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Can oceanic flows be heard? Abyssal melodies

Carl Wunscha)

Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

ABSTRACT:
Fluid flows generate an acoustic noise field. In principle, oceanic flows on varying time and length scales produce a

sound field and its detectability is considered here. A fragile lower bound analysis is made of the acoustic signature,

using the Lighthill theory, of a simple train of boundary vortices generated by baroclinic tidal flows. Subject to

numerous assumptions, the accompanying sound should be detectable within the hum band of seismo-acoustic pres-

sure fields, and more generally, across the entire oceanic spectrum—likely through wave number analyses of spa-

tially coherent acoustic array data. VC 2022 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0014603

(Received 1 April 2022; revised 18 September 2022; accepted 19 September 2022; published online 13 October 2022)

[Editor: Oleg A. Godin] Pages: 2160–2168

I. INTRODUCTION

This note began as an attempt at understanding a simply

posed question: can the ocean circulation, its associated tur-

bulence, and its changes through time be heard? The ques-

tion has both some interesting mathematical aspects and

some potentially interesting and important practical aspects.

It does not appear to be a subject with an extended literature.

A large oceanic literature exists on the impact of fluid flow

structures on ambient sound (e.g., sonar and whale signals),

but little or nothing seems known about the sounds gener-

ated by the flows themselves. See any of numerous text-

books including Jensen et al. (2011), Medwin and Blue

(2005), and Colosi (2015).

It is well known that turbulence can generate noise. When

the question is applied to the ocean, several more questions are

encountered: (1) Is the sound detectable with existing instru-

ments? (2) Is the sound detectable in the presence of back-

ground noise? (3) Is the level of turbulence sound significant

relative to the generation of Earth hum, for example (Webb,

2008; Chave et al., 2019)? (4) Is the inverse problem of deter-

mining the source characteristics solvable? To save some read-

ers much time, the simple conclusion to all of these questions

remains a speculative “maybe”, but they are worth reviewing

because (a) of the large number of assumptions necessary for

the calculation; (b) of the great parameter sensitivity in parts of

it—encompassed in large measure by the far-field “Lighthill’s

8th power law” in the flow velocity; (c) it could lead to a com-

paratively cheap, passive, global ocean observing system;

and (d) some interesting mathematics is involved. Answering

these questions proves remarkably complicated, considering

the mathematical complexities of even the simplest forms of

oceanic turbulence. The present note is directed at obtaining

approximate amplitude levels and their frequency structure of a

much simplified situation—with no intention of being defini-

tive. The editor (O. Godin) and a reviewer have concluded that

the effects are likely undetectable, but an effort has been made

here to consistently find lower bounds on the sound generation.

In any case, coherent spatial arrays, not individual hydrophones,

would be used for detection as explained below.

Ocean “noise” has been measured for many decades

(e.g., Wenz, 1962, is a classical reference). Most recent

attention has been on high frequency trends owing to

changes in shipping noise, seismic exploration, ice sheet

breakup, etc., and in the understanding of biological phe-

nomena through their emissions and ecological responses to

sound field changes. These ocean acoustics measurements

have tended to focus on the sound field between order

100 Hz and many kilohertz. At the lower end of the spec-

trum, at fractions of 1 Hz, seismic data are encountered,

including those used for earthquake detection (e.g., Wu

et al., 2020) and the subject of microseisms and Earth

“hum” (e.g., Webb, 2008; Nishida, 2013; Diaz, 2016). That

subject is not without controversy (Ardhuin and Herbers,

2013, is a good starting point). Active and passive source

ocean acoustic tomography (Munk et al., 1995; Howe et al.,
2019) has tended to focus on frequencies of order

10–100 Hz where the dissipation is treated as negligible.

A large body of literature exists on the complex ocean

energy spectral cascades, both forward and backward, in

wavenumber, k, space (Ferrari and Wunsch, 2009; Arbic

et al., 2014; Vallis, 2017). Those wavenumbers have spatial

scales ranging from the order of the width of the Pacific

Ocean (107 m) to the viscous dissipational scale <10�2 m.

