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The problem of understanding linear predictability of elements of the ocean circulation is explored in

the Atlantic Ocean for two disparate elements: (1) sea surface temperature (SST) under the storm track

in a small region east of the Grand Banks and, (2) the meridional overturning circulation north of

30.51S. To be worthwhile, any nonlinear method would need to exhibit greater skill, and so a rough

baseline from which to judge more complex methods is the goal. A 16-year ocean state estimate is used,

under the assumption that internal oceanic variability is dominating externally imposed changes. No

evidence exists of significant nonlinearity in the bulk of the system over this time span. Linear

predictability is the story of time and space correlations, and some predictive skill exists for a few

months in SST, with some minor capability extending to a few years. Sixteen years is, however, far too

short for an evaluation for interannual, much less decadal, variability, although orders of magnitude are

likely stably estimated. The meridional structure of the meridional overturning circulation (MOC),

defined as the time-varying vertical integral to the maximum meridional volume transport at each

latitude, shows nearly complete decorrelation in the variability across about 351N—the Gulf Stream

system. If a time-scale exists displaying coherence of the MOC between subpolar and subtropical gyres,

it lies beyond the existing observation duration, and that has consequences for observing system

strategies and the more general problem of detectability of change.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to predict future climate is high on the agenda of
many scientists (e.g., Hurrell et al., 2010; Meehl et al., 2009;
Mehta et al., 2011). Claims that climate should be predictable on
some time-scale often rest upon the assumption that it would
arise from the long memory of the ocean—the atmosphere being
assumed to lack such memory.

At the present time, more specifically, there is wide commu-
nity interest in the possibility of decadal prediction of some
elements of the ocean circulation, including sea level changes
(e.g., Yin et al., 2009), surface temperatures (Newman, 2007), and
volume transports (Msadek et al., 2010; Zhang and Wu, 2010).
Government funding agencies have issued calls for actual fore-
casts to be made (see e.g., the websites of the US National Science
Foundation and of the European Science Foundation). The com-
paratively short decadal time-scale raises the possibility of
observational tests of actual predictions, something that is
implausible with 50–100 year forecasts—durations which exceed
working scientific lifetimes, of model credibility, and the interval
since about 1992 of global-scale ocean observations. The extent,

however, of actual predictive skill for the ocean even on the
decadal time-scale, much less the multi-decadal one, remains
obscure, with divergences of IPCC model extrapolations being a
troublesome sign. Some models are undoubtedly better than
others, but which those are, and which fields are well-calculated,
remains unknown. Branstator and Teng (2010) review much of
the existing discussion.

Almost all studies of oceanic, and its potential in climate,
predictability have been based upon model calculations, and
these have generally led to optimistic inferences (e.g., Msadek
et al., 2010). Some modelling studies have, however, led to more
cautious conclusions. For example Bingham et al. (2007) found
little decadal meridional correlation between large-scale trans-
port characteristics—implying that any predictive skill in one
region would have little impact on larger scale, climatically
important, components. In a study of the impact of noise
disturbances on the meridional overturning circulation (MOC),
Zanna et al. (2011, 2012) found, for an idealized configuration,
that so-called non-normal error growth, particularly from small
changes at depth in subpolar regions, would limit MOC predictive
skill to considerably less than one decade.

In broader terms, predictability of the changes of any physical
system involves several sub-elements, including: the extent to
which boundary conditions are predictable; the degree to which
variations arise from internal fluctuations with fixed or known
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boundary conditions; and the degree to which that internal
variability is fundamentally linear or nonlinear. In particular,
any discussion of oceanic predictability confronts the awkward
fact that the ocean tends to react, rapidly and energetically, to
shifts in the overlying atmosphere, particularly to changes in the
wind-field, most visibly in its upper reaches and often with little
or no spatial correlation. (The most rapid response is the baro-
tropic one, which is almost instantaneous over the whole water
column.) A literature has emerged showing the coupling of the
North Atlantic circulation to the North Atlantic Oscillation (NAO,
or Arctic Oscillation, AO) index; see e.g., Deser et al. (2010). Some
of the most important elements of the ocean circulation, as they
affect climate, such as the sea ice cover, or sea surface tempera-
ture (SST) are greatly modified by changing wind systems, and
they in turn, modify the atmosphere. This inference directs
attention to the more central question of whether the atmosphere

is predictable on decadal time scales. No discussion is provided
here of the probability that externally imposed finite amplitude
shifts will occur, such as the catastrophic collapse of the West
Antarctic Ice Sheet (WAIS) and its numerous consequences.

The purpose of this paper is to explore some of the simpler
aspects of the ocean prediction problem employing, primarily,
observations. The focus is on changes that are assumed, absent
strong evidence to the contrary, as arising from intrinsic ocean
variability, rather than that induced by global warming or other
external drivers. Because there exist so many possible predictable
elements, we arbitrarily focus first on sea surface temperature
(SST), and then on the meridional overturning circulation (MOC)
as exemplary of many of the issues. Attention shifts to the most
stable components embodied in the oceanic baroclinic structure.
Simple theory (Anderson et al., 1979; Veronis and Stommel, 1956)
shows that, short of catastrophic external disturbances, and out-
side of the equatorial band, basic characteristics such as the
thermocline depth and temperatures can be modified signifi-
cantly only over many decades.

Notwithstanding several claims for the existence of major
shifts in the ocean circulation, there is no observational evidence
in historical times of observed changes in basin-scale or larger
basic oceanic stratification or transport properties that lie beyond
what are best labelled ‘‘perturbations’’ and for which linearization
about a background state is a useful starting assumption. One can
compare e.g., the RRS Challenger (Tizard et al., 1885) hydro-
graphic section, New York to Puerto Rico, to recent sections
nearby—without detecting any qualitative change beyond that
expected from eddy noise. Rossby et al. (2010) note that no
detectable shift in mid-latitude Gulf Stream properties has
occurred over the last 80 years. It does remain possible that
comparatively small changes in e.g., sea surface temperature or
sea ice cover, can generate major regional or global atmospheric
climate shifts—but if the oceanic component can be treated as
essentially one of linear dynamics, a substantially simplified
oceanographic problem is the result.

The onset or suppression of such small spatial scale phenom-
ena as rates, regions, and water mass properties of convective
regions are almost surely important to prediction skill over long
times as water mass production slowly accumulates. Convection
and related processes would generally have a nonlinear
component—as they depend upon threshold-crossing physics.
Whether any existing nonlinear ocean model can reliably forecast
such shifts is unknown. In any case, Gebbie and Huybers (2011)
show that surface sources of abyssal ocean waters are far more
widely distributed geographically than is conventionally believed.

If the perturbation depiction has any merit, it leads to the
question of whether there is any linear forecast skill. If the answer
is ‘‘yes’’, then any nonlinear approach e.g., through particle filters,
large ensembles, or simple runout of the underlying GCM would

have to exhibit a significantly increased skill-level relative to the
linear ones to justify the added expense. If the answer is ‘‘no,’’ that
there is no linear skill, one is led to understand the central physics
question of how the nonlinear system might be able, nonetheless,
to produce a significant improvement? In any case, as for most
problems, it is worth exploring linear approximations before
moving on to more complex forms.

Theoretical prediction skill is not meaningful unless it is
coupled with a discussion of the ability to detect it. Thus for
example, a prediction that the meridional overturning circulation
will weaken by 1 Sv in 10 years might be correct, but if neither
the present nor the future values can be determined to that
accuracy, at best one could say that the future value will not be
distinguishable from the present one. Observational detection
accuracy is a function of the scope and nature of the observation
system, and of the structure of the variability noise in the ocean.
Although it is touched on only tangentially here and is rarely
discussed elsewhere, this issue of detectability is an essential
ingredient in any useful discussion of forecast skill—and deserves
study in its own right. A closely related, also rarely discussed,
question has already been alluded to: what magnitude of change
would be of any practical climatic significance?

