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Abstract5

The tides of an ice-covered ocean are examined using a Cartesian representation of the6

elastic and fluid equations. Although unconstrained by any observations, the ocean tides7

of a Neoproterezoic “snowball” Earth could be significantly larger than they are today.8

With the remaining ocean being substantially shallower than today, time-mean tidal-residual9

circulations could have been set up that are competitive with the circulation driven by10

geothermal heating. In any realistic configuration, the snowball Earth would have an ice11

cover that is in the thin shell limit, but by permitting the ice thickness to become large,12

more interesting ice tidal response can be found, ones conceivably of application to bodies13

in the outer solar system or hypothetical exoplanets.14

1 Introduction15

Several reasons exist for an exploration of the tides occurring in ice sheets, whether floating or16

land-confined. One reason is suggested by evidence that approximately 600 million years ago,17

during the Neoproterezoic, the entire Earth may have frozen, being everywhere covered with ice.18

Over the ocean a floating ice sheet may have existed with an estimated of several kilometers19

(the hard “snowball Earth”). Discussions of the evidence, primarily geological in nature, can20

be found in Hoffman and Schrag (2002). Ashkenazy et al. (2014; hereafter, A2014), describe a21

theoretical/modelling study of the oceanic circulation that might exist under an oceanic ice cover22

of order of several kilometers. The forcing they assume is purely geothermal, at the modern rate23
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of roughly 0.1W/m2 (Pollack et al., 1993; Davies, 2013), with some localized maxima over ridge-24

crests. They find an equatorially enhanced meridional overturning circulation, with transports25

up to 30Sv with a nearly homogeneous ocean, both in temperature and salinity. Some account26

is taken of the oceanic interaction with the overlying ice sheet.27

Whether or not a snowball Earth actually existed, the question of what the ocean might be28

like under such circumstances is an interesting theoretical problem. A modern analogue is in the29

outer solar system satellites Enceladus and Europa which, also hypothetically, have fluid oceans30

covered by multi-kilometer thick ice sheets. In contrast to the A2014, solution, discussion of31

behavior of those oceans has centered on tidal forcing (Greenberg et al., 1998;...).32

A comparatively large literature exists on tides induced in ice sheets by the oceanic tidal33

forcing at the outflow (e.g., Thomas, 2007; Arbic et al., 2008). In contrast, a tangential calcula-34

tion here is the body tide induced directly in very large ice sheets far from oceanic influence, and35

the tides induced in the ocean when overlain by an effectively infinitely thick ice cover. Some36

of the parameter ranges used here are far beyond anything reasonable for the Earth. Perhaps37

they have some relevance for another planet or satellite.38

Dynamical discussion of continental scale ice sheets such as those in Antarctica and Green-39

land is diffi cult for a number of reasons, including the specification of the appropriate boundary40

conditions at the inaccessible bottom of the glacier. One can speculate that the tidal response41

observable at the glacier surface is suffi ciently sensitive to the bottom boundary conditions that42

those conditions might be inferred.43

2 A Cartesian Configuration44

Because of all of the uncertainties of the physical setting of the Neoproterezoic Earth, the goal45

here is to understand the basic physics and to find orders of magnitude of the effects. Only a46

two-dimensional Cartesian system as in the Airy “canal theory”of water tides (Lamb, 1932), is47

used. Consider the situation in Fig. 1, in which an ice sheet of uniform thickness d̄ overlies an48

ocean of constant depth d. Below the ocean is an infinite elastic half-space. The fluid motion49

is computed with the half-space not moving, as if with the ocean tide being computed relative50

to the sea floor. Conceptually, as with ocean tides measured from tide gauges, tides within the51

elastic half-space will produce a modified tidal potential, U = U0 (1 + kL − hL) , where kL, hL52

are the conventional Love numbers (Munk and MacDonald, 1960; Lambeck, 1988). The net tide53