Some significant fraction of the total energy sustaining the

oceanic flow field (not all) is believed dissipated through a

wavenumber cascade, perhaps ending ultimately in a classi-

cal Kolmogorov k�5=3 spectrum inertial subrange and

viscous cutoff. The intense diapycnal mixing of the ocean is
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believed to depend directly upon provision of energy to the

centimeter and smaller scale wavenumbers (e.g., Thorpe,

2005; Arbic et al., 2009; Gregg, 2021; Moum, 2021). Time

scales are generally much longer than any that are normally

included in acoustic or seismic studies. It remains uncertain

how much occurs in the open ocean and how much is con-

fined to boundary regions.

Energy input into large-scale oceanic flows is on the

order of 2�1012 W (2TW). That includes energy from the

wind field, baroclinic tidal generation, heating–cooling, and

associated atmospheric forcings, but not the energy in the

purely barotropic tidal motions or in surface gravity waves

(see Ferrari and Wunsch, 2009, and Table II in Wunsch,

2020). Ultimately, this energy must be dissipated on the vis-

cous scales, although some (poorly known) fraction will

occur in the complexity of continental-shelf boundary pro-

cesses involving numerous wave transformations. Does any

of this energy emerge in the normal seismo-acoustic bands?

Many assumptions follow below, and the results should

be regarded as a preliminary scale analysis as a step towards

formulating questions, rather than answering them. It will

become plain that some of the numbers obtained can have

errors of orders of magnitude.

A. Units

This subject exists in the overlap of ocean acoustics of

biology, anti-submarine warfare, seismology, shipping, and

physical oceanography of all kinds, with conflicting nota-

tions and assumptions leading to some translation problems,

of which time scale units are important Some seismo-

acoustic data are presented in lHz and mHz, and some

acoustic data are in kHz. Formally, ocean pressure varia-

tions are of interest in a frequency range that might run from

the Milankovitch cycles of period of order 105y

(3�10�13 Hz) and longer, to the use of biological sounds at

200 kHz (2� 105 Hz; e.g., Haver et al., 2018), or more than

18 orders of magnitude. For convenience, Table I produces

some equivalents between oceanographers’ period units,

such as hours or days, to seismic/acoustic frequencies in

Hertz (Hz) along with accompanying acoustic field wave-

lengths. Seismic and ocean acoustic interests overlap

roughly from 0.1–100 Hz, with acoustics having a focus at

higher frequencies, and seismology and geophysics gener-

ally, at the lower frequencies. Still lower frequencies are

dominated by the non-compressible pressure physics of the

oceanic flows, but which will have radically different wave-

numbers from the compressible acoustic component. A

crossover may exist at high frequencies where the compress-

ible motions dominate. In any observational test, the wave-

number spectra of the acoustic motions will likely be the

mechanism by which the complex set of pressures (many

being hydrostatic) generators of ocean pressures will be able

to distinguish motions owing to oceanic hydrodynamic and

seismic phenomena from their generated acoustic fields.

Oceanographic pressures are commonly given in equiv-

alent surface elevations of centimeters or meters or more

formally in Pascals (Pa) for which 1 Pa ¼ 1 kg/(m-s2). The

incompressible pressure, gq0g; of g ¼ 1 cm of sea level eleva-

tion with a density of q0 � 103 kg/m3; g � 10 m/s2 is about

102 Pa (1 hPa). In acoustics and seismology, lPa are common

units, and so 1 cm of sea level elevation is �108 lPa. Much of

ocean acoustics generally is expressed on a decibel scale (e.g.,

Jensen et al., 2011), 20 log10ðp=pref Þ where pref ¼ 1 lPa. In

this paper, in the interests of simplicity, only Pascals and Hertz

are used mostly. The significance of the long acoustic wave-

lengths at any given frequency lies with their orders of magni-

tude difference to those of any underlying fluid flow.

