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Abstract. This paper presents the ECCO v4 non-linear in-

verse modeling framework and its baseline solution for the

evolving ocean state over the period 1992–2011. Both com-

ponents are publicly available and subjected to regular, au-

tomated regression tests. The modeling framework includes

sets of global conformal grids, a global model setup, im-

plementations of data constraints and control parameters, an

interface to algorithmic differentiation, as well as a grid-

independent, fully capable Matlab toolbox. The baseline

ECCO v4 solution is a dynamically consistent ocean state

estimate without unidentified sources of heat and buoyancy,

which any interested user will be able to reproduce accu-

rately. The solution is an acceptable fit to most data and has

been found to be physically plausible in many respects, as

documented here and in related publications. Users are being

provided with capabilities to assess model–data misfits for

themselves. The synergy between modeling and data synthe-

sis is asserted through the joint presentation of the model-

ing framework and the state estimate. In particular, the in-

verse estimate of parameterized physics was instrumental in

improving the fit to the observed hydrography, and becomes

an integral part of the ocean model setup available for gen-

eral use. More generally, a first assessment of the relative

importance of external, parametric and structural model er-

rors is presented. Parametric and external model uncertain-

ties appear to be of comparable importance and dominate

over structural model uncertainty. The results generally un-

derline the importance of including turbulent transport pa-

rameters in the inverse problem.

1 Introduction

The history of inverse modeling in oceanography goes back

at least 4 decades (see Wunsch, 2006, for a general pre-

sentation). The canonical oceanographic inverse problem

as implemented by Wunsch (1977) consisted in estimating

the time mean absolute ocean circulation from synoptic,

ship-based, hydrography transects. The physical model com-

bined thermal-wind shear (diagnosed from observations) and

a continuity equation. The model parameter to be estimated

(i.e., the control vector) was the “reference level velocity”.

Least squares provide an adequate formulation to this inverse

problem and a practical method to avoid misinterpreting geo-

physical noise (synoptic eddies, internal waves, etc.) for time

mean ocean circulation features (Wunsch, 1977).

The original implementation has been extended substan-

tially over subsequent decades, and some of the key techni-

cal developments are worth recalling (see also Wunsch and

Heimbach, 2013a, for a review of the state of the art), as

they provide the context for the present work. Non-linearities

were introduced (Mercier, 1986) to incorporate optimal inter-

polation of hydrographic data in the inverse problem. While

diapycnal and horizontal diffusion were also introduced early

on (Schott and Zantopp, 1980; Olbers et al., 1985), the need

for extending the inversion problem to parameterized advec-

tive eddy transports (Gent and Mcwilliams, 1990) was not

fully appreciated until the study of Ferreira et al. (2005).

Time dependency and the use of Lagrange multipliers (i.e.,

the adjoint method) were first introduced in ocean inverse
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Figure 1. Three possible approaches to gridding the globe. (Left) LL maps the earth to a single rectangular array (one face). (Center) CS (six

faces). (Right) LLC (five faces). The faces of CS and LLC are color-coded; LL is only split four ways for rendering. Acronyms are defined

in Sect. 2.

modeling by Thacker and Long (1988) and Holland and

Malanotte-Rizzoli (1989) and applied to general circulation

models by Tziperman and Thacker (1989) and Tziperman

et al. (1992a, b). Later on, algorithmic differentiation (AD)

was introduced, making the use of Lagrange multipliers more

practical (Griewank, 1992; Giering and Kaminski, 1998). Its

application (Marotzke et al., 1999; Heimbach et al., 2002,

2005) to the Massachusetts Institute of Technology general

circulation model (MITgcm; Marshall et al., 1997; Adcroft

et al., 2004b) allowed for implementation of the time-varying

non-linear inverse problem, as envisioned by Wunsch and

Minster (1982) and Wunsch (1984), to the case of actual data

(Stammer et al., 2002; Ferron and Marotzke, 2003).

The MITgcm AD capabilities remain exceptional amongst

general circulation models. Over the last decade, in the con-

text of the Estimating the Circulation and Climate of the

Ocean (ECCO) project, the MITgcm non-linear inverse mod-

eling framework (using the adjoint method and algorithmic

differentiation) has become a common tool for data synthe-

sis, applied by many investigators to derive ocean state esti-

mates (Stammer et al., 2004; Wunsch et al., 2007; Köhl et al.,

2007; Köhl and Stammer, 2008; Forget et al., 2008b; Wunsch

and Heimbach, 2009; Hoteit et al., 2009; Forget, 2010; Ma-

zloff et al., 2010; Köhl et al., 2012; Speer and Forget, 2013;

Köhl, 2014; Losch et al., 2014; Dail and Wunsch, 2014).

General circulation models implement the primitive equa-

tions, which extend far beyond the physics and numerics

used in common inverse box models. On the one hand, they

readily provide a versatile tool for dynamical interpolation

of virtually all types of observations. On the other hand, nu-

merical modeling has to be regarded as an integral part of

non-linear inverse modeling, and as a primary responsibility

of groups carrying ocean state estimation. Indeed, the qual-

ity of the model and the adequacy of its settings determine

the physical consistency of ocean state estimates. Hence the

state estimation group at MIT has become a main contribu-

tor of MITgcm code including but not limited to the imple-

mentation of the estimation framework. Furthermore, the de-

velopment of the new ECCO version 4 (ECCO v4) estimate

described here started with an extensive revisit of MITgcm

settings.

These considerations prompt the joint depiction of forward

model setup and estimation framework developments as part

of ECCO v4, and of the baseline solution of the non-linear

inverse model. The overarching goal, which is essential to

the oceanographic community, is the unification of the two

pillars of science, namely observations (the emphasis here

is on data of global coverage) and theory (of which general

circulation models are a vehicle). Thus, the synergy between

data analysis and modeling is a guiding thread of this paper.

As a complement to this paper, and a number of associated

publications, the setup and baseline solution of ECCO v4 are

thoroughly documented by an extended suite of diagnostics

(the “standard analysis” provided as the Supplement) that

users can readily download or reproduce. Daily and monthly

regression tests are run for, respectively, a few time steps

and 20 years. This will allow, for the foreseeable future, any

user to generate additional output that may be needed for ex-

tended data and model analyses. Thus, the authors aim to

provide ECCO v4 as a fully integrated non-linear inverse

modeling framework, including its baseline time-dependent

solution, that any interested user can readily analyze and/or

accurately re-run.

The foundation of the ECCO v4 model setup is a set of

global grids of the earth’s surface (Sect. 2). The design, im-

plementation and specification of the forward model setup

and of the estimation framework are presented in Sects. 3 and

4, respectively. The baseline ECCO v4 solution (the ECCO

v4, release 1 state estimate) is the subject of Sect. 5, which is

followed by conclusions and perspectives (Sect. 6).

2 Global grids

The most visible grid improvement, as compared with earlier

ECCO configurations, is the extension of the gridded domain

to the Arctic. This limitation of ECCO estimates produced

until 2008 was due to the use of a latitude–longitude grid

(LL; left panel of Fig. 1) that simply follows straight lines

in spherical-polar projection, and requires an exponentially

decreasing time step when approaching the North Pole.
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Figure 2. Average grid spacing for LLC90 (in km) computed as the square root of grid cell area. LLC90 denotes the LLC grid with 90 grid

points as the common face dimension (i.e., along one-quarter of the earth’s circumference at the Equator).

The cubed-sphere grid (CS; center panel in Fig. 1) has

been successfully used in various MITgcm calculations (e.g.,

Menemenlis et al., 2005; Marshall et al., 2007b) resolving the

Arctic. The CS grid is a conformal mapping of a sphere to

a cube surface, such that each face contains one-sixth of the

earth gridded (Rančić et al., 1996; Purser and Rančić, 1998).

At its eight vertices (cube corners), CS grid lines converge

exponentially as resolution increases, but more slowly than

for LL at geographic poles.

However, a number of shortcomings of CS have been

noted. First, loss of orthogonality near the cube corners is

exacerbated when increasing horizontal resolution. Second,

some of the vertices have to be placed on ocean-covered ar-

eas, and have an exceedingly high resolution, requiring un-

necessarily small time steps. Third, such grids represent an

obstacle for new users who were accustomed to latitude–

longitude grids. These considerations led to the design of the

Lat-Lon-Cap grid (LLC; right panel in Fig. 1) such that

1. the grid reverts to a simple LL sector between 70◦ S and

57◦ N;

2. grid vertices are located over land; and

3. grid heterogeneities remain acceptable at 1
48
◦ resolu-

tion.

At mid-latitudes, within the LL sector, the LLC grid is locally

isotropic, with grid spacing varying in cos(ϕ), where ϕ de-

notes latitude. At low latitudes, LLC is refined in the merid-

ional direction to better resolve the tropical system of zonal

currents1. Grid scaling properties are shown in more detail in

Figs. 2 and 3. The LL sector mesh derives from a simple ana-

lytic formulation based on geographic latitude and longitude.

Users who may not be particularly invested in high-latitude

research may skip over the rest of this section, and simply

extract the LL sector (70◦ S and 57◦ N) out of global LLC

fields (see “Code availability” section).

