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On the propagation of internal waves up a slope* 

CARL WUNSCH~" 

(Received 15 Ja.~uary 1968) 

Abstract---Simple analytic solutions exist for the problem of periodic internal waves in an ocean of 
constant Brunt-Vaisala frequency where the bottom slope is linear. The solutions indicate a linear 
decrease of wavelength, and an increase in amplitude of the velocity field as the intersection of the 
bottom and the surface is approached. A logarithmic singularity exists at the intersection indicating 
high dissipation or breaking. The slope itself is a region of high shear. 

I N T R O D U C T I O N  

IN DESIGNING a series of measurements of  internal waves with an antenna-like array, 
it is clear that adjustments must be made to the measurements for the distorting 
effects of topography. The few pertinent measurements that have been made, e.g., 
HAURWlTZ, STOMMEL and MUNK (1959) and PARKER and WUNSCH (1967) indicate 
that internal waves propagating up the Bermuda slope are distorted, and in a sense 
amplified by the rapid change in oceanic depth. 

The Haurwitz, Stommel and Munk result showed a marked lack of coherence, at 
all frequencies, between thermistors placed on the bottom a distance of 1 mile apart 
in the horizontal, and 450 m in the vertical. This lack of coherence has been ascribed 
by WUNSCH and PARKER (1967) to nonlinear processes degrading the wave trains as 
they move up the slope. 

In this note we investigate, as a first step toward a theory of  wave-topography 
interaction, the changes in a sinusoidal internal wave train as it encounters a shoaling 
region. A linear theory is used. 

E Q U A T I O N S  OF M O T I O N  

Currently feasible internal wave antennas are capable of defining internal waves 
of  rather short wavelength, and we will confine this study primarily to the high- 
frequency, short wavelength, and hence non-rotating case. Rotation can be easily 
introduced. We assume two-dimensional motion in a stably stratified Boussinesq 
fluid. The appropriate perturbation equations are (LAMa, 1932, p. 378): 

Oo Ut - -  - -  p ' x  (1) 

Po w t  = - -  P ' z  - -  g P '  (2) 

p~' + w po~ = 0 (31) 

u x  + w z  : O. (4) 
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The velocities u, w are positive to the right and vertically upward respectively. 
p0 is the mean (stable) density field, and is taken to be constant  except in equation (3). 
p' and p are the per turbat ion density and pressure fields. 

In t roducing a stream function u . . . .  ~z, w : ~x we obtain, f rom (1) to (4), 

V e ~tt, 4 N 2 ~xx -: 0 (5) 
where 

N ( g~o° t~  .... 
Po ~z I 

is the Brunt-Vaisala  frequency. 
I f  we assume periodic motion,  such that, 

~__--~e i~, 
then (5) becomes 

1 ~r ? 
ezz ..... ~ ¢ x ~  := 0, c 2 - : N ~ -  ~. (6) 

If  c a > 0, this equation is hyperbolic in the space coordinates with characteristics 
x -1- cz --  constant.  

THE B E A C H  P R O B L E M  

We will consider a periodic internal wave disturbance propagat ing f rom an 
" a b y s s a l "  region with a flat bot tom,  onto  a " b e a c h "  o f  constant  slope. Let the line 
z = - -  yx, z ~ --  zl z = --  zl, x ~ x0 be the ocean bot tom. For  further simplicity we 
will assume the upper  boundary  (z =- 0) is rigid (see Fig. 1), making the beach into a 
wedge. 

Fig. 1. 

t O~ X i. 
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Beach and abyssa[ regions of  the model  ocean. 

The boundary  condit ion is that  ,/, - -  0 on the boundary.  We will only consider the 
case N = constant.  Under  this condition the general solution to (6) is 

4' F (cx z) 4- G (cx -5 z) (7) 

where F a n d  G are arbitrary functions. Since (6) is not  separable in a wedge, we expect 
only partial ability to construct  a solution there. 

In the polar coordinates, 
x - = r c o s 0 ,  z--  r s i n 0  

we have 
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~b = F [r (1 4- c2) ½ cos (0 + e)] + G [r (1 4- cZ) t cos (0 -- e)], 

There are two sets of  useful solutions 

1 
= mn-~ 

C 
(8) 

F A ---- sin [p In (cx -- z)], G A -- -- sin [p In (cx + z)] 
and 

F B --=- -- cos [p In (cx -- z)], G s -- cos [p In (cx + z)] 
which yield 

CA 2 s i n l P l n ( C X - - Z ~ ]  [P ] = cos in (c z x 2 -- z 2) 
rex + zlJ 

= 2 sin In \cos (0 --  ~ cos In [r z (1 -t- cZ)] cos (0 + ~) 