generating potential will be assumed to be,54

U = gHeikx−iσt = gηEq, (1)
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so that the fluid equilibrium height would be |ηEq| = H, but with the half-space subsequently55

treated as completely rigid (unmoving).56

2.1 Equations of an Elastic Sheet57

Rheological properties of ice, whether on land or floating, are not simple– encompassing elastic,58

viscous, and plastic flow laws. MacAyeal and Sergienko (2013) propose that for time-scales of less59

than about 10 days, treating sea ice as elastic is appropriate and thus reasonable for describing60

ordinary semi-diurnal or diurnal tides. Discussion of long-period tides, or the evection-dominated61

ones in outer-solar system satellites, requires revisiting the question.62

The ice is treated here as purely elastic with Lamé constants λ, µ and the physical and63

mathematical structure of the problem the free-mode analysis of Bromwich (1898), Press and64

Ewing (1951), and Ewing, Jardetzky and Press (1957, Ch. 5), but in the presence of a body-force.65

The Cartesian system governing an elastic plate is,66 {elastic1}

ρ̄
∂2ū

∂t2
= −σ2ρ̄ū = (λ+ µ)

∂

∂x

(
∂ū

∂x
+
∂w̄

∂z

)
+ µ∇2ū+ ρ̄

∂UT
∂x

(2a) {elasta}

ρ̄
∂2w̄

∂t2
= −σ2ρ̄w̄ = (λ+ µ)

∂

∂z

(
∂ū

∂x
+
∂w̄

∂z

)
+ µ∇2w̄ − gρ̄ (2b) {elastb}

Variables ū, w̄ in the plate are displacements, not velocities. Barred variables, ū, etc., will refer67

to displacements in the ice layer, unbarred ones to corresponding velocities in the ocean. ρ̄ is68

the density of ice, U has no vertical dependence in the thin ice layer and no y−dependence is69

considered. The background gravity g produces a resting static pressure d̄− ρ̄gz in the ice.70

What follows is in the spirit of the paper by Bromwich (1898) and who, as done in similar71

problems by Rayleigh and Love, defined the pressure as,72

p̄ (x, z) = −λ
(
∂ū

∂x
+
∂w̄

∂z

)
, (3)

taken as finite, but otherwise treated the medium as incompressible with,73 (
∂ū

∂x
+
∂w̄

∂z

)
= 0, (4) {nondiverge}

and implying λ → ∞. One advantage of this system is that it increases the resemblance be-74

tween the elastic and fluid equations. The sign of p̄ has been reversed here from the Bromwich75

definition, conventional in elasticity, in the interests of that analogy.76

In any realistically ice-covered ocean, the ice sheet thickness would be a very small fraction77

of the tidal wavelength, suggesting the use of equilibrium thin-plate theory (e.g., Landau and78
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Lifschitz, 1987) instead of the dynamical wave equations. That course is not followed so as to79

make it possible to include the interesting situation in which much thicker ice sheets are disturbed80

by tides, a configuration perhaps existing in the outer solar system or amongst exoplanets.81

2.2 Ocean Equations and Solutions82

In a non-rotating, constant density, ρ, ocean, −d ≤ z ≤ 0, and using the familiar coordinate

system with u,w being velocities in the positive x and z directions, {ocean1}

−iσρu = −∂ (p− gη̄)

∂x
(5a) {xmomentum}

−iσρw = −∂p
∂z
− gρ (5b) {hydrostatic}

∂u

∂x
+
∂w

∂z
= 0 (5c) {continuity}

p′ is the perturbation pressure.The system Eq. (5) is not assumed to be hydrostatic.83