Poleward of 57◦ N, LLC is topologically equivalent to CS

minus one cube face (Fig. 1). Details of the grid generation

1An alternative version of LLC that remains locally isotropic in

the tropics is also available.
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Figure 3. Grid spacing details for LLC90 as a function of latitude, in

km. Between 70◦ S and 57◦ N, blue and red curves show meridional

and zonal grid spacing, respectively. Poleward of 70◦ S and 57◦ N,

grid lines deviate from meridians and parallels, and LLC becomes

zonally asymmetric (see Fig. 2), leading to the depicted grid spacing

ranges.

method are reported in Appendix A. The vertices of the Arc-

tic cap are placed at a latitude of 67◦ N and in a specific

orientation such that they all fall over land (Fig. 2, middle

panel)2. Between the LL sector and the Arctic cap, the grid

makes a gradual, conformal transition that is evident in Fig. 3

between 57 and 67◦ N. To the south of 70◦ S, LLC has two

vertices that are again placed over land at a latitude of 80◦ S

and away from the Ross and Weddell ice shelves (Fig. 2, right

panel).

Looking beyond the immediate need for a truly global

coarse-resolution grid, we chose to generate a parent 1
48
◦

global grid3. The main advantages of this approach are that

a full suite of lower-resolution grids readily descend from the

parent grid, and that the entire suite of commensurate grids

share grid lines. Thus, in principle, one can easily nest back

and forth between grids of different resolution. These global

grids are being used in a number of model setups at 1◦ reso-

lution (Danabasoglu et al., 2014; Marshall et al., 2014; Köhl,

2014) and at full resolution (D. Menemenlis, personal com-

munication, 2014).

2For any given Arctic face dimension, LLC has the added ad-

vantage of an increased resolution in the Arctic as compared with

CS, which has vertices at 45◦ N.
3The resolution along the Equator is quoted as 1

48
◦ (see Fig. 3

for details).
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The parent 1
48
◦ global grid has 17 280 longitudinal grid

cells. It is labelled “LLC4320” since the common face di-

mension (i.e., the number of points along one-quarter of the

earth’s circumference at the Equator) is 4320. This grid size

was chosen to maximize the number of integer factors avail-

able for coarsening the parent grid and for partitioning the

computational domain in parallel computer environments4.

It has 64 whole-integer factors in total, so that the 1
48
◦ grid

can readily, accurately, be coarsened to, e.g., 1
24

, 1
16

, 1
12

, 1
8
,

1
6
, 1

4
, 1

3
, 1

2
, 1, 2, or 4◦. This is a desirable property for a long-

term project such as ECCO, in which spatiotemporal res-

olution is expected to increase in the future as computing

capability and the observational database will keep increas-

ing. A high degree of factorization also provides a conve-

nient basis for downscaled regional computations that em-

ploy boundary conditions from the state estimate (Sect. 5).

Advanced gridding has clear advantages from the stand-

point of numerical ocean modeling. It can however put addi-

tional burdens on users of ocean model output, who may find

themselves coding the same diagnostics over and over again

to accommodate different grids. One common approach is to

distribute fields that were interpolated to a simpler grid (e.g.,

LL). This approach, however, tends to introduce sizable er-

rors (e.g., in areal integrals and transports). A different and

simple approach to the analysis of model output is chosen

here that does not alter the results but alleviates the burden of

grid specifics when analyzing model output – the gcmfaces

analysis framework that mimics the gridded earth decompo-

sition of general circulation models in Matlab (Appendix C).

3 Model configuration

The model configuration presented below is the ECCO v4

setup used in state estimation (Sects. 4 and 5) and based on

the LLC90 grid (Sect. 2). Variants of the ECCO v4 setup

are also used in un-optimized model simulations (Danaba-

soglu et al., 2014; Marshall et al., 2014). The setup uses fully

supported options of MITgcm software, is archived and reg-

ularly subjected to regression testing (Appendix F), and is

freely available along with the MITgcm itself (“Code avail-

ability” section).

The MITgcm, as configured in ECCO v4, solves the hy-

drostatic, Boussinesq equations (Marshall et al., 1997) us-

ing the z∗ rescaled height vertical coordinate (Adcroft and

Campin, 2004) and the vector-invariant form of the momen-

tum equation (Adcroft et al., 2004a). This latter choice yields

a discretized momentum equation without metric terms,

which simplifies the handling of elaborate grids such as

LLC90 (Sect. 2). This section summarizes the model equa-

tions, settings, and new MITgcm features (MITgcm Group,

4Number 17 280 is known as the compositorial of 10, i.e., the

product of composite numbers less than or equal to 10 (see Wells,

2011).

2002; Adcroft et al., 2004b) used in ECCO v4. The novelty

here largely resides in additions of forward model features to

the body of adjointed codes (Sect. 4) and in their use in the

state estimate (Sect. 5). Table 1 provides a list of basic model

settings.

The relative importance of various model settings gen-

erally depends on the ocean state characteristic of inter-

est. Here, a selection of ocean state characteristics is made

amongst squared model–data distances (see Sect. 4), monthly

time series of global mean quantities, and time-averaged

meridional transports (Table 2). The selected characteris-

tics in Table 2 are representative of the multi-faceted nature

of ocean state estimation. These characteristics are used to

gauge perturbations of 20-year solutions to various model

settings (Table 3) and to estimated model parameter adjust-

ments (see Sects. 4 and 5). They are also used to verify state

estimate re-runs (first three rows of Table 3; Appendix F).

3.1 Basic equations

For a water column that extends from the bottom at z=−H

to the free surface at z= η, the z∗ vertical coordinate is de-

fined as z= η+ s∗z∗ with the scaling factor s∗ = 1+ η/H .

In this section, the notation ∇z∗ indicates the nabla operator

at constant z∗, i.e., in a plane of constant z∗ value. The z∗

coordinate set of equations was introduced by Adcroft and

Campin (2004) (their Eqs. 9–11 and 13). Written in vector-

invariant formulation, they read as

∂v

∂t
+ (f + ζ )k̂× v+∇z∗KE+w

∂v

∂z
+ g∇z∗η+∇h8

′

=Dz∗,v +D⊥,v +Fv, (1)

∂8′

∂z
= g

ρ′

ρc

, (2)

1

H

∂η

∂t
+∇z∗(s

∗v)+
∂w

∂z∗
= s∗F , (3)

∂(s∗θ)

∂t
+∇z∗(s

∗θvres)+
∂(θwres)

∂z∗

= s∗(Fθ +Dσ,θ +D⊥,θ ), (4)

∂(s∗S)

∂t
+∇z∗(s

∗Svres)+
∂(Swres)

∂z∗

= s∗(FS +Dσ,S +D⊥,S), (5)

where v is the horizontal velocity, w∗ = w/s∗ is the vertical

velocity in z∗ coordinates5, k̂ is the vertical unity vector, f

and ζ =∇×v are the planetary and relative vorticity vertical

component, KE is the horizontal kinetic energy, g is gravity,

ρ′ is the density anomaly relative to the constant Boussinesq

density ρc (ρ = ρc+ρ
′),8′ is the pressure anomaly scaled by

5For practical reasons, the vertical velocity calculated by the

model (w per Eq. 3) is neither the z∗ vertical velocity w∗ nor the

true vertical velocity that would contain additional contributions

(Adcroft and Campin, 2004, see their Eq. 4).

Geosci. Model Dev., 8, 3071–3104, 2015 www.geosci-model-dev.net/8/3071/2015/
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Table 1. Selected interior and boundary model parameters. A more exhaustive list of model parameter settings is available within the model

standard output (text file). For each group of parameters, the file where it is defined at run-time is indicated in square brackets in the last

column. Parameters reported as “first guess” are further adjusted as part of state estimation (see Sects. 4 and 5).

Description Value MITgcm parameter name

(Momentum equation) [data]

Time step 3600 s deltaTmom

Harmonic vertical viscosity 5× 10−5 m2 s−1 viscAr

Harmonic horizontal viscosity (see text) 2× 10−2 viscAhGrid

(Tracer equations) [data, data.gmredi]

Time step 3600 s deltaTracer

First-guess GM intensity 103 m2 s−1 GM_background_K

First-guess diapycnal diffusivity 10−5 m2 s−1 diffKrT,diffKrS

First-guess isopycnal diffusivity 103 m2 s−1 GM_isopycK

(Sea floor boundary) [data]

Quadratic bottom drag 10−3 bottomDragQuadratic

(Open-ocean surface boundary) [data.exf]

Ocean albedo 0.10 exf_albedo

(Ice-covered surface boundary) (data.seaice)

Ice albedo (αi) 0.66< αi < 0.84 αi =SEAICE_*IceAlb*

Snow albedo (αs) 0.70< αi < 0.90 αi =SEAICE_*SnowAlb*

Maximum ice concentration 0.95 SEAICE_area_max

constant density (8′ = p′/ρc), θ and S are the potential tem-

perature and salinity, Dz∗ ,D⊥,Dσ are subgrid-scale (SGS)

processes parameterized as mixing horizontally, vertically

or along iso-neutral surfaces, and Fv, F , Fθ , FS are the

forcing terms that are generally concentrated at the surface.

Fields θ and S are advected (in Eqs. 4 and 5) by the residual-

mean velocity field (vres,wres)= (v,w)+ (vb,wb) where

(vb,wb) is the bolus velocity parameterizing the effect of un-

resolved eddies (Gent and Mcwilliams, 1990, GM hereafter).