In proceeding, another difficult question concerns those ele-
ments one is trying to predict, and why? Myriad choices are
phenomenological (sea surface temperature, sea level, meridional
overturning, etc.), geographical (western North Atlantic, tropical
eastern Pacific), seasonal (winter time SST versus summer time),
and time horizon (SST with a one month lead time can be of
intense interest to a weather forecaster, while the MOC state may
be of interest only on 100þ year scales and then only to
scientists). Here two fields of interest to different communities
(North Atlantic SST and the Atlantic MOC), are chosen, simplified
as far as possible, and the methodologies sketched that can be
applied in seeking more definitive answers.

Linear predictability is the story of correlations of fields in
space and time and thus their estimates come to play the central
role here. The observation-oriented approach, given the extre-
mely limited duration of large-scale oceanic observations relative
to a multi-decadal requirement, leads to the inference that one
can hardly do more than state the problem. Resort to models can
and is being made, but the same data duration limitations
preclude real model tests.

2. An ocean state estimate

To proceed as best we can, the ocean state estimate ECCO-
GODAE, v3.73, is used. This estimate is discussed in detail by
Wunsch and Heimbach (2007) and Wunsch et al. (2009), and in
other papers listed on the website http://www.ecco-group.org.
For present purposes, a sufficient description is that this state
estimate is a near-global one over 16 years, from a least-squares
fit using Lagrange multipliers to the comparatively large oceano-
graphic data sets that became available beginning about 1992 in
the World Ocean Circulation Experiment and later. Adjustable
parameters include initial conditions and all of the meteorological
forcing functions. The solution used is from this adjusted, and
freely running, model. A partial discussion of the time-mean of
the estimate can be found in Wunsch (2011); the character of that
mean relative to dynamical equilibrium does have implications
for predictability, and which will be touched on at the end.

A terminology, ‘‘state estimate,’’ is used here to distinguish the
result from estimates based upon versions of meteorological
forecast techniques (‘‘data assimilation’’)—which lead to products
with physically impossible jumps and without global conserva-
tion principles. The results here are primarily governed by
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observations, distinguishing them from the pure model runs:
Over the vast bulk of the oceans, the estimate is in a slowly
time-evolving, volume and heat-salt-conserving, thermal-wind
balance, largely constrained by in situ hydrography, Argo float
profiles, and altimetric variability. It is thus a best-fit geostrophic,
hydrostatic balance, in which absolute velocities are determined
from the conservation equations subject to Ekman pumping and
other surface forcing. Note that, among other data sets, monthly
estimates of SST by Reynolds and Smith (1995) were used.

Sixteen years is an extremely short period over which to
determine multi-year or decadal predictive skill. The restriction
to that time period is dictated by the extreme paucity of oceanic
data prior to about 1992—when WOCE was underway. Ocean
state estimates over intervals before 1992 (e.g., Wang et al., 2010)
are from nearly unconstrained ocean models. Furthermore, the
meteorological forcing fields used, even the most recent ones,
have known major errors; see e.g., Bengtsson et al. (2004) or
Bromwich et al. (2007).

Because of the short-duration, a comparison will be made to
the longer interval (28 years) Reynolds and Smith (1995, hereafter
RS) SST estimate used, separately, without the intervening ECCO
system. Such estimates are, however, not available for other fields
of interest (the meridional overturning, the corresponding ocea-
nic heat transports, etc.), and for them the state estimates must be
used. The even-longer historical reconstructions of SST obtained
prior to the arrival of globally orbiting satellites are also avoided
here, as the space–time sampling errors are far worse.

3. Sea surface temperature (SST)

SST is always of central interest to meteorologists and provides
a convenient starting point for this investigation despite its being
one of the most volatile and complex of all oceanic fields.
Vinogradova et al. (submitted for publication) discuss the global
behavior of SST (particularly its rate of change) in the ECCO
solutions. Fig. 1 displays the time-mean SST over the 16-year
duration of the ECCO estimate.

Woollings et al. (2010) have discussed elements of atmo-
spheric storm track behavior resulting from greatly increasing
the SST resolution in the Gulf Stream region—where atmospheric
cyclogenesis is thought to be most pronounced. The 11 version of

the ECCO model does not have sufficient resolution to reproduce
the details of the Gulf Stream south of New England, but it does
do a reasonable job further north and east—in the sense of
producing an acceptable misfit to the data. Here the initial region
of generic discussion is the small area east of the Grand Banks
depicted in Fig. 1, and which is close to being the eastern half of
the Woollings et al. (2010) region of interest. For the area (which
will be referred to as the ‘‘Grand Banks Box’’ or GBB, and denoted
with a subscript G), the spatial average, TGðtÞ, is formed and is
plotted in Fig. 2. The present focus on a small region contrasts
with the notable effort by Davis (1976) directed at the largest-
scale features in the Pacific Ocean.

The time average of TGðtÞ is /TGðtÞS¼ 9:673:2 1C. A simple,
and perhaps even useful, prediction of the temperature is its
mean. In the present case, the annual cycle is so visually apparent
(not true of most oceanographic variables), that one is immedi-
ately led to a discussion of its predictability. To the degree that it
is purely periodic, one can extrapolate indefinitely into the future.
On the other hand, every seasonal cycle differs at least slightly
from every other one, and hence predictive skill will be imperfect.
Fig. 3 displays the periodogram of TGðtÞ, showing that the annual
cycle typically has about 90% of the variance over 16 years, with a
smaller contribution from the semiannual and higher harmonics.
At this resolution, there is a sharp peak at the annual period, of
bandwidth less than the resolution limit of 1 cycle/16 years,
meaning that it is indistinguishable from a pure sinusoid. Note,
however, that the background energy surrounding and under this
peak is not negligible and this energy prevents perfect prediction
of that component. (Methods exist, not necessary here, for
predicting slowly changing annual cycles; e.g., Hannan, 1970.)

Using least-squares, the annual cycle and its first three
harmonics were removed from the record, leaving a residual,
T 0
GðtÞ, shown in Fig. 4, and producing an annual cycle amplitude of

4.370.23 1C (the error is the formal one from the least-squares
residuals). The variance of the complete record is 10.2 1C2, of
which the deterministic annual cycle (and three overtones)
accounts for 9.4 1C2 or 93% (see Table 1). Variance dominance
by the annual cycle is a challenge to any model attempting to
calculate either it, or the small deviations from it—should its
details change with climate. Of the residual 7%, most (about 5% of
the total variance) lies in periods longer than one year. Discussion
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Fig. 1. Sixteen year time mean sea surface temperature (SST, in 1C) from the

ECCO-GODAE estimate in the North Atlantic. Small white square, called the Grand
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Fig. 2. The Grand Banks Box (GBB) area average temperature TGðtÞ (solid curve),

the best-fitting annual cycle including its first three harmonics (dashed), and the

monthly residuals of the annual cycle (dotted). Start is 1992.
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of prediction now requires separating the problems at interannual
and intra-seasonal time scales.

3.1. A formalism

With the removal of the annual cycle and its harmonics, as well
as the time-mean, the residual time series, T 0

GðtÞ, can be assumed
indistinguishable from a weakly stationary linear random pro-
cess.1 Many techniques exist for their prediction, and the literature
is extremely large. Useful summaries can be found in Robinson
(1981), Hamilton (1994), Nelles (2001), Box et al. (2008), Storch
and Zwiers (2001), and Priestley (1982, Ch. 10) among many

others. General developments are associated with the names of
Wold, Kolmogoroff, Wiener, Levinson etc., but the most common
formulation is through the development of autoregressive models
of order N ðARðNÞÞ, moving averages of order M ðMAðMÞÞ, and
combined models ðARMAðN,MÞÞ, and their generalizations to non-
stationary and nonlinear processes. Davis (1976, 1978, 1979)
provides excellent summaries of climate applications.