The question now is whether the sound pressures radi-

ated by oceanographic flows are sufficiently intense to be

observable in frequency space? Answering the question

involves the intensity of generation, the sensitivity of instru-

ments, and the levels of other sound sources present. The

context of sensitivity and of the background noise is usefully

examined in Fig. 1, the same as Fig. 1 of Chave et al.
(2019), as an example. That figure displays, in hertz, the

spectral density from a pressure instrument (see Filloux,

1980) deployed on the seafloor near Hawaii over an interval

of 2 months. The strong tidal oscillations, ranging from the

diurnal through various over-tides for approximately 1 h,

are conspicuous in the pressure spectral density estimate. A

low-frequency continuum exists, becoming white-noise at

the lowest frequencies, and with a red-noise continuum

above the tides, falling until the hum band is encountered

between about 3� 10�3 and 10�2 Hz (300–30 s) and then

falling to the noise floor above. A microseism band believed

generated by non-linear interacting surface gravity waves

(infragravity waves, IGW) lies just above the frequencies

shown. The power density range is over 10 orders of magni-

tude. Power in the diurnal and semidiurnal tides dominates

the entire frequency spectrum as is made clear by Fig. 2,

which shows the cumulative power with frequency.

TABLE I. Correspondence between oceanographic and seismic/acoustic

time intervals and frequencies. Note that sound will have twice the hydro-

dynamic generating frequency and half the wavelength in the simple case

considered here. Solid Earth free oscillations occur at periods shorter than

approximately 1 h, with the Earth hum band sometimes defined as here.

Because of the large sound speed value, acoustic wavelengths are generally

much larger than the generating hydrodynamic avelengths, in principle per-

mitting observational separation in wavenumber space.

Period

(days, h, min, s)

Frequency,

s (cps, Hz)

Frequency,

s (lHz)

Acoustic

wavelength

(m)

1 day ¼ 24 h 1.16�10�5 11.6 1:3� 108

M2 tide, 12.42 h 2.24�10�5 22.4 6.7�107

1 h 2.78�10�4 278 5.4�106

1 min 1:7� 10�2 1.7�104 88�103

1 s ¼ 2.8�10�4 min 1.0 106 1.5�103

Earth hum band:

300–30 s

(Diaz, 2016)

3� 10�3–3� 10�2 3�103–3� 104 ð455–50Þ � 103

Microseism band:

25–1 s

(Diaz, 2016)

0:04–1 4�104–106 ð38–1:5Þ � 103
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An equivalent spectrum from a DART instrument is

shown in Fig. 3 in units of Pa and Hz. {The DART website

describes it: “As part of the U.S. National Tsunami Hazard

Mitigation Program (NTHMP), the Deep Ocean Assessment

and Reporting of Tsunamis [DART(R)] Project is an ongoing

effort to maintain and improve the capability for the early

detection and real-time reporting of tsunamis in the open

ocean. DART(R) stations have been sited in regions with a his-

tory of generating destructive tsunamis to ensure early detec-

tion of tsunamis and to acquire data critical to real-time

forecasts. DART(R) systems consist of an anchored seafloor

bottom pressure recorder (BPR) and a companion moored

surface buoy for real-time communications. An acoustic link

transmits data from the BPR on the seafloor to the surface

buoy. The data are then relayed via an Iridium satellite link to

ground stations, which demodulate the signals for immediate

dissemination to National Oceanographic and Atmospheric

Administration’s Tsunami Warning Centers, National Data

Buoy Center, and Pacific Marine Environmental

Laboratory.”} For reference, the total power in the frequency

band above about 10�3 Hz in the DART spectrum is of order

5000Pa2/Hz� 0.005 Hz ¼ 25Pa2¼ 5Pa RMS—about 0.05 cm

of water equivalent). The background spectral density values

near 10�3 Hz are approximately 103 Pa2/Hz. With the present

resolution of 1.5�10�8 Hz, any line or narrowband process

with an energy above a frequency of 1� 10�2 Hz, exceeding

about 1.5�10�5 Pa2 or 4�10�3 Pa root mean square (RMS),

would stand above the background and this value might be

taken as a minimal reference value of importance for such a

process.

At higher frequencies, microseisms and many types of

manmade and biological noise sources come to dominate.