2.3 Non-dimensional System84

Equations85

With many dimensional quantities defining the system (d, d̄, ρ, ρ̄, µ, σ, k, g), it proves conve-

nient to non-dimensionalize. A system equally useful in both the fluid and elastic media is not,

however, obvious. The one chosen here is based upon the conventional time and space scales

of ordinary water waves in a homogeneous fluid. Let all primed quantities be non-dimensional

and,

T = 1/
√
gk, L = 1/k, U = L/T =

√
g

k
, P = ρg/k

Ū = L, P̄ = ρ̄g/k, d = d′/k, d̄ = d̄′/k, σ = σ′
√
gk

(u,w) = U
(
u′, w′

)
, P = P ′p′, (ū, w̄) = Ū (ū, w̄) , p′ = P̄ p̄′

and the elastic equations become, {iceeqsnondim}

∂2ū′

∂t′2
= −ρ

ρ̄

∂p̄′

∂x′
+

1

γ2
∇′2ū′ +H ′

∂eik
′x′

∂x′
(6a)

∂2w̄′

∂t′2
= −ρ

ρ̄

∂p̄′

∂z′
+

1

γ2
∇′2ū′ − 1 (6b)

∂ū′

∂x
+
∂w̄′

∂z
= 0 (6c)

with γ2 = ρ̄g/µk =
(√

g/k/cs

)2
, cs =

√
µ/ρ,H ′ = Hk, k′ = 1. cs is the shear wave-speed in86

the ice.87
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The corresponding non-dimensional fluid equations are then,88 {nondimeqswater}

∂u′

∂t′
= −∂p

′

∂x′
+H ′

∂eik
′x′

∂x′
(7a)

∂w′

∂t′
= −∂p

′

∂z′
− 1 (7b)

∂u′

∂x
+
∂w′

∂z′
= 0 (7c)

Although k′ = 1, it is generally displayed below as a useful marker.89

Boundary Conditions90

Several (dimensional) boundary conditions must be considered. At the rigid sea floor, z =91

−d,92

w (−d) = 0.

At the ice-water interface, z = η, continuity of vertical displacement requires,93

w̄ (0) = w (0) / (−iσ) = η

and which has been linearized about z = 0 as done in conventional wave theories. The conven-94

tional water-wave dynamic boundary condition becomes one of continuity of normal stress,95

−p̄ (0) + 2µ
∂w̄ (0)

∂z
+ gρ̄w̄ (0) = −p (0)

At the top of the ice-layer, at z = d̄, the tangential stress must vanish,96

∂ū
(
d̄
)

∂z
+
∂w̄
(
d̄
)

∂x
= 0

again linearized about z = d̄. Also, the normal stress must vanish,97

−p̄
(
d̄
)

+ 2µ
∂w̄
(
d̄
)

∂z
+ gρ̄w̄

(
d̄
)

= 0.

Non-dimensionalizing as in the equations of motion, {bcs_ice_oceannondim}

0 = w′
(
−d′
)
, (8a) {nondimbcs}

w̄′ (0) = η′/
(
−iσ′

)
, (8b)

−p̄′ (0) +
2

γ2

∂w̄′ (0)

∂z′
+ w̄′ (0) = −p′, (8c)

∂ū′
(
d̄
)

∂z′
+
∂w̄′

(
d̄
)

∂x′
= 0, (8d)

−p̄′
(
d̄
)

+
2

γ2

∂w̄′
(
d̄
)

∂z′
+ w′

(
d̄
)

= 0 (8e)

From here on, the primes will be dropped, and unless otherwise specifically stated, all vari-98

ables are non-dimensional (but figures are mainly presented in dimensional form).99
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3 Ocean Alone100

For reference purposes, it proves helpful to first solve the tide problem in an ocean without an101

overlying ice sheet, and in an ice sheet without an underlying ocean, stuck fast to the half-space.102

Starting with the ocean alone, the problem is one in standard, forced, wave theory (Lamb, 1932;103