~bB=2sin[21n(CX--Z]]\cx 4- z]] sin [ §  In ( ~  x~ -- z~)l 

= 2 s i n  [ P  In (cos (0 4- ~))] (~_ } \cos ~ Z ~) sin In [r z (1 4- c2)] cos (0 4- ~) cos (0 -- ~) 

which we will refer to as the A and B solutions respectively. 
I f  the angle -- 01, corresponds to the line z = -- yx then choosing 

(9) 

(i0) 

cos (0 - ~)} 

(11) 

P 
2 

HTr F/Tr 

ln(C + ~]--ln[COS(--014- ~] 
\ c  - ~,! I ~ s  (d;5--~7 J 

we have ,cx+zt  ] 
~bnA=2s in  n ( c + ' l l n \ c x - - z ] l C ° S  In ( c + Y ]  l n ( c 2 x 2 - z 2 )  

\ c  - -  y /  \ c  - -  y !  

= 2s in  (cos ( - -  0 1 +  ~)~ In ~cos(0 - - ~ )  

n \ ~oos~2~ ;T ] 

~" . ] c°S[m,, . / c ° s ( - - 0 1 4 - ~ ) ~ l n { r 2 ( 1  4-c2) cos(0  - e )  c o s ( 0 + ~ ) }  . 

[1' ' l['"= ] n~r ( c x -  z~] sin (c ÷ •t In (c 2 x 2 - - z  e) ¢.B = 2 s in  
n | C 4 - , l l n \ c x  4-z]  n 

\c -- y/  \c -- Y! 

2 sin (cos ( -  ol + ~) \cos (0 -- ~) 
In \ ~s(O1-T~) l 

sin / \ in (r 2 (1 ,4- c ~) cos (0 -- ~) cos (0 + e) 

n t ~ ( -~1~- ;~  ! 

which clearly vanish along the lines z = 0 (0 = 0) and z = --  yx (0 = -- 01). 

(12) 

(13) 
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There is no line r : constant such that ff = 0 there; thus only a partially separated 
solution has been found, as was expected. 

The solutions are self-similar in r, i.e., if we rescale r by a constant k, ~ = kr ,  the 
only change in the solutions is a phase change in the trigonometric functions. This is 
another way of  saying that a wedge has no natural length scale. The phase must be 
determined from additional information. 

If  we put s : p In ( c x  - -  z )  - -  crt we can define a local wave number vector for the 
F a solutions 

( k z ,  k z )  = (~s~_} . ~~s) 

(,c ,) 
CX -- Z ' CX -- Z 

and similarly for the other solutions. The wave lengths go to zero as the apex of the 
wedge is approached. Since 

F A =-- sin [p In ( c x  - -  z)] 

_ 1 (eipln(cx_z) _ e_ipln(cx_z)  ) 
2 i  

the F A solution is a standing pattern of waves propagating with wave number vector 
perpendicular to the characteristic lines z - -  c x  = constant, with phase velocity 

VP == ( ~r ( c x  - z )  p c  cr ( c x  - -  z ) )  , 

The A solutions give a velocity field of  

P 
u a ( x ,  z )  ~ - -  ~bz A ( x ,  z )  = c x  P~-- z cos [p In ( c x  - -  z)] + c ~  cos [p In ( c x  -k  z)] 

w a ( x ,  z )  - -  ~bxa (x ,  z )  --- p c  . cos [p In ( c x  - -  z)] p c  c x  - -  z c x  + z cos [p In ( c x  + z)] 

which have a singularity at the apex. The increase in amplitude of  the velocity field 
is proportional to 1/r as the apex is approached, a result of  the linear decrease in wave- 
length of  the stream function. 

The amplitude of the vertical velocity w increases as l [ ( c x  + z )  as  the line z = -- c x  
is approached. This is consistent with the qualitative conclusion of  Parker and 

Z:-)'X ~""'" 
Z=- CX 

Fig. 2. The critical line z = - -  c x  for which solutions are singular. 
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Figs. 3. Vertical and'horizontal velocities at a number of vertical sections for modes 1 and 2, 
of the A solutions. 

W u n s c h  tha t  t empera tu re  osci l la t ions are s t rongest  on  the  bo t tom,  where there  is a 
slope. 

Some representa t ive  i l lus t ra t ions  o f  the veloci ty  field for  the  A solu t ions  are  shown 
in Figs. 3-6.  In  Figs.  3, 4, and  6, c = 1.0. The  intensif icat ion into  a " n o s e "  a long  the 

Fig. 4. Vertical and horizontal velocities at a number of vertical sections for modes 1 and 2, 
of the A solutions. 
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Fig. 5. 

u(Z) 

Vertical and horizontal velocities at a number of vertical sections for modes 1 and 2, 
of the A solutions. 

slope is clear, particularly in Fig. 5 where c .... 0.6 and the slope is near the critical 
angle. Figure 6 is a section at constant depth z --  - 1.0, intersecting the slope. The 
steepening of  the crests and shortening o f  the wavelength is very apparent. The 
decrease in amplitude for small x is the result o f  approaching the slope. 