The z∗ coordinate formulation introduces a major differ-

ence into the continuity equation (Eq. 3) as compared to the

z coordinate. Thus, even in the absence of freshwater input

(F = 0), the divergence of the three-dimensional flow field

(u,v,w) is no longer zero. Then, within the continuity equa-

tion, the rate of change of sea-surface elevation (the first

term in Eq. 3) is uniformly distributed along the water col-

umn (as denoted by the 1/H scaling). The vertical velocity

component w is obtained diagnostically from the continu-

ity equation (Eq. 3). Furthermore, the horizontal momentum

equation (Eq. 1) differs from the z coordinate case by the

expression of the horizontal pressure gradient (Adcroft and

Campin, 2004, Eq. 15):

∇h8
′
=∇z∗8

′
+ g

ρ′

ρc

∇z∗

(
η

(
1+

z∗

H

))
, (6)

where the second term represents the effect of gravity act-

ing on the slope of the constant z∗ surface. The verti-

cal momentum equation (Eq. 2) is reduced to the hydro-

static balance and sea-water density ρ is evaluated using

the Jackett and McDougall (1995) equation of state in which

pressure is assumed to be a function of only depth (p =

−ρcgz
∗) so that any compressible effect is completely re-

moved.

Apart from the horizontal grid and the vertical coordinate

z∗, the choice of time-stepping options used in ECCO v4 rep-

resents another major change compared to previous ECCO

configurations. The time-discretized version of Eqs. (1)–(5)

is reported in Appendix B, which is particularly important

to understand budget and other diagnostics (Appendix C).

In summary, the staggered time-step approach is used, along

with Adams–Bashforth 3 (AB-3) time-stepping for momen-

tum advection and the Coriolis term, third-order Direct Space

Time tracer advection (DST-3; a multi-dimensional scheme),

and third-order implicit tracer vertical advection (uncondi-

tionally stable). These options improve the model stabil-

ity, allowing for a longer time step. Thus, the time-step re-

striction due to the Coriolis term in the Arctic is alleviated

by the use of AB-3 (1t = 1 h was unstable with AB-2 and

εAB ∼ 0.1). Also, the chosen combination of staggered time-

stepping and tracer advection schemes increases the stabil-

ity limit related to internal-wave speed. With these choices

a time step of 1t = 1 h is used with the LLC90 grid (Ta-

ble 1).

3.2 Volume and tracer conservation

ECCO v4 uses a non-linear free surface combined with real

freshwater flux forcing and the z∗ coordinate. This approach

www.geosci-model-dev.net/8/3071/2015/ Geosci. Model Dev., 8, 3071–3104, 2015
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Table 2. Ocean state characteristics used to verify 20-year model

solutions (Appendix F) and gauge their sensitivity (Tables 3 and 8;

Figs. 7, 8 and 11). The top seven rows list squared model–data dis-

tances defined in Sect. 4. The corresponding data sets are indicated

under “Description”, where T , S, SST, SSS, SLA, and MDT, re-

spectively, stand for potential temperature, salinity, sea surface tem-

perature, sea surface salinity, sea level anomaly, and mean dynamic

topography. The bottom six rows list model diagnostics where T , S,

η+ηips, and V , respectively, stand for potential temperature, salin-

ity, free surface height (including ηips; the weight of sea ice plus

snow per unit area divided by ρc; see Campin et al., 2008), and vol-

ume. Global averages and meridional transports of T , S, and V are

computed over the entire water column.

Name Description

jT 2008–2010 Argo T

jS 2008–2010 Argo S

jTs 1992–2011 Reynolds SST

jSs 1992–2011 climatological SSS

jIs 1992–2011 ice-cover fraction

jHa 1992–2011 large-scale SLA

jHm 1992–2011 MDT

mH Monthly global mean η+ ηips

mT Monthly global mean T

mS Monthly global mean S

tV 2008–2010 meridional V transport

tT 2008–2010 meridional T transport

tS 2008–2010 meridional S transport

allows one to include material exchanges through the free

surface in a physically intuitive way (Campin et al., 2008)

and to achieve exact tracer conservation, both locally and

globally (Campin et al., 2004). To illustrate this point, it is

useful to start from the vertical integral of Eqs. (3)–(5), which

is

∂η

∂t
+∇ ·

η∫
−H

v dz=
PmE

ρc

, (7)

∂

∂t
((η+H)θ) + ∇ ·

η∫
−H

θ vres dz=
Qnet

ρcCp
+

η∫
−H

Dσ,θ dz,

(8)

∂

∂t
((η+H)S) + ∇ ·

η∫
−H

S vres dz=
Sflux

ρc

+

η∫
−H

Dσ,S dz, (9)

where the overbar denotes vertical averaging according to

ϕ = 1
(η+H)

∫ η
−H
ϕ dz.

The forcing terms F , Fθ , and FS in Eqs. (3)–(5) are con-

centrated at or near the surface (unless geothermal heating at

the bottom is active) and have been replaced by their integral

form in Eqs. (7)–(9), namely the net freshwater input at the

surface (PmE, in kgm−2 s−1), the net heat flux into the wa-

ter column (Qnet, in Wm−2) and the salt flux at the surface

(Sflux, in gm−2 s−1), which is zero in the absence of sea ice

and salinity relaxation (see Sect. 3.5).

With the non-linear free surface, the water column thick-

ness varies as the free surface goes up and down (as is ap-

parent in Eqs. 7–9). With the z∗ coordinate, this variation is

distributed vertically over all grid cells6. The fact that η en-

ters the continuity equation (Eq. 7) also through
∫ η
−H

dz ren-

ders the free surface non-linear; furthermore, time-dependent

grid-cell thickness introduces many more non-linearities that

required code modifications to ensure efficient adjoint code

generation via AD (Sect. 4.2).

Earlier ECCO configurations relied on the linear free-

surface method (LFS), where column thickness and grid-cell

thickness are fixed in time. The LFS version of Eqs. (7) and

(9) is

∂η

∂t
+∇ ·

0∫
−H

v dz= εFW

PmE

ρc

, (10)

∂

∂t
(HS)+

PmE

ρc

S̃ + ∇ ·

0∫
−H

S vres dz

=
Sflux

ρc

+

0∫
−H

Dσ,S dz. (11)

The Goldsbrough–Stommel circulation (Stommel, 1984) can

be accounted for by setting εFW = 1 (virtual freshwater) or

ignored (εFW = 0). However, since grid-cell thickness is held

fixed with LFS, the dilution effect due to surface freshwater

flux needs to be represented explicitly as a virtual salt flux

(second term in Eq. 11) using either the local surface salin-

ity S or a constant So as S̃, with drawbacks in both cases

(see, e.g., Campin et al., 2008). By contrast, the non-linear

free-surface formulation incorporates the dilution effect very

naturally, within the time derivative of the water-column salt

content (first term in Eq. 9).

The symmetry between continuity (Eq. 7) and tracer

(Eqs. 8 and 9) equations allows for strict tracer conserva-

tion (Campin et al., 2004) when discretized consistently (Ap-

pendix B). In contrast, in the LFS case, this symmetry is lack-

ing (∂η/∂t in Eq. 10 has no counterpart in Eq. 11), resulting

in artificial tracer loss or gain (unless a global correction is

added).

3.3 Tracer transports

Ocean tracers are advected by the residual mean velocity

vres,wres (Eqs. 4 and 5). The present ECCO v4 uses the third-

order DST scheme in the horizontal, and the implicit third-

6Each z∗ =−αH level is a moving z surface; z= z∗+(1−α)η;

z= η at z∗ = 0; z=−H at z∗ =−H .
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Table 3. Regression testing of (top three rows; Appendix F) and sensitivity experiments conducted with (subsequent rows) the 20-year state

estimate. The sensitivity experiments pertain to discrete switches in tracer advection, momentum, and boundary layer schemes (details are

reported in Sect. 3). Ocean state characteristics that are used to gauge the sensitivity of ocean simulations are listed in Table 2. Departures in

each characteristic are computed relative to the state estimate and normalized by the baseline result (for jT, . . . , jHm) or its standard deviation

(for mH, . . . , tS). Positive numbers denote percentages (for differences above 1 %), whereas parenthesized negative numbers are powers of

10 (for differences below 1 %).

Experiment jT jS jTs jSs jIs jHa jHm mH mT mS tV tT tS

Computer update (−6) (−6) (−7) (−6) (−5) (−6) (−7) (−5) (−5) (−5) (−6) (−6) (−5)

Model update (65 g) (−7) (−6) (−6) (−5) (−6) (−4) (−4) (−5) (−5) (−5) (−6) (−6) (−5)

24 proc. clusters (−6) (−8) (−6) (−5) (−5) (−4) (−4) (−4) (−5) (−5) (−6) (−6) (−5)

Explicit vert. DST-3 (−3) (−2) (−3) (−2) (−3) (−3) (−2) 60 50 37 (−3) (−2) 4

Third-order upwind (−4) (−3) (−3) (−3) (−4) (−4) (−3) (−2) (−2) (−2) (−4) (−3) (−3)

Flux-limited DST-3 3 6 1 (−2) (−3) (−2) 13 98 93 62 1 3 22

C-D scheme 40 52 17 7 2 25 64 69 13 56 2 5 53

Added viscosity 6 7 2 6 (−2) 3 6 40 28 31 (−2) 1 22

Added bottom visc. 4 5 1 6 (−2) 2 3 18 11 16 (−2) 1 17

KPP instead of GGL 4 11 7 10 11 4 3 148 149 95 (−2) (−2) 22

Added geo. heating (−3) (−3) (−3) (−3) (−4) (−3) (−3) (−2) 47 (−2) (−3) (−2) 1

order upwind scheme in the vertical. Previous ECCO config-

urations used the explicit third-order upwind scheme in all

directions. Flux-limited advection schemes are also available

in forward mode, although they are not used in the state esti-

mate (Sect. 5), since they are not yet in the body of adjointed

codes (Sect. 4). Choices of advection schemes are a con-

cern in ocean state estimation, since their structural proper-

ties cannot generally be controlled by continuous parameters,

and since numerical diffusion and advective overshoots could

preclude an adequate fit to observations. Their importance

can be gauged from Table 3. Thus, activating flux limiters has

a sizable influence over 20 years, which is generally smaller

than the impact of activating the C-D scheme (defined in the

next section), but exceeds the impact of activating geother-

mal heating for example (Table 3; see next section). Global

mean times series often show an exceptionally high sensitiv-

ity to a variety of model settings, and to surface boundary

layer settings in particular (Table 3).