Chave et al. (2019) focus on excitation in this relatively quiet

energy band by solar modal excitation via the geomagnetic

fields and by hydrostatic tidal overtones, but for present pur-

poses, a question is whether some of this energy cannot also

be accounted for by oceanic fluid flows? The hum band con-

sists, at least in part, of the ongoing excited normal modes of

the solid Earth (see, e.g., Webb, 2008; Diaz, 2016; Chave

et al., 2019). Above the tidal harmonics, the spectral density

is remarkably structured, as can be noticed in the spectral

range relative to the approximate 95% confidence interval.

When displayed at higher resolution (not shown), many iso-

lated peaks appear above a noisy background. Sources of the

visible peaks at the very highest frequencies are not known.

Much attention lies in the high frequency end of these

spectra where it becomes of interest in seismic and nonlinear

water wave problems. The spectral range of 1011Pa2/Hz sug-

gests a severe challenge to the assumptions of linearity in

the system and the absence of significant spectral leakage in

the estimates.

FIG. 1. (Color online) Multitaper spectral density estimate of bottom pressure

(Chave et al., 2019 using an instrument described in Filloux, 1980) from a

record NNW of Kaui in the Hawaiian Islands in 5235 m of water (26�520N,

161�570W). Tidal lines as well as the microseism energy excess are visible.

Electromagnetic effects and conventional overtides are also present there.

This result is a recomputation, in Pa2/Hz and Hz, nearly indistinguishable,

from Fig. 1 in Chave et al. (2019). Time-bandwidth product in the multitaper

estimate here is 6.5. The horizontal line is approximately the hum band as

defined by Diaz (2016) and which extends to even higher frequencies. A

frequency-averaged approximate 95% confidence interval is shown in the ver-

tical bar and is visibly relevant only to the lowest frequencies.

FIG. 2. (Color online) Cumulative sum of the power density of Fig. 1 showing the tidal dominance of the power. Step changes correspond to the diurnal and

semi-diurnal bands. Seismic and microseism attention tends to lie in the relatively very low energy band at the highest frequencies.
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II. SOUND GENERATION IN A FLUID

This subject, in English, begins with two papers by

Lighthill (1952, 1954) who showed that noise generation

by fluid flows at small Mach number and large Reynolds

number originated with the quadrupole-moments of the

flow field. In the many intervening decades, the field has

grown vigorously, with a major focus on aircraft noise gen-

eration. Proudman (1952) and Kraichnan (1957) applied

the theory to a problem of relevance here—sound genera-

tion by homogeneous turbulence—albeit whether anything

in the ocean is homogeneous is doubtful. It becomes imme-

diately clear that answers to the questions posed above in

Sec. I will depend upon whether the observing instrument

lies within the turbulence itself, or is in the far-field or

likely, both simultaneously.

In what follows here, the author has relied on text-

books for discussion of the fundamental physics (Morse

and Ingard, 1968; Monin and Yaglom, 1975; Howe,

2003). For the present purposes, the limit of interest is that

of very high Reynolds number, Re, and near-vanishing

Mach number, M ¼ u=ca; where ca is the speed of sound

in seawater, and u is an RMS hydrodynamic velocity. A

fundamental and justified assumption, used throughout

here, is that the power lost (energy loss) to the acoustic

field is a negligible part of the energy and power of the

hydrodynamic flow. Following, e.g., a distinction is made

between the hydrodynamic pressure (Morse and Ingard,

1968), ph; and the acoustic pressure, pa. In the Lighthill

theory that ignores viscous effects on the sound genera-

tion, the wave equation for the perturbation density field

associated with the acoustic pressure in this limit, is (Eq.

2.1.12 in Howe, 2003)

1

c2
a

@2

@t2
�r2

3

 !
pa ¼

X3

i;j¼1

@2Tij r; tð Þ
@xi@xj

kg=ðm3s2Þ

¼ F x; y; z; tð Þ (1)

in three Cartesian dimensions, r ¼ ½x; y; z�T ¼ ½x1;x2; x3�T ;
and time t. The term on the right is the double divergence of

the acoustic quadrupole-moment generating function.