Kundu and Cohen, 2008), but is written out here to emphasize the parallel development in the104

ice.105

Assuming conventional irrotational motion (tidal forcing has no curl), write (u,w) = ∇ϕ,106

then107

ϕ =
ρ

iσ

(
p′ − gηeq

)
− gρz

iσ

and thus,108

∇2p = g∇2ηeq = −gρk2Heikx

with solution,109

p = −gρz + ρgHeikx + ρ
(
Eekz + Fe−kz

)
eikx (9) {pocean1}

with,110

ϕ =
ρ

iσ

(
Eekz + Fe−kz

)
eikx. (10) {phiocean1}

The boundary condition w (z = −d) = ∂ϕ (−d) /∂z = 0 requires, F = Ee−2kd and then,

p (x, z) = −gρz + gρHeikx + ρE (cosh k (z + d)) eikx (11) {p1}

ϕ (x, z) =
ρE

iσ
cosh (k (z + d)) eikx (12) {phi1}

absorbing a constant factor into E.111

Without overlying ice, the linearized free surface boundary conditions are,112

−iση (x) = w (0) =
kE

iσ
(sinh kd) ,

and Eq. (8ac) becomes p = 0 or,113

−η +H + iσ cosh kd = 0, (13) {surfbc1}

which is,114

[−σ cosh kd+ k sinh kd]E = −iσH (14) {surfbc2}

If H = 0, the free solution produces the usual dispersion relationship for free surface waves, here115

σ2 = k sinh kd, k = 1,
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and which would lead to resonance in Eq. (14).116

Setting dimensional k = 2π/6.3 × 106 (wavelength equal to the radius of the earth), and117

dimensional frequency as σ = 2π/12.42h (the modern M2 tide), Fig. 2 shows the ordinary118

tidal response, as a function of dimensional depth d, direct at low frequencies, inverted at high119

frequencies (small d) and a transition across resonance. The limit kd → 0, shallow water, is120

readily used if desired.121

4 Ice Alone122

Consider an elastic ice sheet subject to tidal forcing overlying a rigid half-space. Two reasons123

motivate this approach: (1) To understand the direct response of the ice to tidal forcing and (2)124

To understand the sensitivity of that response to boundary conditions at the ice bed– exploring125

the hypothesis that measurements of tidal response in the Antarctic ice sheet might shed some126

light on the conditions at the generally inaccesible base of the ice sheet.127

Absent any y−dependence– as is being assumed here– the displacements in the ice can be128

written generally as,129

ū =
∂ϕ̄

∂x
+
∂ψ̄

∂z
, w̄ =

∂ϕ̄

∂z
− ∂ψ̄

∂x

that is as the gradient of a potential and the curl of a stream function and whose solutions are130

coupled through the boundary conditions. By Eq. (6c),131

∇2ϕ = 0. (15) {laplace2}

(Eq. (15) is the seismological P−wave equation in the limit of the P−wave speed, α→∞.)132

Assume all variables are now proportional to exp (−iσt) . Substituting ψ̄ in the two momen-133

tum equations, dropping the forcing term, and cross-differentiating to eliminate the pressure134

produces,135

∇2
(
∇2ψ̄ + σ2γ2ψ̄

)
= 0,

or integrating136 (
∇2ψ̄ + σ2γ2ψ̄

)
= M (x, z) , (16) {psi1}

where M is an harmonic function that will be set to zero. The solution then to Eq. (16) is137

ψ̄ (x, z) = eikx
(
Aeimz +Be−imz

)
, m =

√
σ2γ2 − 1

and the corresponding velocities are138

ūψ (x, z) = imeikx
(
Aeimz −Be−imz

)
, w̄ψ (x, z) = −ieikx

(
Aeimz +Be−imz

)
.
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Substituting back into the homogeneous momentum equations produces p̄ψ = 0, pψ being the139