These linear methods, when new, were applied with a notable
lack of success to weather and stock market prediction. With
understanding of the chaotic nature of weather, the result is
unsurprising. Rumors persist that significant amounts of money
can be made using these methods in the stockmarket over
minutes to hour time-scales, but on longer times the stockmarket
is not a stationary linear system. The present effort thus could be a
quixotic one—except that the degree to which, and which ele-
ments of the ocean circulation are chaotic on decadal time scales,
remains unknown. In any case, as argued above, there is little
evidence of large-scale deviations from slight perturbations in the
observed circulation, and linearity is a plausible starting point.

Here we will use primarily the AR and MA formulations (briefly
summarized in Appendix A) although the calculations are done in a
slightly unorthodox manner to more directly emphasize the under-
determined nature of the problem. Consider any zero-mean time
series variable, xðtÞ, which initially will be T 0

GðtÞ. Suppose, to provide a
specific example, that there exist L observations, including the
present, and that it is indistinguishable from an AR(2) process:

xðtÞ ¼ a1xðt�1Þþa2xðt�2ÞþeðtÞ, ð1Þ
where a1,a2 are unknown regression constants and eðtÞ is near-
Gaussian white noise of zero mean and variance s2

e . Unless otherwise
stipulated, t, denotes the present time, and the time-steps, Dt are
implicit in all expressions. The coefficients in Eqs. (1) are in practice a
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Fig. 3. (a) Periodogram of TGðtÞ for the ECCO estimate (dashed) and longer (Reynolds and Smith, 1995) time series (solid curve). (b) Cumulative integral of the periodgrams

in (a) normalized to a sum of 1, so that the dominance by the annual peak in both cases is clear. (c) Spectral estimates for both time series after removal of the annual cycle

and its harmonics. The annual peak is so narrow as to be indistinguishable at this resolution from a pure sinusoid. At low frequencies, a power law of frequency to the

power �2:5 is approximately correct.
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Fig. 4. Monthly values of T 0
GBBðtÞ, (start is 1992) residual of the area average

GBB SST, after removal of the annual cycle and its harmonics. The visual trend, if

secular – meaning extending far beyond the record length – contributes to the

apparent predictability as it is here treated as part of a red noise process.

(Repeated from Fig. 2.)

1 Weak, or ‘‘wide-sense,’’ stationarity requires that the mean and second

moments of the time series should be time-independent.
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set of simultaneous equations for the unknown a1,a2,eðrÞ:
xðtÞ ¼ a1xðt�1Þþa2xðt�2ÞþeðtÞ,
xðt�1Þ ¼ a1xðt�2Þþa2xðt�3Þþeðt�1Þ,
xðt�2Þ ¼ a1xðt�3Þþa2xðt�4Þþeðt�2Þ,

�
�
xðt�ðL�3ÞÞ ¼ a1xðt�ðL�2ÞÞþa2xðt�ðL�1ÞÞþeðt�ðL�3ÞÞ ð2Þ

for L�2 equations in L unknowns (a1,a2, and L�2 of the eðrÞ).
Re-write Eq. (2) in standard matrix vector notation as

Ex¼ y, E¼

xðt�1Þ xðt�2Þ 1 0 � 0 0

xðt�2Þ xðt�3Þ 0 1 � 0 0

� � 0 0 � 0 0

� � � � � � �
xðt�ðL�2ÞÞ xðt�ðL�1ÞÞ 0 0 � 0 1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
,

x¼

a1

a2

eðtÞ
eðt�1Þ

�
eðt�ðL�3ÞÞ

2
6666666664

3
7777777775
, y¼

xðtÞ
xðt�1Þ
xðt�2Þ

�
�

xðt�ðL�3ÞÞ

2
6666666664

3
7777777775

ð3Þ

a formally underdetermined problem and which can be solved in
numerous ways, including those commonly used in regression
problems (e.g., Box et al., 2008; Priestley, 1982). The present
formulation as a set of simultaneous equations differs from conven-
tional least-squares (Priestley, 1982, p. 346) only in treating the eðrÞ
as explicitly part of the solution, rather than as residuals of the
formally over-determined problem for a1,a2 alone. Here, for several
reasons, we choose this depiction (Wunsch, 2006): the formal
regression problem, when many more physical variables are reason-
ably introduced (e.g., the SST time series at all latitudes, or the wind
field), rapidly becomes very underdetermined even in the conven-
tional formulation; least-squares makes simple the computation of
uncertainties in the parameters ða1,a2,eðrÞÞ; and one can easily ‘‘color’’
the noise eðtÞ either by modification of the identity matrix appearing
in E (which would make it an ARMA), or by introducing column
weighting (solution covariance) matrices. Extension to arbitrary order
AR processes is readily carried out. The normal equations governing
the least-squares solutions of Eq. (3) involve the sample autocovar-
iances of the x, and are known as the Yule-Walker equations.

For convenience in prediction, it is helpful to know that any
stationary univariate AR can be converted into an MA, of form,

xðtÞ ¼
X1
p ¼ 0

bpeðt�pÞ ¼ eðtÞþb1eðt�1Þþb2eðt�2Þþ � � � : ð4Þ

For known ai, the bi can be obtained by algebraic long division:

1þb1zþb2z
2þ � � � ¼ 1

1þa1zþa2z2þa3z3þ : :
ð5Þ

and vice-versa. The bi can also be determined directly without
first calculating the ai. The MA form produces the t-ahead
prediction error (PE) as

ð ~xðtþtÞ�xðtþtÞÞ2
D E

¼ s2
e

Xt
p ¼ 0

b2p , b0 ¼ 1 ð6Þ

the tilde denoting the prediction. This equation is obtained by
substituting xðtþtÞ into the left-hand-side of Eq. (6) and replacing
the unknown and unpredictable eðtþ1Þ, . . . ,eðtþtÞ by their zero-
means. If the bi are sufficiently small, there will be rapid
convergence to the asymptote of the variance of xðrÞ:
/x2S¼ s2

e
P1

p ¼ 0 b
2
p . Like an N-order AR, any practical MA will

have a finite order, M. Generally speaking if M is small, N will be
large, and vice-versa, and with the trade-off becoming part of the
discussion of representational efficiency. Note that stationarity,
which we are assuming, requires that the polynomials in Eq. (5)
should both be convergent when 9z9¼ 1 (they are ‘‘minimum
phase’’ in the signal processing terminology). Expected prediction
error cannot exceed the variance of the time series—providing an
upper bound on the error from prediction by the mean value.

Linear predictive skill for processes having a known power density
spectrum can be determined either by first computing the corre-
sponding autocovariance and proceeding directly to the Yule–Walker
equations, or more elegantly by using the Wiener–Kolmogoroff
spectral factorization method (see Priestley, 1982, Ch. 10 or
Robinson, 1981, p. 105). The spectral approach shows explicitly the
connection between linear predictive power and the degree of
frequency structure. A time series with a flat (white) spectrum is
unpredictable at any lead-time, t, except for its mean value;
structured spectra, including generic red noise, correspond to some
additional linear predictive capability; and line spectra (pure periodi-
cities) have infinite predictive time horizons for that component.
Many time series in nature are a mixture of these and other
characteristics, and the fraction of the total variance that is predict-
able, and over what lead time, depends upon the details of the
spectrum.