Diffusion includes diapycnal and isopycnal components,

the GGL mixed-layer turbulence closure (Gaspar et al.,

1990), and simple convective adjustment. The latter (GGL

and convective adjustment) are used instead of the KPP ver-

tical mixing scheme (Large et al., 1994) that was used in

earlier ECCO configurations. The rationale for this choice

and its impact on the 20-year solution is further dis-

cussed in Sect. 5. Time-invariant three-dimensional fields of

background diapycnal diffusivity (Kd), isopycnal diffusivity

(Kσ ), and GM intensity (Kgm) are adjusted under the data

constraints listed in Sect. 4 starting from constant first-guess

values reported in Table 1. The estimated parameter maps for

these highly uncertain coefficients become an integral part of

the ECCO v4 model setup. In Sect. 5, the sensitivity to these

parameter adjustments is evaluated and compared with the

results in Table 3. The geography of Kgm, Kσ , and Kd, their

impact on stratification, and their observability by means of

Argo are further assessed in Forget et al. (2015).

3.4 Momentum discretization

Parameters of the momentum Eq. (1) currently used in ECCO

v4 are provided in Table 1. Lateral eddy viscosity is harmonic

and dependent on grid spacing, with a coefficient given by

0.25×µL2/1t , whereµ= 2×10−2 (viscAhGrid in Table 1)

is a non-dimensional scaling number,L2 is the spatially vary-

ing grid spacing squared (Fig. 2 shows L) and 1t = 3600 s

(deltaTmom in Table 1). The resulting viscosity varies from

≈ 103 to 1.6× 104m2 s−1, depending on location. The other

dissipation contributions used in ECCO v4 are harmonic ver-

tical viscosity and quadratic bottom drag (with parameters in

Table 1) plus contributions from GGL.

Previous ECCO configurations used the C-D scheme (Ad-

croft et al., 1999) that interpolates the Coriolis term from the

Arakawa C grid to a D grid and back. This scheme acts to

reduce grid-scale noise that is otherwise seen in the vertical

velocity fields at all timescales, and particularly in the deep

ocean (Fig. 4). Large vertical velocities have adverse effects

on adjoint model stability, which ECCO originally resolved

by means of the C-D scheme. The C-D scheme does how-

ever have a large impact on the large-scale ocean circulation

(Fig. 4) and hydrography (Table 3).

A comparable damping of the barotropic circulation could

be obtained through a large increase in viscosity (not shown).

Also, vertical velocity noise is most intense near the ocean

floor, which led us to the inference that adding viscosity more

selectively near topography could suffice to damp the verti-

cal velocity noise (Fig. 4, top panels) and, along with the use
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Figure 4. Root mean squared vertical velocity at 2000 m depth (top, in mmday−1 log scale) and mean horizontal stream function for the

vertically integrated flow (bottom, in Sv) in three solutions. (Left panels) Baseline solution. (Middle panels) Same as left panels, but with

increased horizontal viscosity near the ocean floor. (Right panels) Same as left panels, but with addition of the C-D scheme.

of vertical implicit advection, could stabilize the adjoint. Be-

cause the impact of this approach on the circulation (Fig. 4,

bottom panels) and hydrography (Table 3) is more muted

than that of the C-D scheme, the latter was abandoned in

ECCO v4. Targeted viscosity increase near topography re-

mains needed to stabilize adjoint solutions (Sect. 4), but it

can be omitted in forward solutions, as is done in the state

estimate (Sect. 5).

3.5 Surface boundary conditions

Upward buoyancy, and radiative and mass fluxes (latent, sen-

sible and radiative contributions to Fθ ; evaporation as part

of F) through the free surface are computed using the bulk

formulae of Large and Yeager (2004), and 6-hourly ERA-

Interim re-analysis fields (Dee et al., 2011) for the near-

surface atmospheric state (temperature, humidity, downward

radiation, precipitation). State estimation accounts for atmo-

spheric re-analysis field uncertainties (Sect. 4). Downward

shortwave radiation is allowed to penetrate, with exponential

decay, to a depth of 200 m as part of Fθ (Eq. 4). A seasonal

climatology of runoff, from Fekete et al. (2002), is added as

part of F (Eq. 3).

Earlier ECCO configurations using the virtual salt flux ap-

proach with εFW = 0 (Sect. 3.2) could only account for the

dynamical impact of precipitation, evaporation and runoff as

they affect buoyancy (see Ponte, 2006). Accordingly, they

could only include sea ice as a levitating layer without any

direct effect on η (Campin et al., 2008). In contrast, ECCO

v4 uses the real freshwater flux approach (Sect. 3.2) and thus

further accounts for the dynamical effects of material ex-

changes through the free surface (either with the atmosphere,

land or sea ice) as shown in Campin et al. (2008).

Open ocean rain, evaporation and runoff simply carry (ad-

vect through the free surface) the local SST and zero salinity

in the model. When sea ice is present, buoyancy and mass

fluxes7 are recomputed based upon the thermodynamic bal-

ance of a fully interactive sea-ice model (Losch et al., 2010).

In this model as configured in ECCO v4, sea ice carries 0 ◦C

and 4 gkg−1 salinity, while snow carries 0 ◦C and zero salin-

ity.

The implementation of mass, buoyancy and momentum

exchanges through the sea-ice–ocean interface in the rescaled

z∗ coordinate framework is presented in detail in Campin

et al. (2008). A further correction was added in ECCO v4

to ensure conservation of heat for the combined ocean+sea-

ice+snow system. While the ocean model is configured to

exchange freshwater at the local SST, the sea-ice model op-

erates at constant internal heat, so it cannot freeze and melt at

variable temperature. The added correction simply puts the

heat differential back into the ocean. Ocean+sea-ice+snow

budgets (as well as separate ocean, sea-ice, and snow bud-

gets) of mass, heat, and salt are then closed to machine pre-

cision and readily diagnosed (Appendix C).

In centennial ocean model simulations, it is customary to

add a Newtonian relaxation of surface salinity to a gridded

observational product (e.g., Danabasoglu et al., 2014) as part

of FS (Eq. 5). While this method has no clear physical basis,

it generally adds stability to centennial simulations. In con-

trast, the state estimate (Sect. 5) has no salinity relaxation

term, so that FS 6= 0 only occurs when sea ice (whose salin-

ity is set to 4 gkg−1) melts or freezes. Salt rejected by sea-ice

formation is distributed in the vertical using the parameteri-

7Fθ , FS , F in Eqs. (3)–(5); PmE, Qnet, Sflux in Eqs. (7)–(9).
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zation of Duffy et al. (1999) and Nguyen et al. (2009) as part

of FS .

Wind stress, also from ERA-Interim, is applied directly as

part of Fv (Eq. 1) in ECCO v4. A common alternative is to

compute wind stress also through bulk formulae, which is

available as an option of the model. This approach could be

used to account for wind stress modifications by surface cur-

rents that are neglected in ERA-Interim. However, comput-

ing wind stress through bulk formulae using atmospheric re-

analysis fields typically requires backing out adequate drag

coefficients – so that the results would approximately match

surface stresses that, in atmospheric models, follow from

a momentum balance rather than bulk formulae – or ad hoc

adjustments of atmospheric variables (see, e.g., Large and

Yeager, 2004; Risien and Chelton, 2008). Instead, state es-

timation accounts for re-analysis wind stress uncertainty di-

rectly (Sect. 4).

4 Estimation framework

The state estimation problem is defined here by a squared

model–data distance (J ) to be minimized under the con-

straint of a dynamical model. Section 4.1 formulates the state

estimation problem in more detail. Section 4.2 provides an

overview of the MITgcm adjoint, which is instrumental in

solving the state estimation problem, and its recent develop-

ments in the context of ECCO v4. Aside from the dynamical

model (Sects. 2 and 3), the defining ingredients of state es-

timation are data constraints and control parameters. Their

ECCO v4 implementation and specifications are covered in

Sect. 4.3 and 4.4.

The state estimate (Sect. 5) is a solution of the forward

model (Sects. 2 and 3) at an approximate minimum of J .

The process of finding such solutions, typically through an

iterative optimization process and using the adjoint model,

is not a focus of this paper. A number of well-known op-

timization methods, with third-party implementations freely

available online, can be used to this end (see, e.g., Heimbach

et al., 2005, and references therein).

Note that the existence of a unique global minimum of J

is only rigorously established for linear least squares, when

it can be solved for in matrix form to machine precision. In

contrast, for non-linear inverse problems8, one can only aim

to find at least one approximate minimum of J that is an

acceptable fit to the data (i.e., a fit within specified errors).

8The degree of non-linearity may depend on the process of inter-

est and increases substantially upon inclusion of meso-scale eddies.