pressure associated with the stream function.140

Let the solution to Eq. (15) be141

ϕ̄ (x, z) = eikx
(
Cez +De−z

)
Substituting ϕ into the non-dimensional momentum equations produces,

∂2

∂t2
∂ϕ̄

∂x
= −ρ

ρ̄

∂p̄

∂x
+Heikx,

∂2

∂t2
∂ϕ̄

∂z
= −ρ

ρ̄

∂p̄

∂z
− 1

which leads to

ρ

ρ̄
p̄ (x, z) = −∂

2ϕ̄

∂t2
+Heikx − z (17) {pice}

= σ2ϕ̄+Heikx − z

= σ2
(
Cekz +De−kz

)
eikx +Heikx − z

The boundary conditions at z = 0 are now ū (0) = 0, w̄ (0) = 0, together with those at z = d̄

are, {iceallbc}

m (A−B) + k(C +D) = 0 (18a) {icea}

−ik (A+B) + k (C −D) = 0 (18b) {iceb}(
−m2 + k2

) (
Aeimd̄ +Be−imd̄

)
+ 2ik

(
Cekd̄ −De−kd̄

)
= 0 (18c) {icec}

A

(
2km

γ2
− 2ik

)
eimd̄ +B

(
−2km

γ2
− 2ik

)
e−imd̄ + C

(
−σ2 +

2k2

γ2
+ 2k

)
ekd̄+

D

(
−σ2 +

2k2

γ2
+ 2k

)
e−kd̄ = H (18d) {icee}

Taking µ =2.3×109 (Squire et al., 1995), γ ≈ 2.1. The dimensional values of η̄ = w̄
(
d̄
)
are142

shown in Fig. 3. For thin ice sheets, little or no tidal response occurs. As the ice thickens, the143

vertical displacement grows, as it does for high frequencies as the forcing phase speeds approach144

that for free shear waves in the ice. In the high frequency limit, a free solution which is a145

Rayleigh wave at the upper boundary of the ice sheet can produce a large response. Higher146

modes also are possible, although no real Earth tidal forcing exists with such phase speeds.147

Much interest exists in the determination of the boundary conditions at the base of the148

ice sheet– a generally inaccessible place. The surface response of a continental ice sheet does149

depend upon those lower boundary conditions. For realistic Earth ice sheets, the forced response150

is suffi ciently slight, whatever the basal boundary conditions, that the ability to measure the151

motions is somewhat doubtful, and thus the analysis is here placed in an Appendix.152
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5 Coupled Ice and Ocean153

The non-dimensional system of boundary conditions can be written, {iceandoceanallbc}

−ikA− ikB + kC + kD +
k

iσ
sinh (kd)E = 0, (19a)(

2

γ2
km− 2ik

)
A+

(
− 2

γ2
km− 2ik

)
B +

(
−σ2 +

2

γ2
k2 + 2k

)
C +

(
−σ2 +

2

γ2
k2 + 2k

)
D+(

iσ cosh kd+
k

iσ
sinh kd

)
E =

(
ρ̄

ρ
− 1

)
H, (19b)(

−m2 + k2
)
A+

(
−m2 + k2

)
B + 2ik2C − 2ik2D = 0, (19c)(

−m2 + k2
) (
Aeimd̄ +Be−imd̄

)
+ 2ik

(
Cekd̄ −De−kd̄

)
= 0, (19d)

A

(
2km

γ2
− 2ik

)
eimd̄ +B

(
−2km

γ2
− 2ik

)
e−imd̄ + C

(
−σ2 +

2k2

γ2
+ 2k

)
ekd̄+

D

(
−σ2 +

2k2

γ2
+ 2k

)
e−kd̄ = H (19e)

with the last two equations unchanged from those for ice-alone. Setting ρ̄/ρ = 1 is a useful154

approximation in 19b. Fig. 4 shows the contours, as a function of dimensionless σ and d̄ of η155

and η̄ and Fig. 5 the corresponding lateral displacements.156

6 Snowball Earth-Ocean157

The question raised here is the nature and possible influence of tides in a snowball-Earth-like158

environment. In the modern ocean, tides are believed to provide a significant fraction of the159

energy required to sustain the observed three-dimensional circulation (Munk and Wunsch, 1998),160