Lighthill’s tensor, Tij; in this limit depends on the Reynolds

stresses, where ui, i ¼ 1, 2, 3 are the three components of

velocity (MLH, P. 30) and is

T ¼ Tij x; y; z; tð Þ
� �

� q0ui x; y; z; tð Þuj x; y; z; tð Þ
� �

kg=ðm� s2Þ;
i; j ¼ 1; 2; 3 (2)

with the mean density, q0, included. Velocities are all

hydrodynamic. The corresponding acoustic pressure is

pa ¼ p0 þ c2
aqa kg=ðm-s2Þ; (3)

p0 from the mean density q0: In this paper, pa and qa will be

re-defined as perturbations based on these reference values.

This development ignores acoustic dissipation, which is

weak at the low frequencies of interest here (e.g., Munk

et al., 1995; Jensen et al., 2011). Much of the difficulty of

this subject arises from the presence of boundaries and com-

plicated shear flows (M€ohring, 1979, and other papers in

M€uller, 1979). When the hydrodynamic field is that of a

pure radian frequency rh ¼ 2psh, Eq. (1) becomes the three-

dimensional Helmholtz equation,

FIG. 3. (Color online) DART multitaper spectrum from 19.556�N 156.538�W 4700 m, near Hawaii, in Pa 2=Hz and Hz also showing the principal solar tide

S1 and its first nine harmonics (vertical dashed lines). No immediate explanation is offered for the peaks at the very high end of the spectrum. The record

length is 2 y at time intervals of 15 s. Pressure is that observed, regardless of whether the source is of hydrodynamic or acoustic origin. Vertical line is an

approximate mean 95% confidence interval, but seemingly not relevant at the highest frequencies present.
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r2
3pa þ

2 rhð Þ2

c2
a

pa ¼
X3

i;j¼1

@2Tij r; rhð Þ
@xi@xj

kg=ðm-s2Þ

¼ F x; y; z; rhð Þ: (4)

The statistics of T; its derivatives, and the products of its

elements are needed to calculate power generation, covarian-

ces, and spectra. A simple implication of Eq. (4) is that pa is

unlikely to have a normal probability distribution. Indeed, if

the velocity field is Gaussian as commonly assumed, T would

have a non-central v2 distribution. The purpose of this paper

is to obtain, through the (perhaps) simplest possible configu-

rations, some order of magnitude, lower-bound estimates of

the pa and their frequency distribution.

A. Far-Field

Much of the literature is devoted to the far-field behav-

ior of a sound source. The results demonstrate the extreme

sensitivity the acoustic field has to details of the flow, poten-

tially useful in actual measurement, but a challenge to the-

ory. The Lighthill far-field construct assumes the listener

lies outside the region of turbulence itself—in an otherwise

resting three-dimensional fluid. Let L be a characteristic

length scale in a vorticity-containing eddy, u is the typical

velocity within an eddy, and s � L=u is a characteristic time

scale. Then, the far-field pressure, pFF from one isotropic

eddy with spherical spreading of acoustic energy is

pFF �
L

jrj q0u2M2Pa ¼ L

c2
ajrj

q0u4 (5)

(Howe, 2003), involving the 4th power of the hydrodynamic

velocity scale and hence, proportional to r4
h in any hydrody-

namic frequency. Total radiated power with spherical spreading

at a large distance jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
[Eq. (2.2.5) in Howe,

2003] from one eddy is proportional to p2
a as

PFF;rad �
L2q0u8

c5
a

¼ L2q0u3M5: (6)

Lighthill’s 8th power law—with a disconcerting sensitivity

to u. This result assumes spherical spreading—absent any

reflective ocean boundaries—a major assumption producing

a lower bound on the acoustic intensities, but nonetheless

indicating the difficulties of scale analyses. The high powers

appearing in these formulas suggest some delicacy in esti-

mating amplitudes. Whether a far-field exists in the ocean,

in terms of open ocean processes, is not so clear. With

boundary turbulence (e.g., Arbic et al., 2009), the idea is

more natural.