MITgcm/pkg

autodiff ctrl ecco profiles smooth

interface with
TAF AD tool

checkpointing,
active files,
MPI

adjoint run
settings

uncertain
parameters

forward model
adjustments

cost function

uncertain
gridded data

time-averaged
model fields

cost function

uncertain ob-
served profiles

sub-sampled
model profiles

cost function

diffusion-
based
smoother

covariance
modeling

Figure 5. Organization and roles of MITgcm estimation packages.

A more complete presentation of MITgcm packages can be found

in the manual. The algorithmic differentiation (AD) tool currently

being used is TAF. The handling of checkpoints and active files is

described in Heimbach et al. (2005). The roles of ctrl, ecco, profiles

and smooth in forward mode (as reported here) and in adjoint mode

are further described in Sect. 4. In preparation for this paper, much

redundancy was eliminated through generalization of “ecco” and

“ctrl” features (see, e.g., Table 4). This process reduced by about

30 % the overall volume of adjointed code in ECCO v4 (counting

the entire ocean–sea-ice model).

4.1 Problem formulation

State estimation consists in minimizing a squared distance,

J (u), that is defined as

J (u)=
∑
i

αi×

(
dTi R−1

i di

)
+

∑
j

βj ×
(
uTj uj

)
, (12)

di = P(mi − oi), (13)

mi = SDM(v), (14)

v=Q(u), (15)

u=R(u′), (16)

where di denotes a set of model–data misfits, αi the corre-

sponding multiplier, R−1
i the corresponding weights, uj a set

of non-dimensional controls, and βj the corresponding mul-

tiplier. Additional symbols appearing in Eqs. (13)–(16) are

defined below. The implementation of Eqs. (12)–(16) and the

adjoint interface within the MITgcm are charted in Fig. 5.

Model counterparts (mi) to data (oi) derive from a set of

adjustable model parameters (v) through the model dynam-

ics (M), diagnostic computations (D), and subsampling or

averaging in space and time (S), performed as the forward

model steps through time (Eq. 14). Model–data misfits are

then computed, upon completion of the forward model sim-

ulation, in order to evaluate J (u) and provide the adjoint

model forcing (Sect. 4.2). Raw model–data misfits (mi − oi)

can be penalized directly (i.e., used in Eq. 12 in place of di).

More generally though, as formulated in Eq. (13), misfits be-

ing penalized (di in Eq. 12) derive from mi − oi through the

generic post-processor P (Sect. 4.3).

The control problem, as implemented in ECCO v4, is

non-dimensional, as reflected by the omission of weights

in control penalties (uTj uj , Eq. 12). Non-dimensional con-

trols are scaled to physical units through multiplication by
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Table 4. Generic model–data comparison capabilities provided by the “ecco” package (Sect. 4.3). The corresponding terms in Eqs. (12)–(14)

(mi , oi , D, S, P , Wi ) are reported in parentheses.

Generic capability MITgcm parameter Usage

Variable choice (mi , D) gencost_barfile “m_theta_mon”, “m_salt_mon”, “m_eta_day”, etc., for

potential temperature (“theta”), salinity

(“salt”), sea surface height (“eta”), etc.

gencost_is3d .TRUE. or.FALSE.

Time average (mi , S) gencost_avgperiod “month”, “day”, or “step” to form monthly, daily,

and time step averages, respectively

Input data files (oi ) gencost_datafile File name root (e.g., “some_sst”) for files that may

be yearly (e.g., “some_sst_1992” etc.) or otherwise

Time average (P) gencost_preproc “clim” to form a climatological average misfit,

gencost_preproc_i e.g., 12 for monthly mean climatologies

Spatial smoother (P) gencost_posproc “smooth” to apply diffusive smoother to misfits,

gencost_posproc_c e.g., “some_scale.bin” for the smoothing scale,

gencost_posproc_i e.g., 10 for the diffusive smoother time-stepping

Weighing (Wi ) gencost_errfile Squared inverse is used in squared model–data distance,

except in places where a zero value is specified.

Masking (Wi ) gencost_spzero Data points set to specified value will be omitted.

Diagnostics gencost_outputlevel > 0 to output model data misfits maps to disk.

their respective uncertainty fields, as part of the generic pre-

processor Q (Eq. 15; Sect. 4.4). Pre-conditioner R (Eq. 16)

does not appear in the estimation problem itself (Eq. 12), as

it only serves to push an optimization process preferentially

towards certain directions of the control space.

The specification of (always approximate) error covari-

ances (e.g., Ri) is a key ingredient of ocean state estimation,

and least squares in general. ECCO has contributed a large

body of work in this respect (e.g., Forget and Wunsch, 2007;

Ponte et al., 2007; Quinn and Ponte, 2008, 2010; Chaudhuri

et al., 2013; Forget and Ponte, 2015). Although not a focus

in this paper, the difficulty in providing accurate error covari-

ances, and assessing their impact on the state estimate, re-

quires careful analysis of misfit residuals after the fact. This

process typically leads to another phase of state estimate pro-

duction, and so forth.

For problems as massive as ECCO v4 (see Tables 5–7),

full error covariance matrices are impractical and will remain

so for the foreseeable future. Matrix-free approaches are of

great practical value in this context. For example, the method

of Weaver and Courtier (2001) is used in ECCO v4 to specify

control parameter adjustment scales (Sect. 4.4) and penalize

large-scale model–data misfits (Forget and Ponte, 2015).

Within pure linear least squares theory, under the unreal-

istic assumption of perfect error covariance specifications,

multipliers αi, βj should be omitted from Eq. (12). They

are, however, adequate in practice as a means to partly com-

pensate for error covariance approximations, and the neglect

of Ri non-diagonal terms in particular. They also provide

a practical means to accelerate the fit to data introduced in

J during later stages of optimization. Furthermore, uTj uj (in

Eq. 12) essentially are regularization terms included to limit

control parameter adjustments, and the βj multipliers pro-

vide the corresponding trade-off parameters (Hansen, 1992).

4.2 Adjoint modeling

The method of Lagrange multipliers (i.e., the adjoint method)

and its application to numerical models being stepped for-

ward in time are well documented elsewhere. In particular,

the interested reader is referred to Thacker and Long (1988)

for a succinct presentation, with application to the case of

a simple wave equation. The fitting of model sea level vari-

ability to altimetry through forcing adjustments estimated by

the adjoint method (e.g., Forget and Ponte, 2015) is analo-

gous to the simple case treated in Thacker and Long (1988).

A crucial advantage of this method, as used in ECCO, is that

it avoids adding source/sink terms of unknown nature to the

model equations9. Adjoint models have many useful appli-

cations in their own right, and we shall list a few that are

particularly relevant to ECCO.

Integrating adjoint models over extended periods of time

allows diagnosis of the sensitivity of model dynamics to vari-

ous parameters. Two examples are provided in Fig. 6 pertain-

9Note that this desirable property does not hold in the case of se-

quential data assimilation schemes (whether or not using an adjoint

model), but this is not a case of interest here. In particular, it does

not hold in 4DVar as practiced in numerical weather prediction.
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Figure 6. Non-dimensional adjoint sensitivity ( ∂J
∂u per Eq. 12 with αi = 1, βj = 0) of the Argo penalty over 2008–2010 (jT+ jS) to biweekly

GM intensity (left) and Laplacian horizontal viscosity (right) at 300 m. Computations are carried out with added bottom viscosity (as done

in Table 3) to improve stability of the adjoint. Top panels show the standard deviation (over all ocean grid points) of biweekly adjoint

sensitivities, reflecting their forcing by model–data misfits over 2008–2010 and their propagation backward to 1992 (propagation here may

involve persistence, advection, waves, dissipation, etc.). Middle panels show the first biweekly period of adjoint forcing (in late 2010) and

reflect the most patchy, short-term sensitivity to model parameters. The patches’ smoothness is mostly set by the Weaver and Courtier (2001)

spatial correlation model, with a specified scale of 3 times the grid scale. Bottom panels show the total sensitivity to time mean model

parameters, obtained by summing over all biweekly periods. Their broad patterns primarily reflect the aggregation of adjoint sensitivities due

to the 20-year integration of Eqs. (1)–(5).

ing to the tracer (left panels) and momentum (right panels)

equations that were computed using the “autodiff” (Fig. 5;

this section), “profiles”, “ctrl” and “smooth” (Fig. 5; subse-

quent sections) MITgcm packages. Figure 6 illustrates that

the sensitivity of model–data misfits (here they cover 2008–

2010) extend far back in time (here to 1992). The ability to

use information contained in observations backward in time

is a powerful advantage of the adjoint method over conven-

tional sequential assimilation methods. Such adjoint sensi-

tivities provide a practical means to reduce spurious model

drifts and biases, through inversion of uncertain model pa-

rameters (e.g., Ferreira et al., 2005). In cases that are suf-

ficiently linear, adjoint sensitivities to, e.g., wind stress can

further be convolved with forcing anomalies to reconstruct

and attribute variability in the ocean circulation (e.g., Fuku-

mori et al., 2015).

Unlike the simple case treated in Thacker and Long

(1988), hand-coding the adjoint of the MITgcm would be

a very tedious and daunting task. Algorithmic differentia-

tion, through a source-to-source code transformation tool,

is a powerful alternative (see Griewank and Walther, 2008).

Computational aspects of algorithmic differentiation applied

to the MITgcm are described in Heimbach et al. (2005).

Since its origin, ECCO has relied on the TAMC (Tangent

Linear and Adjoint Model Compiler; Giering and Kaminski,

1998) and its commercial successor TAF (Transformation of

Algorithms in Fortran; Giering et al., 2005). Open-source

tools such as OpenAD (Utke et al., 2008) and Tapenade (Has-

coët and Pascual, 2013) are on their way to providing alterna-

tives for massive problems such as ECCO (Heimbach et al.,

2011).