4. Months-ahead prediction

This autoregressive machinery is now used to estimate how
predictable is T 0

GðtÞ (Fig. 4) about its mean, when sampled at
monthly intervals? The red spectrum (an approximately �2.5
power law) of the residual (Fig. 3) shows that there is some
predictability, dominated by the lowest frequencies. Because
monthly and interannual physics are likely to be distinct, the

Table 1

Summary statistics. Variances are either in oC2 (for SST) or Sv2 for the meridional overturning circulation (MOC). PE is the prediction error. The record variance is not the

sum of the component variances because the monthly values include the low frequency variability. Some prediction error values are omitted as being of no particular

interest. GBB denotes the Grand Bahama Bank square, and ECCO is the consortium Estimating the Circulation and Climate of the Ocean. MA(M) indicates that the prediction

error was deduced by converting the AR(1) model into an MA of order M.

Variable GBB SST (ECCO)1C2 GBB (Reynolds & Smith)1C2 MOC at 201S Sv2 MOC at 251N Sv2 MOC at 501N Sv2

Total record 10.2 9.9 6.5 10.2 10.5

Annual cycle 9.45 (93%) 8.8 2.1 2.9 3.6

Record w/o annual cycle 0.78 0.7 (7%) 4.4 7.2 7.0

Annual averages 0.50 (5% of the total) 0.36 (3.6%) 1.9 2.2 1.8

One month PE 0.2 0.3 (MA(3) and MA(10)) 2.4 MA(4) 6.5 MA(4) 5.6 MA(4)

Six month PE 0.6 0.7 – – –

One year PE 0.2 (AR(1) with trend) 0.05 (MA(4)) 0.5 MA(4) 0.2 MA(4) 0.8 MA(4)

Three year PE 0.4 0.3 – – 1.5
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question will be attempted in two stages: monthly mean samples
and monthly forecasting and, annual mean samples and annual
forecasting.

Because the solution to Eqs. (3) produces the same result as
the conventional methods, standard statistical tests (e.g., Ljung,
1999; Priestley, 1982) can be used to infer that T 0

GðtÞ can be
represented as an autoregressive process with order between
3 and 6 (the tests differ). Because an AR(3) captures almost as
much of the variance as do the higher order models, and is the
simplest, we choose that as a reference case. The result, from
solving the least-squares problem is

T 0
Gðtþ1Þ ¼ 0:92ð0:71ÞTðtÞ�0:29ð0:1ÞTðt�1Þþ0:22ð0:07ÞTðt�2Þþeðtþ1Þ,
Dt¼ 1 month,

where the parenthetical number is the standard error, with
~s2
e ¼ 0:2 1C2.
Directly estimating the MA form produces, alternatively,

T 0
GðtÞ ¼ 1:0eðtÞþ0:92eðt�1Þþ0:556eðt�2Þþ0:465eðt�3Þþ0:469eðt�4Þþ � � �

and which is slowly convergent. These MA forms were used to
calculate the prediction error, which grows month-by-month
(Fig. 5, Table 1) ultimately asymptoting after about 8 or 9 months
to the full variance of T 0

GðtÞ. (Recall that the total variance after
removal of the annual cycle and its overtones is about
0.7 1C2—and represents the maximum prediction error relative
to the mean.) One might reasonably infer that there is useful (at
the level of a few tenths of a degree error) linear predictive skill
out to 4 or 5 months in the future, but not much beyond. Whether
such skill is useful depends upon the purpose of the prediction.

4.1. Comparison to the satellite record

Using the Reynolds and Smith (1995, RS) fields from this area,
one can extend a similar SST record out to 28 years. Details are
not shown here, but a summary statement is that while the
monthly results differ in detail from those found for the ECCO-
estimated record, there is no qualitative difference, except that
the apparent trend is more conspicuously reversing in recent
years (Fig. 6 and Table 1).

5. Interannual behavior

Interannual behavior of the record is highly problematic: 16

samples (annual means) is far too short to make much of any

inference about correlation and prediction ability. The textbooks
already cited show how to calculate standard error statistics for
the AR or MA coefficients, ai,bi, etc., and which depend directly on
the autocovariances—assuming roughly Gaussian behavior. To
make the issue concrete, however, a small ensemble example for
an AR(1) – the structure with the fewest possible parameters

other than white noise – is displayed in Appendix B and the
instability of the estimates from such small samples is obvious.
We proceed here by making the very strong assumption that the
16-year estimated covariances are accurate, restricting the repre-
sentation to an AR(1), and interpreting the results as indicative
only of orders of magnitude.

5.1. Predicting annual averages of T 0
GðtÞ

Fig. 6 shows the annual averages, T 0
GðtÞ, of the residuals of T 0

GðtÞ
for both the state estimate and the RS values. The state estimate
shows a visible trend and a zero-order puzzle is the question of
whether that trend is a true secular one induced by global
warming (defined here as extending uniformly far beyond the
record length), or a mere low frequency fluctuation manifested by
red noise (see Wunsch, 2011, for more discussion of the difficul-
ties of trend determination, and further references). Here it will
arbitrarily be assumed that this signature is indeed a component
of red noise, as the longer RS record suggests, and thus will
contribute to the predictive skill of the interannual signal.

The one-year-ahead prediction error is approximately 0.03 1C2

rising to 0.2 1C2 after about 4 years (see Fig. 7 and Table 1). If a
linear trend is first removed, neither the order nor the prediction
error (PE) are changed significantly. The RS results, not discussed,
are very similar. All that should be inferred is that linear
predictive methods suggest some skill out to about 5 years with
errors of a few tenths of a degree. Whether any more sophisti-
cated system can do better remains, as of this writing, unknown.

5.2. Predictability—a caveat

The reader is reminded that this study is based upon a
‘‘hindcast’’ skill, meaning that the same data are used to deter-
mine the time series structure as are used to test its prediction
skill. Hindcast skill is inflated relative to true forecast skill by a
significant amount. Davis (1976) has a clear discussion of the
issue. As he notes, an accurate estimate of the skill inflation is
only simple with large-sample statistics and, in particular, for
interannual behavior, the estimated SST used here is a very small
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Fig. 5. Prediction error out to 6 months for T 0
GBBðtÞ. Note that the variance of the

monthly means of T 0
GBBðtÞ is 0.7 1C2, which is the maximum prediction error.
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sample. It is useful, in many cases, to withhold part of the data set
as a way of emulating an independent record for testing skill,
perhaps by dividing it into two pieces—an identification section
and a test section. But the ‘‘red’’ nature of the spectra observed
shows that there will exist significant correlations between the
used and withheld portions of the time series, and again a
rigorous calculation becomes difficult. We leave the discussion
at this point—as a warning that estimates here, particularly of the
interannual forecast skill, are optimistic ones.