B. Spreading

Much of the literature on sound in fluids considers

spherical spreading, a major exception being the discussion

of sound in acoustic waveguides (e.g., Morse and Ingard,

1968). The appropriate geometry in the oceans is not

obvious. Close to an isolated source, spherical spreading of

short acoustic wavelengths would be appropriate. Contact,

at any wavelength, with the upper and lower boundaries,

raises various questions: a smooth free upper surface at zero

pressure would be purely reflective, as would a rigid lid

there. Treating surface roughness involves various scattering

problems depending upon wavelengths.

A flat seafloor can transmit energy via elastic waves

into the solid Earth. Sufficiently efficient transmission pro-

cesses would render the geometry more like that of a half-

space with only the upper boundary present, albeit the

impedance change at the bottom would require some reflec-

tion. In Sec. III, surface acoustic boundary conditions are

ignored, producing a lower bound. The bottom is treated as

rigid only in the single eddy case, and no definitive result is

claimed.

Additional calculations have been made (not shown) of

sound generation by open ocean turbulence and internal

waves. The calculations are subject to a large number of

sometimes arbitrary assumptions including specifics of the

statistics of T in various flow types. Thus, the purpose of

this present note is to provide a sketch of a much simplified,

but perhaps oceanographically relevant, situation.

III. OCEAN BOUNDARY TURBULENCE

van Haren and Gostiaux (2010) describe a series of

Kelvin–Helmholtz billows on a sloping bottom over a large

seamount in the ocean. Billows are size 10–15 m in size,

appearing in one phase of the tidal oscillations. Could such

a phenomenon be detected acoustically? A rough, kinematic

representation of those motions is considered. [Howe

(1991), analyzed the high frequency acoustics of the bound-

ary layers in free stream turbulence generated in a wind

tunnel.]

As a simplified analogue, without statistical assump-

tions, consider a vortex on a flat bottom, with vortex

strength C (see Lamb, 1932; Milne-Thomson, 1968).

Roughly speaking, using the van Haren and Gostiaux (2010)

report (Fig. 3 in their report), let the vortex have a diameter

of about 10 m. Vortex center is a ¼ 15 m above the bottom.

They report movement between vortex centers approxi-

mately every 50 s. A stream function satisfying the bound-

ary condition of no normal acoustic velocity across z ¼ 0 for

a single vortex is

w x; zð Þ ¼ C log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ z� að Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ zþ að Þ2

q ; (7)

where x0 is the position of the reference vortex above the

plane at z ¼ 0; and 2a is the vertical separation between the

vortex and its mirror image across the bottom boundary.

For the moment, the vortex extends infinitely far in the

y�direction (Fig. 4) Strength, C; controls both the velocity

within the vortex, and the speed with which a vortex pair

moves in the x�direction under their mutual interaction.
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The vortex and its mirror image pair would translate in the

x-direction with a velocity dx0=dt ¼ C=2a m/s which is

assumed to be defined by the 50 s interval of van Haren and

Gostiaux (2010) for moving an eddy diameter producing

with this value of a, 4a2=C ¼ 50; or C ¼ 18m2=s:
Define

D1 x; z; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ ðz� aÞ2

q
;

D2 x; z; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ ðzþ aÞ2

q
; (8)

and

x0 ¼
C
2a

t: (9)

For this single vortex pair, the hydrodynamic velocities are

uh ¼ �
@w x; zð Þ
@z

¼ C
z� a

D2
1

� zþ a

D2
2

� �
(10)

and

wh ¼
@w x; zð Þ
@x

¼ C � x� x0

D2
1

þ x� x0

D2
2

� �
; (11)

noting that whðz ¼ 0Þ ¼ 0 as required by the boundary con-

dition (where D1 ¼ D2). The singularities where D1;D2 ¼ 0

are here dealt with pictorially through a crude numerical

approximation. Then, the Lighthill tensor matrix compo-

nents are

T11 ¼ q0C
2 z� að Þ

D2
1

� zþ að Þ
D2

2

( )2

; (12)

T12 ¼ T21 ¼ q0C
2 z� að Þ

D2
1

� zþ að Þ
D2

2

( )

� �
x� x0ð Þ

D2
1

þ
x� x0ð Þ

D2
2

� �
; (13)

T22 ¼ q0C
2 �

x� x0ð Þ
D2

1

þ
x� x0ð Þ

D2
2

� �2

: (14)

T12 and T22 vanish at the nominal vortex center, x ¼ x0: The

50 s time scale in the velocities implies a 25 s time scale in

T; or 0.04 Hz (Fig. 5).