roughly about 50%, with much of the energy used to provide the vertical mixing. Almost all161

of the rest comes from the wind-field– assumed absent in an ice-covered world– although this162

inference remains somewhat insecure owing to the complexity of the response to buoyancy forcing163

at top and bottom.164

6.1 More Realism165

Tides of a realistic ocean can be considerably more complex, involving rotation, interaction with166

boundaries, topography, and stratification. Some properties even of the non-rotating canal the-167

ory remain robust in the presence of all of these complications as the barotropic solutions (no168

stratification) remain governed by gravity-wave physics even where rotation is important. Reso-169

nances still appear, although they can be generated by the presence of sidewalls and not just from170

travelling-wave version seen here. Particle velocities are strongly influenced by rotation, as would171
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the boundary-layer between the ocean and the base of the ice sheet. In a non-rotating ocean,172

an important mechanical boundary layer scale would be (A/σ)1/2 , becoming
(
A/
√
σ2 − f2

)1/2
173

where f = 2Ω sinφ, Ω being the Earth’s rotation rate, and φ the latitude and A is a hypothetical174

eddy-viscosity. At latitudes where σ ≈ f (the “inertial latitude”), the boundary layer physics175

are distinct. For semi-diurnal tide constituents, that occurs only poleward of about 70◦ latitude,176

but for diurnals it is at about 30◦.177

Numerous studies do exist of the boundary layer flows under ice in the Arctic (e.g., McPhee,178

2002; Cole et al., 2014) where rotation tends to be important or dominant. For obvious reasons,179

no observations exist of low-latitude sea ice-boundary layer interactions. Under-ice topography180

can be very rough, and how to model the fluid interactions at low latitudes is not so clear.181

A reasonable inference is that dissipation at the sea ice-water boundary would be at least as182

important as that over abyssal planes today, and possibly considerably greater.183

Of principle concern in discussing a snowball Earth is the topographic change: modern day184

tides have a substantial fraction of their dissipation occurring in the shallow regions of the185

continental margins (Egbert and Ray, 2001). Tidal response in shallow water, d′ << d, is186

largely a “co-oscillation” forced by the incoming tide from deeper water, rather than being a187

direct response to the local forcing. In an ice-covered ocean with shallow margins, the deep188

water tide would tend to undergo reflection as the ice-lid becomes ever-more effective as d′/d̄189

vanishes, and it is a reasonable surmise that continental margin dissipation would be greatly190

reduced relative to today’s values (See Fig. 7.)191

The second major tidal dissipation mechanism in the modern ocean is through baroclinic192

conversion from the stratification and the presence of topography (e.g., Egbert and Ray, 2000). If193

the snowball ocean is nearly unstratified as in the A2014 results, baroclinic conversion would also194

be much reduced. Thus both major dissipation mechanisms become weaker, and the perhaps195

paradoxical inference is that tides of an ocean with an ice-lid are likely to be considerably196

stronger than they are today. An important caveat is that proximity to resonance can be a197

sensitive function of the continental configuration and which will have changed greatly through198

millions of years.199

6.2 Influence on the Circulation200

Consider the energetics of a snowball Earth ocean. The A2014 thermal forcing of 0.1W/m2
201

corresponds to a net power input of 3.6×1013W, (36 Terrawatts, TW), an impressive amount of202

energy compared to estimates of the energy required to maintain the modern ocean circulation203

of roughly 2TW. On the other hand, the A2014 solutions depict a circulation with a thermal204

range of about 0.4◦C, and so the Carnot effi ciency would be about 0.4/273= 0.0015, reducing the205
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useable power to about 50GW. This value is probably an upper bound on the effi ciency (e.g.,206