During the early development stages of ECCO v4, the ad-

joint handling of exchanges and storage was extended (partly

hand-coded) to allow for elaborate grids such as CS and

LLC (Fig. 1). The balancing of storage vs. recomputation

via the checkpointing method is essential to computational

efficiency (Griewank, 1992; Heimbach et al., 2005). This is

particularly true for ECCO v4 since the non-linear free sur-

face (see Sect. 3) expectedly increases storage requirements.

More generally, development of efficient adjoint code us-

ing TAF largely consists in accommodating non-linearities

of added forward model features.

Overwhelmingly expensive recomputations of non-linear

terms in the adjoint are treated by adding TAF storage direc-
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tives10. These directives take the form of Fortran comments

(starting with “CADJ”) embedded in the forward model

code, which TAF transforms into code for storage operations

(for details, see Heimbach et al., 2005). The ECCO v4 setup

involves 1458 such comments, which were all inserted man-

ually in carefully chosen locations. Once all of the needed

storage directives are in place, then “algorithmic differentia-

tion” becomes the “automatic differentiation” that an ECCO

v4 user holding a TAF license will experience.

The non-linear free surface, the AB-3 time stepping

scheme, and implicit vertical advection were thus added as

adjoint capabilities as part of ECCO v4. Including the non-

linear free surface, along with the real freshwater flux bound-

ary condition, in the ocean state estimate is regarded as a ma-

jor improvement in physical realism. The AB-3 and implicit

vertical advection schemes have a minor impact on the for-

ward model solution but provide additional stability also in

adjoint mode.

Exactness and completeness of the adjoint is the general

goal of the MITgcm adjoint development. Exactness can be

of particular importance in carrying out quantitative analy-

ses of adjoint sensitivities (e.g., Verdy et al., 2014; Fukumori

et al., 2015). For state estimation purposes, however, it is of-

ten advantageous, or simply convenient, to use an approxi-

mated adjoint (see, e.g., Jiang et al., 2002). The most basic

approximation consists in switching off forward model fea-

tures in the adjoint, which allows one to postpone the devel-

opment of a stable adjoint.

In ECCO v4, the Gaspar et al. (1990), Nguyen et al.

(2009), and Losch et al. (2010) parameterizations are thus

omitted in the adjoint. Note that the approximated adjoint

does take into account, e.g., the diffusivities and viscosities

computed by GGL (Gaspar et al., 1990). It is only the para-

metric dependency of these diffusivities and viscosities on

the ocean state that is omitted. Until 2008, applications of the

MITgcm adjoint were also omitting the Redi (1982) and Gent

and Mcwilliams (1990) components, which precluded opti-

mal control of their parameters. This situation was resolved

by using a simple clipping scheme for large isopycnal slopes,

and by omitting only the parametric dependency of isopyc-

nal slopes on the ocean density field in the adjoint, following

a reasoning similar to that of Jiang et al. (2002). Thus, the

parametric dependency of turbulent transports on Kgm, Kσ
and Kd is retained in the adjoint, so that these parameters

can be optimally controlled.

Beyond the removal of unstable adjoint dependencies,

other alterations of the adjoint are of practical value for op-

timization purposes. In particular, it is common practice to

increase viscosity parameters to add stability to MITgcm

adjoint simulations (Hoteit et al., 2005). Despite success-

ful adjoint simulations with particular versions of the sea-ice

model (Heimbach et al., 2010; Fenty and Heimbach, 2013),

10TAF adopts a “recompute-all” strategy by default; OpenAD in

contrast uses “store-all” by default.

the sea-ice adjoint is omitted in ECCO v4 due to persist-

ing issues. A pseudo-sea-ice adjoint is introduced instead

to account at least for the most basic effect of sea ice –

the shielding of seawater from the atmosphere. The adjoint

pseudo-component is obtained by AD of a forward pseudo-

component. The forward pseudo-component merely tapers

air–sea fluxes to zero according to (1−a), where a is the sea-

ice fraction computed by the actual forward sea-ice model.

This gross, local approximation omits the thermodynamics

and dynamics of sea ice, and is never used in forward mode.

In the adjoint, it masks out open ocean adjoint sensitivities

that do not apply where ice cover is present. A fraction of

open ocean sensitivity is preserved at the ice edge, which

is physically reasonable and avoids a discontinuity in ad-

joint fields. The pseudo-sea-ice adjoint approach has been

extended in the context of Arctic ice–ocean state estimation

(A. Nguyen, personal communication, 2014).

4.3 Data constraints

Ocean state estimation involves constraining ocean model

solutions to data. Model–data comparison (i.e., computing

Eq. 12) becomes an integral part of numerical modeling. In

forward mode, “ecco” and “profiles” are diagnostic packages

that can be used in any MITgcm run to perform model–data

comparisons and to compute Eqs. (12)–(14). In adjoint mode,

they take the role of providing the adjoint model forcing (see

Fig. 6).

In situ data are handled by the “profiles” package. A model

profile is computed at the time step and grid point nearest

to each observed profile (see Appendix D). Aside from the

primary goal of carrying out state estimation, the “profiles”

output permits direct and rigorous assessments of modeled

and observed statistics (and how they may differ) based upon

a near identical and instantaneous sampling (e.g., see For-

get et al., 2011). To this end, it alleviates the need to output

global fields at full temporal resolution, which becomes over-

whelming at high spatial resolution.

Gridded data11 are commonly based upon monthly or

daily averaged fields and handled by the “ecco” package.

Many features have been added to “ecco” over the course

of the ECCO v4 development. In preparation for this pa-

per, these features were generalized so they can immediately

be applied, when adequate, to any gridded data set. As of

MITgcm’s checkpoint65h, the generic “ecco” capabilities are

those listed in Table 4.

Model counterparts to observed variables are diagnosed

from model state variables via operator D in Eq. (14). For

potential temperature and salinity (“theta” and “salt” in Ta-

ble 4), the corresponding model state variables (θ and S in

Eqs. 4 and 5) are readily available, and D then simply de-

notes the identity operator. In contrast, sea surface height

11By “gridded” we mean either interpolated (e.g., for monthly sea

surface temperature) or simply bin-averaged (e.g., for along-track

altimetry).

Geosci. Model Dev., 8, 3071–3104, 2015 www.geosci-model-dev.net/8/3071/2015/



G. Forget et al.: ECCO version 4 3083

−80 −60 −40 −20 0 20 40 60 80
−2

0

2

−80 −60 −40 −20 0 20 40 60 80
−2

−1

0

1

−80 −60 −40 −20 0 20 40 60 80
−2

−1

0

1

−80 −60 −40 −20 0 20 40 60 80
−10

0

10

−80 −60 −40 −20 0 20 40 60 80
−8
−6
−4
−2
0
2

−80 −60 −40 −20 0 20 40 60 80
−20

−10

0

−80 −60 −40 −20 0 20 40 60 80
−2

0

2

−80 −60 −40 −20 0 20 40 60 80
−2

0

2

−80 −60 −40 −20 0 20 40 60 80
−2

0

2

1995 2000 2005 2010
0

0.1

0.2

1995 2000 2005 2010
0

0.1

0.2

1995 2000 2005 2010
−2

−1

0

1995 2000 2005 2010
34.724

34.726

34.728

1995 2000 2005 2010
34.724

34.725

34.726

1995 2000 2005 2010
34.72

34.73

34.74

1995 2000 2005 2010
3.55

3.6

3.65

1995 2000 2005 2010
3.58

3.6

3.62

1995 2000 2005 2010
3.55

3.6

3.65

(mH) (mS) (mT)

(tV) (tS) (tT)

Figure 7. Selected ocean state characteristics (defined in Table 2) for the model runs in Tables 3 and 8. The respective units are m (mH),

g kg−1 (mS), ◦C (mT), Sv (tV), gkg−1 Sv (tS), and PW (tT). For each characteristic, the top, middle and bottom panels, respectively, depict

regression test results (top three rows of Table 3), structural model sensitivity (bottom eight rows of Table 3), and external and parametric

model sensitivity (Table 8). The state estimate is shown as a thick black curve. All other model runs, which are only discussed collectively,

are shown as thin red curves. Note that mH, mS, and mT are global mean time series, whereas tV, tS, and tT are 2008–2010 averages and are

functions of latitude.

(“eta” in Table 4) is diagnosed as η+ ηips+ ηnbs, where η

is the model free surface (see Sect. 3.1), ηips is the weight of

sea ice plus snow per unit area divided by ρc (see Campin

et al., 2008), and ηnbs is a global steric sea level correction

to the Boussinesq model (see Griffies and Greatbatch, 2012).

Furthermore, for comparison of sea surface height with al-

timetry, the time mean of mi − oi computed at each grid

point, and the time-variable global mean of mi − oi , are fur-

ther subtracted via post-processor P in Eq. (13) (see Forget

and Ponte, 2015).

The basic steps in constraining a model solution to data

using the ecco package are the following.

1. Mapping data (whether along satellite tracks, gridded,

or interpolated) to the model grid, which is easily done,

e.g., in Matlab using gcmfaces (Appendix C).

2. Specifying error covariances (Ri in Eq. 12) of model–

data misfits (di in Eq. 12). To accommodate the great

ocean heteroscedasticity (e.g., see Forget and Wun-

sch, 2007), spatially varying uncertainties are generally

needed.