6. The meridional overturning circulation (MOC)

That the Atlantic MOC has become the center of so many
studies, theoretical and observational, is largely the result of the
propagation of ‘‘conveyor belt’’ or ‘‘ribbon’’ cartoons of the
circulation, whatever their physical reality might be. The MOC
does provide a rough measure of the intensity of the circulation in
data and models, although as a zonal integral, there is no simple
relationship to flow magnitudes. MOC connection to climate
variability is unclear, however, and at best indirect. In any case,
determining the volume or mass transport in the North Atlantic
as a whole can be done only by use of a model. A number of
papers (e.g., Lorbacher et al., 2010) claim the existence of useful
covariances between MOC values and some observables such as
sea surface height, except these are also untested model results.
Another immediate issue is the definition of what is meant by the
MOC, as the literature contains usages calculating it at very
different latitudes, integration depths, and averaging times. Here
we take advantage of the global ECCO estimation system to define
it – in the Atlantic Ocean – as a function of all latitudes from the
Cape of Good Hope (about 301S) northward to the northern limits
of the present model (79.51N). It is, more specifically, calculated
as the zonal integral at monthly intervals, continent to continent,
of the meridional velocity, the density being treated as constant,
consistent here with the Boussinesq version of the model:

Vðy,z,tÞ ¼
Z xLðyÞ

0
vðx,y,z,tÞ dx ð7Þ

(in practice, spherical coordinates are used). At any latitude, at
any time, the MOC is then arbitrarily defined as the maximum of
the integral from the surface to a time and space varying depth

zmaxðyÞ,

Vmocðy,tÞ ¼ max
zmaxðy,tÞ

Z 0

zmaxðy,tÞ
Vðy,z,tÞ dz: ð8Þ

Fig. 8 displays the time average value, /Vmocðy,tÞS as well as the
depth, zmax, where, on average, the maximum is reached (Fig. 9). A
geographical maximum of about 16 Sv is reached at northern
mid-latitudes and drops rapidly with latitude beyond about 501N.
At the present time, it is not possible to provide a useful
uncertainty estimate for these values, but the general structure
– mass-conserving thermal wind-balance – appears very robust
to both variations in the data base and in model parameters. The
meridional flows, V, were discussed in some detail by Wunsch
and Heimbach (2006, 2009).

How much does Vðy,z,tÞ vary with time? Jayne and Marotzke
(2001) infer, consistent with what is found here, that the seasonal
volume variability arises primarily in the surface Ekman layer.
Fig. 10 shows the meridional transport January anomaly values
every 2 years, indicating variations of up to about 4Sv, but only
very locally—mainly in the vicinity of the equator, and at about
401N. The variations in the anomaly of Vmocðy,tÞ are shown in
Fig. 11 at three latitudes, where the integration depth is kept fixed
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at zmocðyÞ, that is not time-varying. These integrals have a range,
except in the far north, of about 75 Sv and are noisy on monthly
time scales. Temporal variances of V at all latitudes are depicted
in Fig. 12. The power densities for three latitudes are shown in
Fig. 13. At most latitudes, there is a significant annual cycle and
its harmonics, especially in the low-latitude Ekman layer. Other-
wise, the spectral densities are nearly white beyond the annual
period—and very unpromising for decadal linear predictability.
The smallest low frequency energy is found at 50.51N, a result
consistent with the linear dynamical behavior there requiring

much longer adjustment times. High latitude power densities are
dominated by the annual cycle and not by the interannual
variability (out to 16 years). In general, these spectra are ‘‘flat’’
by geophysical standards, being not very far from white noise.

Variances of the MOC, computed for the monthly means
over all 111 latitudes are 27 Sv2 ¼ ð5:1 SvÞ2 and the annual means
have variance 1:5 Sv2 ¼ ð1:2 SvÞ2 providing a rough idea of the
temporal variability and the observational challenge. At 50.51N
alone, the corresponding variances are 10:5 Sv2 ¼ ð3:2 SvÞ2, and
1:8 Sv2 ¼ ð1:3 SvÞ2.
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A small visible trend appears early on in the values at some
latitudes, a trend which disappears as one moves away from the
starting time. No data precede the start time of 1992; hence the
early years are much more weakly constrained than the later
ones—which are controlled in considerable part by the data
preceding the particular time of estimation.

Fig. 14 shows the correlation coefficient matrix, Rij, between
the annual mean variations in the MOC at all latitudes, i,j. Making

the mildly optimistic assumption that each of the annual mean
values is an independent variable at any latitude, at 95% con-
fidence, one must have 9Rij940:5, approximately, to distinguish
the value from zero. A change takes place across about 35.51N
where all linear correlation is lost between values on either side
of that latitude (the approximate Gulf Stream position). The North
Atlantic subtropical gyre shows some marginally significant
correlation with the South Atlantic, but no correlation with the
North Atlantic subpolar gyre (consistent e.g., with the pure model
results of Bingham et al., 2007) except for a slight hint of a finite
relationship between 751N and the South Atlantic. Within the
subtropical gyre, correlation decays to insignificant levels beyond
separations of about 201of latitude. (A more elaborate analysis by
E. Haam, personal communication, 2011, using a Monte Carlo
simulation (Haam and Huybers, 2010), suggests that the small
band of higher correlation between about 751N and the South
Atlantic, visible as horizontal and vertical stripes in Fig. 14, is
statistically significant. An oceanic physical mechanism for ‘‘skip-
ping over’’ the intermediate latitudes is not obvious, and is
probably due to the noisiness of the intervening ocean.

A problem with correlation analyses is that they lump together
all time scales, often having very diverse physics. One might
hypothesize that the low correlations found here are the result of
noisy high frequencies. To address this issue in part, Figs. 15 and
16 show the coherence as a function of frequency between the
50.51NMOC and its values at 25.51N and 20.51S. They show, to the
contrary, that the only marginal coherence is at periods shorter
than 1 year (at the annual period the conventional statistics do−40 −20 0 20 40 60 80
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not apply because sinusoids are always coherent). Evidently (on
this decadal time scale), annual mean MOC determinations south
of about 351N carry no (linear) information about its behavior
poleward of that latitude at any frequency now testable.

The system could be searched for correlations. For example, it
is conceivable that there is correlation between the meridional
transports lying between some pair of isopycnals, at two different
latitudes, even though the total transport shows nothing signifi-
cant. If one searches a large number of possible combinations,
some apparently significant relationship will necessarily be
found. If there are 100 possible combinations, then using a 95%
level-of-no-significance with proper probability densities, about
5% should show apparent, but spurious, correlation. This direction
is not pursued.

6.1. Predicting the MOC

Monthly predictions of the MOC have no obvious utility and
they are not discussed here; only the annual means are now
considered. (Wunsch and Heimbach (2009) describe the annual
cycle of the MOC—and which is primarily a near-equatorial
phenomenon, extending to considerable depth.) Hypothetically,
one could imagine using each of the 111 time series at 11 latitude
spacing, with time lags of 1 year and longer, as regression
variables to predict e.g., the value at some specific latitude(s).
With 16 sample points at any fixed latitude, one would be seeking
the equivalent of the expansion of a 16-dimensional vector in 111
non-orthogonal vectors – as in Appendix C – a markedly under-
determined problem. Although we will return to this problem,
consider instead the better-determined one of predicting from the
present and past values at one particular latitude. As for SST, the
main problem is having only 16 samples.

The MOC at 50.51N is arbitrarily chosen as the initial target
prediction—on the basis of a large literature claiming that
modifications in the high latitude transports are a key climate
control parameter. This latitude is close to the one with the
largest defined MOC and is just south of the region where the
mean MOC declines very rapidly. Thus consider the problem of
predicting the MOC at 50.51N 1 year into the future, using the
calculated history at that latitude. The spectral estimate in Fig. 13
is not very different from white noise at long periods, and one
anticipates only some modest degree of prediction skill. Fig. 17
shows the error growth using an AR(1) deduced from the
measurements at 50.51N alone (and see Table 1).

Had there appeared significant correlations or coherences
between 50.51N and other latitudes, it would be reasonable to
seek predictive power from observed variations in the MOC at all
latitudes. The absence of such correlations shows that linear
predictability will be slight. Experiments using singular vectors
(not shown; Appendix C describes them), as expected did not
produce any useful outcome.

It is, of course, possible that the existing 16-year interval is
untypical of the longer-term behavior of the Atlantic Ocean and/
or that linear predictive skill would emerge with much longer,
multi-decadal or centenary, records, but these are purely spec-
ulative claims. The utility for prediction from existing duration,
geographically widely separated, field observations is doubtful.