0 

SECTION LINE 
/ 

c = i. o - - ~ - ~  x 
),'=0.1 
n = l  

. J •  . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  

X=IO 
__X. 

X = 4 0  

Fig. 6. Vertical velocity through a horizontal plane for mode 1 of A solutions. 
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The energy density for these standing modes is 

(uZ ÷ w2 N2 } 
E = po ~ f - -  + - ~  w 2 

which for the A mode is 

E - -  2 (cx - -  z) 2 ' ' ~ 2 / J  

-t-c°s2 [ p l n ( c x + z ) ]  1 + c  2 1 ÷ ~2]}  
( c x  + z)2 

- I - 2 c ° s [ p l n ( c x - - z ) l c ° s [ p l n ( c x + z ) ]  1 - - c  2 1 ÷ ~e ] j  
C 2 X 2 - -  Z 2 ° 

Thus along any line z ---- -- sx,  the energy density increases as 1/x 2 as x -+ 0. The nature 
of the singularity at the origin in velocity and energy is similar to that found in the 
classical problem of a surface wave propagating up a beach (STOKER, 1957). 

If  the wedge angle -- 01, exceeds the critical angle 

_ ~ = _ tan-  1 1 
C 

then z + cx  will vanish within the wedge, and the solution will be singular. This line 
corresponds to a characteristic running directly to the apex of the wedge (Fig. 2). The 
solution is mathematically permissable, since weak discontinuities are expected along 
characteristics when singularities occur in the boundary conditions (in this case, at the 
corner). Physically, this solution corresponds to an infinite shear and is an artifice of  
the inviscid assumption. 

In any case, the slope itself is a region of high shear, which increases as the slope 
angle approaches the critical angle. Whether this leads to scouring of slopes, or strong 
mixing processes in the ocean is the subject of some conjecture. 

To finish the problem, it is necessary to match the beach region to the abyssal region. 
In principle, we can go through a Gram-Schmidt process and construct 2 orthonormal 
sequences C a  and Cn B from the sequences ~,A and ~B.  Alternatively, we can inquire 
into the nature of the abyssal solution necessary to excite a single one of the beach 
modes. The general solution in the abyssal region is 

= ~ ' s i n - -  an s i n - - x  b n c o s - -  x • 
~b n nrrz nzre + mre 

n - i  Z1 Z1 Z1 

We can match this to a beach mode, say ~bl a at the line x = x0. Since the wedge 
solutions are standing modes, as much energy is reflected as is incident. We thus 
expect standing oscillations in the abyssal region. We have then that 

~1A (x0, z) = sin [p In (CXo --  z)] --  sin [p In (CXo ÷ z)] = Cu (x0, z) 

pc [cos [p In (cxo - -  z) - -  cos [p In (cxo -k z)] = ~ (Xo, z) 
(xo,  z )  - cxo  - z 

2rr 

P =  In ( c + "  1 " 
\ c -  y /  
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Notice that we have imposed a Cauchy boundary condition on the matching line. 
This leads to 

an Hn sin mrc zl mrc = - - x 0 +  I n - - - c o s  - -x0  
Z1 F/7"rC Z1 

bn Hn cos mrc zl nzrc . . . .  x0 . . . .  I~ sin - -  x0 
Z 1 H~rC Z1 

o 0 

Hn ~ 2~1 f ~bia(Xo, Z)sin nzrzzl dz; In =_2zl . . . .  f ~$1a~x sin nTrZzl dz. 

- - l l  --ZL 

If  an incident wave is assumed in the abyssal region, then a sum of A and B modes 
in the beach region will give an incident wave there, the singularity at z = x - 0 acting 
as an energy sink. Physically, either very rapid dissipation through friction or breaking 
probably takes place. 

D I S C U S S I O N  

The hyperbolic character of this system is presumably the result of the approxi- 
mations that have been made, specifically the assumptions of a steady state, linearity, 
and a lack of viscosity. Unless consiq lerable care is exercised, the use of a hyperbolic 
system in a bounded region can lead to anomalous solutions. SANDSTROM (1966) 
solved this equation by the method of  characteristics and found that the radiation 
flux in certain cases was highly unusual. 

In this note we simply wish to point out that there is probably no fundamental 
objection to using this system if the solutions obtained remain physically realistic. 
In the analogous case of  a homogeneous rotating fluid treated by GR~ENSPAN (1964, 
1965) the dynamics are governed by a hyperbolic equation. Greenspan shows that 
viscous boundary layer corrections remove all mathematical and physical difficulties. 
For the problem considered in the last section, a similar correction is probably 
necessary though the details will not be pursued here. 
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