) {mocmax_latcor
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Figure 19: ã(i) from each 16-element segment of the record in Fig. 19 (a) panel; true value is a = 0.3;

(b) the estimated uncertainty in those values and (c) the variance in the 15 samples estimates of ε (t) in

the segment. The correct value is 1. {atrue3sols.ep
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Figure 20: Same as Fig. 19 except for a = 0.9. {atrue9sols.ep
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Figure 21: The 10 different realizations of the estimated MA coefficients for a = 0.9 (left panel), and the
corresponding prediction error growth through time (right panel). Each line corresponds to a different

16 time step realization. True values are shown as ‘o’. {atrue9ma&pe.e
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