6.2. Correlation with SST

Study of the MOC has often been justified on the basis that its
variability is linked to climate change, sometimes in truly dra-
matic fashion (‘‘hosing’’ and ‘‘shut-down’’). Thus the question
arises as to whether there is any relationship between the MOC
variations estimated here, and the SST of the region previously
discussed. One simple measure is the correlation coefficient
between the MOC and GBB SST variations, depicted in Fig. 18,
which repeats Fig. 14, but such that the last row and column now
represent the annual mean SST time series. The calculation is
shown for the case of the raw SST and where, also, its visible,
linear, trend was removed by least-squares. One might infer that
there is a marginally significant negative correlation between the
low latitude MOC (07101 latitude) and the GBB SST. The result is,
however, dependent upon the presence of the trend in SST, and
which destroys the assumption of annually independent changes.
Any inference of correlation is extremely fragile and not suppor-
tive of a relationship between MOC and SST on the time scales
accessible here. Determining whether there is such a relationship
on much longer time scales will have to wait on extended
observations.

7. Discussion

When the predictable part of the annual cycle is removed,
variability in regional SST and in the MOC of the Atlantic are
indistinguishable from those of stationary stochastic systems in
which predictability is the story of the covariance structure. It is
thus useful to compare the results for the MOC here. tentative as
they are, with the entirely different approach and inferences of
Msadek et al. (2010) as an example of a pure nonlinear model
approach. They concluded that the MOC is predictable with some
skill out to 20 years, using an unconstrained, coupled climate
model run for 1600 years. Apart from the very much longer
analysis time, their mean MOC is 25 Sv rather than the approx-
imate maximum of 16 Sv found here. Their MOC spectrum (their
Fig. 1) is steeply red from about 2 year periods to about 20 years,
culminating in a narrow-band spectral peak near 20 years. That
their inferred predictability is larger than found here, at about 20
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years, would be a consequence of their narrow spectral peak at
that period—if it is real. This prediction skill is likely primarily a
linear one, because low frequency narrow-band processes have an
intrinsic long memory—extended correlation times; as the peak-
width becomes narrower, one converges to a deterministic
component with an infinite prediction horizon. In contrast, the
spectra computed here tend to indicate a white noise behavior
beyond about 15-year periods with no indication of a narrow
band spectral process, although no definitive statement can be
made from the available observations.

This disagreement between the two sets of results focuses one
on the central conundrum of climate change studies: (1) It is
difficult to compare a 16-year data-constrained estimate to a
1600-year unconstrained one. (In their study of 136 years of
North Atlantic SST data, Tourre et al. (1999) did not report any
obvious 20 year spectral excess, although all the caveats about
data quality before the polar-orbiting satellite era will apply, and
even that recent system is highly imperfect.) Conceivably, the
present 16-year interval of the ECCO estimates is unrepresenta-
tive e.g., of the historical strength of the MOC, and one might
postulate that it was in the past more typically closer to the 25 Sv
of the Msadek et al. (2010) model than to the ECCO values of the
WOCE era. Also, the more nearly white spectrum that we infer
from the data at periods of a few years might be untypical of a
hypothetical much longer record. Was Benjamin Franklin’s Gulf
Stream different from ours? How does one know?

At the end of the day, the MOC strength, as a zonal-integral,
represents only the difference in transport between the north-
bound western boundary current transport, and the fraction
returned in the interior above, roughly, 1000 m. Its value can be
increased in at least two ways: (1) by strengthening both the Gulf
Stream transport and, proportionally, the upper layer return flow,
with the interior vertical partition remaining unchanged. (2) Leav-
ing the Gulf Stream transport unchanged, but by reducing the
relative fraction returning above 1000 m, volume conservation
being maintained by the corresponding increased flow below
1000 m. The physics of such changes are different, and probably
both possibilities occur. Paradoxically, an apparently weakened
MOC can be produced by increasing the relative strength of the
upper layer return flow and thus a weakened MOC does not
necessarily imply a weaker overall circulation. Further discussion
of such possibilities will be taken up elsewhere (Wunsch and
Heimbach, submitted).

A general comment, applicable also to the present results, is
that most models are much less noisy than is the real world,

either entirely lacking in the eddy field and internal waves, or
greatly underestimating them. In the present case (e.g., Kanzow
et al., 2009; Wunsch, 2008) and in calculations such as Msadek
et al. (2010), one should infer that all estimates of predictability
(or its relative, detectability) skill are probably upper bounds. The
modest predictability horizon found here is consistent with the
very different model-based approach of Zanna et al. (2012), even
without the presence of realistic noise processes.

Poor results for the fields discussed here does not mean that
the corresponding variable is not predictable: sometimes the best
and most useful prediction is just the sample mean, with a
standard error given from the variance of the variable. That is,
given observing system limitations, and the great oceanic noisi-
ness, the best prediction may well be that the field will be
indistinguishable from present values—and that estimate may
still be a useful one. A nonlinear method, one that was indepen-
dent of any linear space–time correlation, might well do better,
although the nonlinearity would have to be one operating on
statistical moments higher than the second. Note that methods
exist for transforming some nonlinear time series into linear
forms (e.g., Hamilton, 1994, etc.).

One can modify and extend the methods here in a large
number of ways. The singular value decomposition (see
Appendix C) is identical in its u vectors to the conventionally
defined EOFs, and emerges naturally as part of the least-squares/
regression problem. These individual orthogonal structures of the
variability have been used by Davis (1978), Zanna et al. (2012)
and many others. Generally speaking, any particular EOF (singular
vector) will have a fraction, depending upon the degree of spatial
correlation, of the total variance, and if it displays significant
predictability (e.g., Branstator and Teng, 2010), it will only be for
that fraction of the expected variance—perhaps large enough to
be useful to someone if its skill can be tested.

The dual (adjoint) model calculations of Heimbach et al. (2011)
represent a running linearization of the governing equations
about the time-varying state. Regarded as Green function solu-
tions, they can be used either directly in predictions, or as a guide
in choosing the relevant regressor fields, locations, and time-
scales. They do show the strong sensitivity of North Atlantic shifts
to disturbances in distant ocean basins at earlier times. On time
scales of decades and longer, variability in the Atlantic is a
summation of disturbances emanating from the entire global
ocean. No single region dominates the later changes in the North
Atlantic, and for understanding and prediction, a global, long-
duration observing system is required.
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Fig. 18. Correlation coefficient between the maximum MOC through time (annual means) with the GBB SST (left panel). The last row and column are the SST correlations.

Omitting the last row and column repeats the values in Fig. 14. Right panel shows the same results but with a linear trend removed from SST, thus reducing the

correlations. No values below magnitude 0.5 are statistically significant. (These correlations are with the MOC defined as integrated to the time-mean maximum depth.

Results with the time-varying integration depth are indistinguishable.)
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As noted in the Introduction, the present results apply only to
the temporally statistically stationary components. A major shift
in the controlling boundary conditions – such as a massive ice
melt event, or an increase in greenhouse gases – would render the
process non-stationary—changing its mean, and likely its higher
statistical moments as well. The issue for those interested in
decadal and longer predictability is whether those external
controls are predictable and whether they dominate the variance
contributed by what here is assumed to be intrinsic changes in
the ocean. Such external predictability, if it exists, is primarily
independent of purely oceanic processes and their long memory
components. A long memory has the consequence, however, of
producing changes today or in the future as the result of forcings
and fluctuations having occurred long ago (Heimbach et al.,
2011), greatly complicating the interpretation of ongoing
changes.

The results here have all been biased towards an optimistic
outcome: using the estimated fields both to determine the
optimal linear predictors and to test them; usually retaining
apparent trends; and by employing very large scale integrals
such as basin-wide transports. Consistent with the earlier study of
the linear predictability of the North Atlantic Oscillation (NAO;
Wunsch, 1999), little skill beyond a year is found. Major elements
of the ocean circulation are of course, predictable far beyond that
time interval: it is a very safe prediction that the thermocline
depth, the net heat content, etc. will be qualitatively unchanged
in the next decade and beyond. Given the nature of the basically
turbulent system, some quantitative change will inevitably occur,
but it may well remain undetectable—given the nature of the
existing observing system and the large natural noise.