The second derivatives of these elements of T are read-

ily found as

@2T11

@x2
¼ q0

@2

@x2

@w
@z

� �2

¼ 2q0

@3w
@x2@z

; (15)

@2T12

@x@z
¼ �q0

@2

@x@z

@w
@z

@w
@x

� �
¼ q0

@3w
@x2@z

þ q0

@3w
@x@z2

; (16)

@2T22

@z2
¼ q0

@2

@z2

@w
@x

� �2

¼ 2q0

@3w
@x@z2

: (17)

Put x0 ¼ 0 (that is, using a moving coordinate), then

Tij ¼ Oð105Þ and the second derivatives are O ð105=a2Þ.

FIG. 4. Stream function (upper left panel, m2=s), u (upper right), and w (lower right) in m/s for the mirror image pair of vortices. W, and hence T12, is discon-

tinuous across the center. The contouring algorithm exaggerates the size of the small region of intense flow arising from the singularity.
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IV. ACOUSTIC WAVE EQUATION

A. Green function. One vortex

The sound speed, ca; is so much larger than any hydrody-

namical flow speed, that the acoustic response is essentially

instantaneous over even large oceanographic distances. In those

cases, the wave equation reduces to the Laplace/Poisson equa-

tion. For two dimensions, implying a y-independent disturbance,

the Green function is G ¼ �2 log R, and in three-dimensions is

1=R;R ¼ ½ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2�1=2
(Morse and

Feshbach, 1953). Ignoring reflections from the acoustic bound-

ary condition on z ¼ 0; and the sea surface, these free-space

Green functions can be used directly so that

pa x; y; z; tð Þ ¼
ð ð ð

F x0; y0; z0; t
	 


G x� x0; y� y0; z� z0
	 


� dx0dy0dz0; z0 > 0: (18)

Sensitivity to treatment of the singularities is evident. Set

z ¼ 1000 m, x0 ¼ 0; y0 ¼ 0; the near-field directly overhead

of the vortex at t ¼ 0; an approximating sum to Eq. (18) has

magnitude 10�3 Pa in three dimensions, and 5 Pa in two

dimensions, again displaying the sensitivity to assumptions.

Here the handling of the strong singularities present, and

recall, the 8th power law. If the three-dimensional result

extends over a y distance of 1 km, approximately, 1 Pa is

obtained for the three-dimensional result. Thus, an estimate

of the influence of a single vortex over a flat plane is O(1

Pa), as compared to a detection threshold of about 4� 10�3

Pa estimated from Eq. (18) above. It is not obvious how

many such vortices would exist simultaneously spread over

the entire ocean basin. To the extent that the sea bottom and

surface are rigid, this solution underestimates the magnitude

by at least a factor of 2, as it does not account for the acous-

tic image sources necessary to satisfy both the top and bot-

tom boundary condition (in this case, images of the

hydrodynamic vortex and its acoustic image) (Howe, 2003;

Morse and Ingard, 1968). Numerical values are well above

those seen in the high frequency spectra, as quoted above in

Sec. I A. If 1 Pa of power is distributed over a bandwidth of

10�3 � 10�2 Hz (Figs. 1 and 3) the power spectral density is

approximately 102 Pa2Hz—the same order as observed.

Much larger values would occur if the sound field were gen-

erated by basin-scale simultaneous sources.