3. Carrying optimization until convergence to an approxi-

mate minimum of J (u).

It should be stressed that all three steps are required to claim

that a model solution has been constrained to data, and that

the specification of errors is the central scientific problem.

This is also true for “profiles”, although the first step is lim-

ited to a vertical interpolation to standard levels in this case.

The state estimate (Sect. 5) has thus been constrained to in

situ data listed in Table 5 and gridded data listed in Table 6.

Table 5. In situ data to which the state estimate has been con-

strained. XBT, CTD, and ITP stand for expendable bathythermo-

graph, conductivity–temperature–depth sensors, and ice-tethered

profilers, respectively. SEaOS is data collected by Southern Ocean

elephant seals. The CLIMODE field campaign focused on the North

Atlantic subtropical gyre (Marshall et al., 2009). A grand total of

1911983 T profiles (or 1 239 247 S profiles) were used. Note how-

ever that only CTD profiles extend below 2000 m (26 285 for T ,

26 220 for S).

Data set T profiles S profiles Origin

Argo 833 033 800 269 IFREMER

CTD 379 012 333 266 NODC, WOA09

XBT 597 009 0 NODC, WOA09

ITP 18 033 17 745 Toole et al. (2011)

SEaOS 103 117 87 806 Roquet et al. (2011)

bobbers 7894 0 D. Fratantoni, CLIMODE

CTD 161 161 L. Talley, CLIMODE

4.4 Control parameters

Within the MITgcm, the “ctrl” package (Fig. 5) handles ad-

justable control parameters (u in Eq. 15). In forward mode,

“ctrl” is a package that influences the ocean state evolution

(Eq. 14). Activating a new control parameter only requires

a few lines of codes to map it to corresponding model pa-

rameters (Eq. 15). In adjoint mode, “ctrl” takes the diagnostic

role of collecting adjoint variables and evaluating derivatives

of Eq. (12) (see Fig. 6). A penalty can further be added to

J (u) by setting βj > 0 accordingly (Eq. 12), which will act
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Table 6. Gridded data to which the state estimate has been constrained. T , S, SST, SLA, MDT, and ICF, respectively, stand for potential

temperature, sea surface temperature, sea surface salinity, sea level anomaly, mean dynamic topography, and ice cover fraction.

Variable Description Period Size Origin

MDT DNSC08 mean SSH minus 1993–2004 6.2× 104 Andersen and Knudsen (2009),

EGM2008 geoid model Pavlis et al. (2012)

T , S Blended monthly climatology 2× 5.7× 108

OCCA 2004–2006 Forget (2010)

WOA 2005 Unclear Locarnini et al. (2006)

PHC 3.0 Unclear Updated: Steele et al. (2001)

SLA Daily bin average of 1992–2011 7.7× 107 Scharroo et al. (2004)

along-track altimetry

SST Monthly maps 1992–2011 1.5× 107 Reynolds et al. (2002)

ICF Monthly maps 1992–2010 1.4× 107 Comiso (1999)

Table 7. Control parameters that have been adjusted as part of the

state estimation.

Description Frequency Size

Initial condition for temperature N/A 2.4× 106

Initial condition for salinity N/A 2.4× 106

Diapycnal diffusivity Time mean 2.4× 106

Isopycnal diffusivity Time mean 2.4× 106

GM intensity Time mean 2.4× 106

Atmospheric temperature at 2 m Bi-weekly 3.2× 107

Specific humidity at 2 m Bi-weekly 3.2× 107

Precipitation Bi-weekly 3.2× 107

Downward longwave radiation Bi-weekly 3.2× 107

Downward shortwave radiation Bi-weekly 3.2× 107

Zonal wind stress Bi-weekly 3.1× 107

Meridional wind stress Bi-weekly 3.1× 107

as an adjoint forcing, to constrain the magnitude of control

parameter adjustments.

Most features in “ctrl” were recently generalized so they

can readily be applied, when adequate, to any set of con-

trols. The generic pre-processorQ (Eq. 15) may thus include

the Weaver and Courtier (2001) spatial correlation model

(Appendix E), the cyclic application of climatological mean

controls and/or a rotation of (zonal, meridional) vectors to the

model C grid. Control parameters used in the state estimate

are reported in Table 7.

Most generally, complete and accurate error covariance es-

timates are lacking for control parameters. For all controls

used in the state estimate (Table 7), the error correlation

scale was simply specified as 3 times the grid scale using

the “smooth” package (as part of Q; Appendix E). The esti-

mation of an initial state that pre-dates Argo and of its uncer-

tainty, given the sparsity of the ship-based ocean sampling,

is a difficult problem in itself that is proposed for further,

dedicated investigation (e.g., see Forget, 2010; Lyman and

Johnson, 2014).

For atmospheric re-analyses fields, in the absence of for-

mal error estimates, ad hoc specifications of Q are based

upon the spread of available atmospheric variable estimates

(Chaudhuri et al., 2013). Here the squared sum of time mean

and seasonal differences between NCEP and ERA-Interim

fields was computed, then capped to a maximum, and used

as an ad hoc estimate of error variances in atmospheric con-

trols.

For Kgm, Kσ and Kd, the first guess values were 103, 103

and 10−5 m2 s−1, respectively. The corresponding uncertain-

ties were set to 500., 500. and 10−4 m2 s−1. The adjusted pa-

rameters were further imposed to stay within 102 <Kgm <

104, 102 <Kσ < 104 and 10−6 <Kd < 5× 10−4 m2 s−1.

5 State estimate

The ECCO v4, release 1 state estimate covers the period from

1992 to 2011 and is the baseline solution of the ECCO v4 for-

ward model setup (Sects. 2 and 3), using control parameter

adjustments guided by data constraints (Sect. 4). The solu-

tion fits altimetry (Forget and Ponte, 2015), SST (Buckley

et al., 2014), and subsurface hydrography data (Sect. 5.2) at

or close to the specified noise level. Many characteristics of

the solution have been analyzed in some detail and found to

be physically plausible, which warranted its public release.

An extensive documentation of model–data misfits and phys-

ical characteristics of the state estimate is publicly available

online (the “standard analysis”; Appendix C) and provided

as the Supplement to this paper.

5.1 Select characteristics

Ocean state estimation is by definition a multi-faceted prob-

lem, as reflected by the selection of ocean state characteris-
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Figure 8. Bootstrap distribution of an index of cosensitivity between ocean state characteristics. For each pair of characteristics a and b,

the cosensitivity index is defined as the correlation between log10(δa) and log10(δb) where δ indicates a perturbation. Values reported as

negative integers in, e.g., Table 3, are examples of log10(δ). Perturbations reported in the last nine rows of Table 3 and the last six rows of

Table 8 are used jointly (providing sets of 16 δa , δb pairs). Bootstrap resampling (500 members) yields the displayed distributions.

Table 8. Sensitivity of ocean state characteristics (Table 2) to control parameter adjustments (Table 7). In each sensitivity experiment one

control vector adjustment subset is reset to zero. “Internal parameters” denotes GM intensity and isopycnal and diapycnal diffusivity jointly.

“External forcing fields” denotes freshwater flux, wind stress and buoyancy flux controls jointly. “Buoyancy flux” denotes atmospheric

temperature and humidity, as well as downward shortwave and longwave flux controls jointly. Departures in each characteristic are computed

relative to the state estimate, and normalized by the baseline result (for jT, . . . , jHm) or its standard deviation (for mH, . . . , tS). Positive

numbers denote percentages (for differences above 1 %), whereas parenthesized negative numbers are powers of 10 (for differences below

1 %).

Experiment jT jS jTs jSs jIs jHa jHm mH mT mS tV tT tS

All controls 369 1027 160 56 17 242 313 7925 99 5295 46 29 396

Internal parameters 212 317 56 15 12 72 163 329 272 233 4 15 96

External forcing fields 63 437 87 27 17 117 112 7665 252 5114 44 12 234

GM intensity 121 136 31 6 14 44 116 42 27 26 2 8 70

Isopycnal mixing 44 66 6 (−2) 3 9 17 58 62 36 2 6 28

Diapycnal mixing 23 44 13 4 (−2) 6 6 437 360 292 2 5 30

Freshwater flux 14 182 (−3) 12 3 40 43 5140 68 3418 38 6 163

Wind stress 13 22 11 (−4) (−2) 32 26 21 28 16 2 5 24

Buoyancy flux 9 30 69 5 13 9 16 2553 167 1712 5 6 50

tics in Table 2. To shed light on the observational and cli-

mate problems, this section assesses the sensitivity of these

ocean state characteristics as measured within Table 3 (dis-

crete model setting choices) and within Table 8 (control pa-

rameter adjustments). In particular, the correlation (or lack

thereof) between columns of Tables 3 and 8 (the two tables

being considered jointly in this case) indicates whether dif-

ferent ocean state characteristics are tied to each other. Given

the limited sample size (i.e., the number of lines in Tables 3

and 8) bootstrap distributions are shown in Fig. 8 to reflect

the level of uncertainty in the presented analysis of correla-

tions.

The various squared model–data distances (the first seven

characteristics) show contrasting levels of sensitivity to con-

trol parameter adjustments (Table 8) as well as to discrete

model setting choices (Table 3). This behavior may reflect

contrasting levels of random errors in the different data types.

In particular, the subsurface hydrography, as constrained by

jT and jS, appears as the most sensitive squared model–

data distance (Tables 3 and 8). High correlations amongst

squared model–data distances (Fig. 8 bottom panels) are sug-

gestive of some redundancy between data sets (i.e., consis-

tency amongst observations).