Peixoto and Oort, 1992). Is it possible that the tides of such an ocean would be energetically207

competitive? Tidal forcing, in contrast, is a direct mechanical driver of kinetic energy; whether208

a significant large-scale time-mean circulation is generated in practice has to be separated from209

the question of overall energy input and dissipation.210

In the modern ocean, particularly in shallow water, significant residual circulations result211

from strong tidal flows (e.g. barotropic ones, Maier-Reimer, 1977; Zimmerman, 1978; and212

baroclinic, King et al., 2009; Xing et al., 2011; Grisouard and Bühler, 2012). Continuing down213

this speculative path, one might infer that shallower regions of a snowball ocean would produce214

significant tidally-driven circulations. These would necessarily interact with any circulation215

also present from convective driving. In general, the strength of rectified flows is inversely216

proportional to the square of the water depth (e.g., Zimmermann, 1978) and would thus depend217

upon just how much residual ocean water remained, as well as upon the bottom topography. Is218

it possible that the circulation established by a barotropic or baroclinic tidal flow could compete219

with that driven by the geothermal heating? Without actually answering that question, note220

that a 1mm/s meridional barotropic flow, extending the width of the present Pacific Ocean221

(10,000km) in a water depth of 2km, would produce a transport of about 20Sv, as compared to222

the 30Sv maximum estimated by A2014 for the geothermal response.223

Oceanic general circulation models usually have covert sources of energy, hidden in the224

various sub-grid-scale eddy-mixing schemes. Explicit energetics would govern the breakdown of225

an eddy-field derived from instabilities of the larger-scale flows. Other processes, such as those226

generally ascribed to the breaking of internal waves, internal tides and related phenomena, would227

however, have power sources hidden in eddy mixing coeffi cients. Most of this physics requires a228

stratified fluid, and as the A2014 ocean is nearly unstratified, the role of tidal mixing is far from229

obvious.230

7 Other Processes231

For obvious reasons, none of the results as applied to the snowball Earth are definitive, and232

many unknowns and complications intervene. Some interesting physics problems arise. Among233

other intriguing complications not discussed here are the role of the changed Earth rotation234

rate and length of the month at times approaching -1GY when the day was probably about 22235

hours long, and with about 13 synodic months in the year (Bills and Ray, 1999; Williams, 2000).236

These changes are consequences of tidal friction and the resulting braking of the Earth’s spin237

over time.238
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If the modern ocean depth is reduced by half, and assuming that 600 million years ago that239

the salt amount in the ocean was similar to today, salinity would have roughly doubled to about240

7% of the water mass. A salty fluid, heated from below can be unstable to double-diffusive241

processes (see e.g., Turner, 1973; Brandt and Fernando, 1995) forming a layered circulation.242

Whether over millions of years that possibility persists, and what would be the consequences243

of any annual cycling at low latitudes in the ice-cover, has not been discussed. If some strati-244

fication does persist, then baroclinic conversion from the barotropic tide can occur, a spatially245

dependent mixing would arise, and a whole suite of theoretical problems can be defined includ-246

ing the baroclinic mean flows already alluded to above. Whether any possibility exists of an247

observational test of such interesting configurations is unclear, and we leave the problem as one248

of near-total speculation.249

Appendix. Basal Boundary Condition Sensitivity250

The equations governing an ice sheet frozen to a rigid underlying half-space are in Eqs. (??). If251

the the no-slip boundary condition (Eq. 18a) is replaced by one of no shear stress,252

A
(
−m2 + k′2

)
+B

(
−m2 + k′2

)
+ C

(
2ik′2

)
+D

(
−2ik′2

)
= 0.

Fig. 8 displays the dimensionalized solutions ū
(
d̄
)
for an M2 tidal forcing for the two boundary253

conditions. No-slip lateral motion is only about 1% of that for free-slip for realistic thicknesses254

which in principle would permit determination of the the appropriate boundary condition for255

surface displace (shear) measurements. On the other hand, the lateral displacement is of the256

order of microns, even for free slip, and the feasibility of detecting such small values in the257

presence of Earth noise is obscure.258
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