B. Vortex street

A different estimate can be based on an infinite row of

such vortices (Lamb, 1932). The velocities are

u ¼ � C
2a

sinh 2pz=að Þ
coshð2pz=aÞ � cos ð2px=aÞ ;

w ¼ C
2a

sin 2px=að Þ
coshð2pz=aÞ � cos ð2px=aÞ ;

(19)

and which for large z, juj ! C=2a; jwj ! 0: (The mirror

image across the solid bottom is not included.) van Haren

and Gostiaux (2010) suggest of order 10 vortices existing at

one time. An infinite street of vortices will move at a speed

C=2a cothð2pÞ � C=2a (Batchelor, 1967). C=2a is thus still

a reasonable estimate of the horizontal displacement veloci-

ties. The time scale remains 4a2=C, which would be 50 s or

FIG. 5. Elements of T in kg=m2=s for a single vortex over a flat plate (T11 upper left, T12 upper right, T22 lower left). Note that image sources appear in the

acoustic problem if the bottom and top are rigid.
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0.02 Hz. The acoustic field, from T, will have a frequency

twice that value.

V. DISCUSSION

The intention here has been directed primarily at rais-

ing, but only schematically answering, a question: whether

oceanographically interesting flow fields produce a measur-

able acoustic field? A speculative result suggests that bound-

ary turbulence, at least as represented as highly idealized

vortices, should be a measurable factor in seismo-acoustic

measurement of ocean sound in the low-energy high-

frequency range. More generally, acoustic signatures will

have far-larger wavelengths than those of the corresponding

hydrodynamic fields. For the particular case analyzed, these

high frequencies would be modulated by the tidal

frequency.

An implication of the result is that the acoustic signa-

ture of oceanic noise will have a much larger spatial extent

than would the underlying turbulent flow elements.

Distinguishing it from, e.g., the disturbances discussed by

Chave et al. (2019), would likely require use of large-scale

arrays determining the coherence and wavenumber structure

as a function of frequency (see Chave et al., 2019, Fig. S4,

for a short-distance coherence). Standard beamforming

methods could be used, potentially greatly increasing signal-

to-noise ratios. The frequency cross-spectral approach of

Howe (1991) is a step toward determining wavelengths.

Whether the highest frequency structures visible in Fig. 3,

with instrument proximity to the Hawaiian Island chain, are

connected to the existence of nearby topography is not clear.

The reader will appreciate that boundary turbulence in

the ocean is considerably more complex than in the model

used here, even over an abyssal plane (see Munk and

Wimbush, 1970; Weatherly and Martin, 1978; Armi and

D’Asaro, 1980). Such motions will be additional noise gen-

erators, assuming they appear alongside the van Haren and

Gostiaux (2010) dynamics. The physics of the

Kelvin–Helmholtz billows is also greatly oversimplified

here (see, e.g., Thorpe, 2005), and the calculations reported

should be taken as producing only a rough order of magni-

tude of a lower bound.

Great care must be taken in interpreting the observations

of the high frequency, low-energy part of the spectrum,

including the hum band. For example, an instrument attached

to the seafloor will detect motion of the seafloor itself, and

separating a forcing from the coupled response requires verti-

cal information in the water column, information that is not

normally available. The physics of both the extremely ener-

getic upper boundary (surface gravity waves in particular)

and of the seafloor are complex in their own right. In addition

to the problem of microseism generation at the sea surface,

coping with seismic movement of the seafloor is necessary.

See Nishida et al. (2008) for discussion of the generation and

propagation of Love and Rayleigh waves in the ocean basins.

A further complication is the self-noise generated by flow past

the instrument. Mid-water, beamforming, arrays of instruments,

such as that envisioned by Simons et al. (2019), are an attrac-

tive alternative to bottom-coupled instruments. In any case,

as would follow from the analysis above, discrimination in

acoustic wavenumbers and horizontal propagation directions

are likely to be the simplest test of these and competing

ideas.

The mathematics of the Lighthill generation mechanism

is in principle straightforward, but in practice, results in

cumbersome and sensitive algebraic structures that are not

so easy to interpret. This problem appears to be one where

numerical models, able to span the full range of oceanic

motions, at least regionally, and coupled directly to the

acoustic wave equation, represent the most likely path to

better understanding.

To the extent that any of this proves to be practical, an

interesting hypothetical future application would be to

understand the fluid flow in the ice-covered oceans of the

outer solar system moons such as Enceladus and Europa

(see Jansen, 2016). It is possible to envision lowering a

hydrophone array through the ice and determining the flow

fields by listening to them. The background noise might be

much reduced: no waves, little seismicity, and no marine

mammals.
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