In their comparison of three different model calculations of the
Atlantic MOC, Bingham et al. (2007) drew conclusions that are
broadly similar to those found here, albeit differing in the details.
They found essentially no correlation in their three models
between the MOC in the subpolar and subtropical gyres, but did
succeed in identifying a weak (relative to the overall variability)
lowest singular vector (EOF) representing a coupling of the two.
The duration of observations required to detect it was not
estimated, but would clearly be extremely long compared to
any existing records.

Lack of correlation seen between the subtropical and subpolar
regions can be understood in rather simple terms: as discussed
e.g., in Wunsch (2011) for the same state estimate, the dynamical
time scales for adjustment of disturbances grows very rapidly
with latitude beyond about 401, so that finding simple lag
correlations between gyres would be very surprising. Over 16
years, the subtropical gyre was found to be in near equilibrium
with the wind forcing, while subpolar regions were
not—consistent with the time-scale growth.

Climate change is a global phenomenon, integrating at any
given location changes originating from diverse regions of the
globe, not just locally, and the spatially de-correlating local
responses represent a summation over all times and space. If
there is a time-scale beyond which the MOC shows large
meridional coherences and/or coherence with SST as in the
conveyor ‘‘ribbon’’ cartoons, it appears to lie beyond the duration
of any existing record. Sustenance over many decades (Rossby
et al., 2005, is an example) of globally distributed, top-to-bottom,
observations is urgently required, although a ‘‘hard-sell.’’
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Appendix A. The vector least-squares approach to prediction

Scalar time series: Much of the conceptual underpinning of the
standard regression methods can be simplified through a vector-
least-squares point of view. The advantage is that least-squares
permits a very general, and flexible, method to deal with, among
other problems, the underdetermined problem of more regressors
than regressees, and introduces the empirical orthogonal func-
tions (EOFs) naturally via the singular value decomposition
(Appendix C). Nothing that follows is original, but is a heuristic
description of discrete stationary time series as discussed in
innumerable textbooks.

Consider a stochastic zero-mean anomaly, xðt¼ tnowÞ, where
tnow represents the instant in time when the value of x is known,
as are its past values, and one seeks to predict its future behavior.
The time-scale is chosen so that the interval is Dt¼ 1. Form a
vector from xðtÞ as
nðtÞ ¼ ½. . . xðt�qÞ,xðt�qþ1Þ, . . . ,xðt�1Þ,xðtÞ�T

that is constructed from its formally infinite past and terminating
at t¼ tnow. Let L be the actual number of observed elements,
including the one at the present time. Superscript T denotes the
transpose in the convention that, unless otherwise stated, all
vectors have column form. Define a second vector in which
everything is shifted to the right, dropping the most recent value

nðt�1Þ ¼ ½. . . xðt�qÞ,xðt�qþ1Þ, . . . ,xðt�2Þ,xðt�1Þ�T

and which of necessity, in practice will have only L�1 non-zero
elements. The collection of all such vectors,
nðt�pÞ ¼ ½. . . xðt�qÞ,xðt�qþ1Þ, . . . ,xðt�p�1Þ,xðt�pÞ�T is a generally
non-orthogonal set, noting that in observational practice the last
one, nðLÞ, will have only one non-zero element. This, and other,
observed long-lagged vectors will thus be poor approximations to
the theoretically defined semi-infinite vector.

Now consider another formally defined vector derived from
xðtÞ, xðtþtÞ as a semi-infinite one, t40,

nðtþtÞ ¼ ½. . . xðtþt�qÞ, . . . ,xðtþt�1Þ,xðtþtÞ�T

that is displaced in the opposite time direction relative to xðtÞ and
including the unknown future values

xðtþ1Þ,xðtþ2Þ, . . . ,xðtþtÞ:
nðtþtÞ is just another vector, and unless it is orthogonal to the
collection of known past vectors, nðt�pÞ,pZ0, one should be able
to at least partially represent it in those non-orthogonal vectors:

nðtþtÞ ¼ aðtÞnðtÞþaðtþ1Þnðt�1Þþ � � � þaðtþKÞnðt�KÞþeðtþtÞ,
KrL�1: ð9Þ

The aðtÞ are simply the coefficients of the vector expansion, and
for a stationary process would depend only upon t, and not t.
eðtþtÞ is an error representing any elements of nðtþtÞ that are
orthogonal to the expansion vectors (and which are the
t�lead� time ‘‘prediction error’’). Determining how far back into
the past, t�K , one should carry Eq. (9) is an important part of the
inferential process. Clearly as K approaches L, the number of zero
elements in the expansion vectors grows, and the particular
nðt�KÞ will be a poor representation of the true vector. One
prefers, K5L. Similarly, physical insight comes into the discus-
sion, as Eq. (9) is a finite difference equation and will typically be
an approximation to some partial differential system describing
the time (and space) evolution of the elements nðtþtÞ.
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The simplest case is K ¼ 1, and t¼ 1, and writing it out in full,
one has,

xðt�1Þ
xðt�2Þ

�
�

xðt�ðL�1ÞÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
a1þ

eðtÞ
eðt�1Þ

�
�

eðt�ðL�2ÞÞ

2
6666664

3
7777775
¼

xðtÞ
xðt�1Þ

�
�

xðt�ðL�2ÞÞ

2
6666664

3
7777775
: ð10Þ

or E1xþe¼ d, x¼ a1: ð11Þ

The maximum number of equations is L�1, involving the past
data as far back as xðt�ðL�1ÞÞÞ.

An alternative formulation is Eq. (3) in the text:

Ex¼ y, E¼

xðt�1Þ 1 0 � 0 0

xðt�2Þ 0 1 � 0 0

� 0 0 � 0 0

� � � � � �
xðt�ðL�1ÞÞ 0 0 � 0 1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
,

x¼

a1

eðtÞ
eðt�1Þ

�
eðt�ðL�2ÞÞ

2
6666664

3
7777775
, y¼

xðtÞ
xðt�1Þ
xðt�2Þ

�
�

xðt�ðL�2ÞÞ

2
6666666664

3
7777777775
, ð12Þ

which identifies the values of eðrÞ as explicit unknowns. Now
E¼ fE19Ig.

The conventional least-squares solution is (e.g., Wunsch, 2006)

~x ¼ ~a1 ¼ ðET
1E1Þ�1ET

1d¼ 1=L
PL�2

q ¼ 0 xðt�q�1Þxðt�qÞ
1=L

PL�2
q ¼ 0 xðt�q�1Þ2

, ð13Þ

which minimizes ~eT ~e. The one-step prediction error (PE) is,
~e ¼ d�E1 ~x. The tildes are used as a reminder that the solution is
an estimate. As in any other least-squares problem, one must test
the residuals, ~e, for a white-noise character. If ~e passes that test, it
is described simply by its variance, s2

e . Ordinary least-squares
(e.g., Lawson and Hanson, 1995; Wunsch, 2006) produces esti-
mates of the expected error in ~x, etc. Quantities such as
ð1=LÞPL�1

q ¼ 1 xðt�qþ1Þxðt�qÞ in Eq. (13) are the empirical auto-
covariances of nðtÞ and the most conventional approach to these
problems (e.g., Box et al., 2008; Priestley, 1982) formulates the
problem explicitly by invoking the covariances—which are the
dot (inner) products of the expansion vectors in the Yule–Walker
equations. To the extent that the autocovariances are not inde-
pendently known e.g., from a theory, most estimation algorithms
in practice resort to forms of least-squares. Note that vectors
generated from white noise sequences are orthogonal. The
Kolmogorof–Wiener–Levinson approach is recovered by letting
L-1, that is, the theory assumes the infinite past is known, while
practice copes with a finite observed past.

Suppose ~e fails the white noise test. The obvious remedy
would be to try using a second vector, nðt�2Þ, in the expansion
to remove more of the structure, so that,

xðt�1Þ xðt�2Þ
xðt�2Þ xðt�3Þ

� �
� �

xðt�ðL�2ÞÞ xðt�ðL�1ÞÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

a1

a2

" #
þ

eðtÞ
eðt�1Þ

�
�

eðt�ðL�3ÞÞ

2
6666664

3
7777775
¼

xðtÞ
xðt�1Þ

�
�

xðt�ðL�3ÞÞ

2
6666664

3
7777775

ð14Þ

represents an AR(2) process, which in scalar form is

xðtÞ ¼ a1xðt�1Þþa2xðt�2ÞþeðtÞ: ð15Þ

Suppose a satisfactory (acceptable) fit has been found and so that
one has estimates, ~a1, ~a2, and ~s2

e . Omitting the tildes, but
remembering always that all parameters are estimates, one can
consider the one-step ahead prediction problem. In Eq. (15)
everything is known at time tþ1 except eðtþ2Þ, which has
zero-mean. Thus the best prediction is

~xðtþ1Þ ¼ a1xðtÞþa2xðt�1Þþ0

and whose mean square error would be /eðtþ1Þ2S¼ s2
e . The

two-step ahead prediction would be

~xðtþ2Þ ¼ a1 ~xðtþ1Þþa2xðtÞþ0

and for which the prediction error variance is ða21þ1Þs2
e . This

process can be continued indefinitely, the prediction error var-
iance increasing monotonically with the prediction horizon, but
never exceeding the variance of xðtÞ itself: the worst prediction is
~xðtþtÞ ¼ 0 and whose expected error is the variance of x:

/xðt0Þxðt0ÞS¼ Rð0Þ ¼ s2
e ð1�a2Þ

ð1�a21�a22Þð1�a2Þ�2a21a2
:

See the references. Alternatively, one can transform xðtÞ into the
MA form as described in the text and which for prediction is more
convenient.

The formal coefficient matrices E1 or E involve the observed
xðtÞ and inevitably contain errors. Linear least-squares treats E as
perfectly known, but many methods are available for discussing
and remedying the bias and other errors introduced by errors in E,
leading to nonlinear methods (e.g., Total Least Squares; Van
Huffel and Vandewalle, 1991), but which are not discussed here.

Appendix B. An ensemble AR(1)

An artificial AR(1), xðtþ1Þ ¼ 0:3xðtÞþeðtÞ, was generated for
160 samples (10-times the now available record length). The
corresponding MA form is bj ¼ 0:3j, j¼ 0,1, . . .

Thus a1 is known exactly, as is eðtÞ (generated using a pseudo-
random Gaussian algorithm with variance of 1). The resulting
record was then divided into 10 segments each of 16 samples
(i¼1–16), and the segments each solved for ~aðiÞ

1 and the estimated
eðiÞðtÞ. Record variance is /xðrÞ2S¼ s2

e=ð1�a21Þ. Fig. 19 shows the
results of this experiment: Values of the estimated ai and
equivalently, the bi, can and do differ substantially from the
known exact values and the calculated prediction error, measured
either as one-time step ahead, or as the segment record variance,
varies by more than a factor of 3 from one realization to the next.
They do not vary by an order of magnitude, and so one might
interpret any results with the real records (below) as providing an
order of magnitude estimate.

The variability of these estimates is known from the textbook
discussions to depend upon the magnitude of a1 (and that in turn
depends directly upon the lag-one covariance). With a1 ¼ 0:3,
only about 9% of the variance from one time step to the next is
correlated. Fig. 20 shows similar results for a1 ¼ 0:9 where about
80% of the variance would be so correlated. The coefficients
determined from each realization are more stable, but the pre-
diction error (PE) growth (Fig. 21) with time is more rapid
because small errors will persist longer, and the variance of xðrÞ
is also greater, being proportional to 1=ð1�a21Þ.
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Appendix C. Vector AR and singular value decomposition

Consider now a generalization whereby xi0 ðtÞ is e.g., the MOC
at latitude i0, and one makes the plausible assumption that it is
correlated with, and hence predictable from, its L present and past
values at several other latitudes, j¼1 to J (including i0Þ. As an
example, consider a vector AR(2), using only two latitudes, i0 and
j, and one can write e.g.,

xi0ðtÞ ¼ a1xi0 ðt�1Þþa2xi0 ðt�2Þþb1xjðt�1Þþb2xjðt�2Þþ � � � þeðtÞ
or in matrix-vector form,

xi0ðtÞ
xi0ðt�1Þ
xi0ðt�2Þ

�
xi0ðt�ðL�3ÞÞ

2
6666664

3
7777775

ð16Þ

¼

xi0 ðt�1Þ xi0 ðt�2Þ xjðt�1Þ xjðt�2Þ
xi0 ðt�2Þ xi0 ðt�3Þ xjðt�2Þ xjðt�3Þ
xi0 ðt�3Þ xi0 ðt�4Þ xjðt�3Þ xjðt�4Þ

� � � �
� � � �

xi0 ðt�ðL�2ÞÞ xi0 ðt�ðL�1ÞÞ xjðt�ðL�2ÞÞ xjðt�ðL�1ÞÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

a1

a2

b1

b2

2
66664

3
77775

þ

eðtÞ
eðt�1Þ
eðt�3Þ

�
�

eðt�ðL�3ÞÞ

2
6666666664

3
7777777775
, ð17Þ

where j is any other MOC time series at any latitude (or any other
measured variable anywhere). The bi should not be confused with
the MA coefficients used in the text. If the vector AR is order N, and
there are Jmeasured time series (including the one being predicted),
the equation set (16) has L�1 equations in JðL�1Þ formal unknowns
(not counting the eðrÞ). Thus an AR(1) using all 111 latitudes at one
degree spacing between 301S and 801N of estimated MOC would
have 111 unknowns in each of the 16 annual mean observations,
leaving it greatly underdetermined. Use of any higher order AR
further increases the number of unknowns.

The singular value decomposition (SVD) can be used to solve
such underdetermined problems (e.g., Wunsch, 2006). The coeffi-
cient matrix made up of the expansion vectors (the regressors), is
written in canonical form as

E¼ l1u1v
T
1þl2u2v

T
2þ � � � lKuKv

T
K , ð18Þ

where the ui,vi are the orthonormal singular vectors, and the li
are the singular values. Kr15, is the maximum possible rank of E
here. The ui are often known as empirical orthogonal functions
(EOFs) and corresponding vi are the temporal coefficients. l2i is
the contribution to the squared norm of E.

In the present case, the singular value decomposition shows
that E is formally of full rank, K ¼ 15, and E is exactly represented
by 15 pairs of orthonormal vectors in Eq. (18). A more plausible
estimate of the useful rank is either 9 or 13, depending upon how
large the noise is estimated to be. K¼9 suggests approximately
nine independent pieces of information amongst the 111 latitu-
dinal values of the MOC at a one-year time lag. The SVD solution
is

~x ¼ v1ðuT
1y=l1Þþv2ðuT

2y=l2Þþ � � � þvK ðuT
Ky=lK Þ ð19Þ

but results from this approach are not shown here, as they
founder on the same too-short record duration. A number of

published estimates of predictability employ one or two EOFs,
that is singular vectors, and consequently are discussing predic-
tion of a small fraction of the field variance.
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