High correlations between meridional transports and

squared model–data distances (top and middle right pan-

els) provide evidence that Argo and altimetry may efficiently

constrain heat and freshwater transports (see also, e.g., For-

get et al., 2008a, b). In contrast, low correlations between

global mean time series and squared model–data distances

are striking (Fig. 8, top and middle left panels). Given that
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Figure 9. Mean squared distance to in situ observations (Table 5; Sect. 4; Appendix D) for various solutions, for temperature (left; jT)

and salinity (right; jS), as a function of year. In each panel the red curve shows the ECCO v4 state estimate. Also shown in top panels:

ECCO v2 (Wunsch and Heimbach, 2007, 1992–2004) and ECCO v3 (Wunsch and Heimbach, 2009, 1992–2007); middle panels: JPL-ECCO

(Fukumori, 2002, 1992–present) and GECCO2 (Köhl, 2014, 1948–2011); bottom panels: three ECCO2 eddying solutions using different

forcing fields (courtesy of H. Zhang). For each solution, monthly mean output was subsampled at data locations. For solutions that do not

extend through 2011, the state of the last full year was replicated afterwards (shown in blue). Temporal resolution in jT, jS is reduced until

Argo reached near-global deployment (i.e., before 2005). The pre-2005 values, while still a useful indication of skill, may be characteristic

of limited regions. The Argo period values are mostly representative of the upper 2000 m of the global ocean.

the time-variable global mean model–data misfit is omitted

in computing jHa, the low correlation between mH and jHa

indicates that a given global mean sea level time series could

be associated with many regional solutions with equal uncer-

tainty. The low correlation between jT and mT may further

reflect the fact that regional variations can be much larger

than, and not necessarily related to, temporal changes in

global mean properties. Beyond the present study, the extent

to which Argo and altimetry, amongst others, constrain tem-

poral changes in global mean properties remains unclear.

A related concern is that global mean time series show out-

standing sensitivity not only to atmospheric and oceanic con-

trol parameters (Table 8), but also to discrete model setting

choices (Table 3).12 Meridional heat and freshwater trans-

ports, in particular, appear much less sensitive than corre-

sponding global mean time series (Fig. 7). It is tempting to

attribute the outstanding sensitivity in global mean time se-

ries to the omission of atmospheric, continental, etc., mod-

eling in ECCO v4 (e.g., it does not currently include any

explicit constraint of the limited freshwater storage capacity

12Note that mT, mS (top to bottom global means) and mH may

react to any change in ocean model controls and settings, since

oceanic heat and freshwater uptake is determined by bulk formu-

lae.

of the atmosphere and continents), although this is merely a

working hypothesis that remains to be tested. Whether and

how the behavior illustrated in Fig. 7 translates into simpler

models used to quantify climate change from observations

(as in, e.g., Purkey and Johnson, 2010; Llovel et al., 2014)

emerges as a question of direct relevance to climate change

monitoring.

5.2 Improved hydrography fit

In developing and producing the ECCO v4 state estimate,

a primary goal was to improve the fit to observed in situ

profiles of T and S as compared with earlier solutions (see

Forget, 2010). This fit is depicted in Fig. 9 as a function of

time, for the various solutions. For ECCO v4 the squared

model–data distance is jT≈ 1.5 for potential temperature

and jS≈ 1.5 for salinity (on average over all depths, loca-

tions and times). Average values of 1 would be ideal if the

error estimate were perfect and the state estimate were de-

void of large scale errors (neither of which is true). It is sus-

pected that jT and jS could be further reduced. Values of 1.5,

however, are regarded as sufficiently low to justify analysis of

the state estimate water masses (Speer and Forget, 2013) and

stratification (Forget et al., 2015). Furthermore, jT and jS are

already much reduced (by a factor of 2 to 10) compared with
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Figure 10. Model–data misfits for salinity at 300 m depth (sample average over all times) for ECCO v4 (top left panel), ECCO v2 (top

center), ECCO v3 (top right), JPL-ECCO (middle center), GECCO2 (middle right) and three ECCO2 simulations (bottom panels). Additional

computational details are reported in the Fig. 9 caption, along with references for the various solutions.

earlier ECCO estimates throughout the period from 1992 to

2011. Amongst earlier ECCO estimates, the ECCO v3 so-

lution comes the closest to the observed hydrography, with

typical values of 3.

The contrasts in jT and jS amongst solutions reflect large-

scale misfits as illustrated in Fig. 10. This is equally true for

ECCO2 eddying solutions (bottom panels) and for coarser

model solutions (top and middle panels). Such broad misfit

patterns typically denote spurious model drifts and biases,

which are common symptoms of model deficiencies (Stam-

mer, 2005; Ferreira et al., 2005). Similarities in misfit pat-

terns amongst ECCO2 eddying solutions (using a common

model setup, under different sets of forcing), for example,

suggest internal ocean model deficiencies. So do similari-

ties in misfit patterns (aside from differences in amplitudes)

amongst the four adjoint optimized solutions of comparable

resolution that use different adjusted forcing fields (ECCO

v2, v3, v4 and GECCO2).

The contrast in misfit amplitude between ECCO v4 and

earlier solutions (Figs. 9 and 10) tends to be reduced near the

sea surface (not shown), which is encouraging but not en-

tirely surprising since surface forcing fields were already ad-

justable control parameters in earlier solutions. Conversely,

the contrast in misfit amplitude tends to increase with depth

(not shown), where internal model error sources may pre-

dominate.

Within ECCO v4, jT and jS are particularly sensitive to

estimated turbulent transport parameter adjustments and gen-

erally less sensitive to estimated atmospheric control adjust-

ments, with the exception of expectedly high salinity sen-

sitivity to precipitation adjustments (see Table 8, first two

columns). This result is in contrast to the analysis of Liu

et al. (2012), who suggest that parameterized physics are

only marginally important in this regard, a suggestion con-

sistent with the relative weakness of their turbulent transport

parameter adjustments (see Forget et al., 2015). A plausible

explanation for this contrast lies in the fact that Liu et al.

(2012) only estimate the period 1992–2001, whereas ECCO

v4 covers 1992–2011. This difference has two important im-

plications: (1) Argo largely increased the amount of in situ

data, and (2) slow model drifts are more prominent in longer

unconstrained solutions. One should expect larger turbulent

transport parameter adjustments on both counts.

Amongst turbulent transport control parameters in ECCO

v4, jT and jS are most sensitive to the Kgm adjustments (this

result is in agreement with Liu et al., 2012). A caveat should

be noted though: parameterized surface and interior fluxes

are all interactive, so that any control parameter adjustment

can potentially affect any surface or interior flux. Hence Ta-

ble 8 should not be mistaken for a precise ranking of the im-

portance of the various controls. It clearly shows, however,

that turbulent transport parameter adjustments were instru-

mental in fitting observed hydrographic profiles in ECCO v4.

The Kgm, Kσ and Kd adjustments within the state esti-

mate are assessed more specifically in Forget et al. (2015). In

summary: the estimated Kgm, Kσ and Kd adjustments have

a strong impact on ocean stratification; ocean stratification

is now well observed by the Argo program; estimated and

observed maps of stratification and mixed-layer depths are

in close agreement; the Kgm, Kσ and Kd adjustment geog-

raphy is physically plausible and exhibits close connections

with ocean stratification. These results are evidence that re-
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Table 9. Model error categories as discussed in this paper.

– Structural: settings that are controlled by discrete choices and switches.

– External: initial conditions, boundary conditions, and external forcing fields.

– Parametric: other settings that are controlled by continuous parameters.

gional turbulent transport parameter inversions have an ob-

servational basis in Argo data.

Comparison of Tables 3 and 8 furthermore reveals that

estimated turbulent transport parameter adjustments have a

larger impact on model–data distances (see Table 8) than, for

example, choices of advection, mixed-layer and momentum

schemes (see Table 3). Thus the estimated parameter adjust-

ments (while in the range of values typically used in general

circulation models) exceed what may be expected to com-

pensate for model errors unrelated to turbulent tracer trans-

ports. The estimated parameter map details, however, should

be interpreted with caution, as further discussed in Forget et

al. (2015).

5.3 Parametric and structural model error

In this section, the focus is on model uncertainty and con-

trollability, which directly impacts the possibility of fitting

a model to data. Random data errors and model representa-

tion errors are left out of the discussion, which are compar-

atively well studied (e.g., Forget and Wunsch, 2007; Ponte

et al., 2007; Quinn and Ponte, 2008, 2010; Chaudhuri et al.,

2013; Forget and Ponte, 2015). Errors associated with com-

puting environment changes (top three rows in Table 3) are

generally small enough to be neglected when using the MIT-

gcm.

The interplay of external, structural and parametric ocean

model errors has never been tackled in any systematic and

quantitative manner. To distinguish amongst model uncer-

tainties associated with ECCO v4 settings, we propose the

simple, practical category definitions in Table 9. Clearly the

separation between these three categories leaves room for

ambiguities. For example, selecting one of the available at-

mospheric re-analysis products to force the model may fall

under “structural”, while tuning bulk formula coefficients

may fall under “parametric”, and adjusting re-analyzed fields

may fall under “external”. Nevertheless, as a starting point,

the above definitions provide a useful frame of reference.

A related discussion can be found in Marzocchi and Jordan

(2014), although the focus here is on curve fitting (i.e., inter-

polation within a time period) rather than on forecasting (i.e.,

extrapolation forward in time). Relevant discussions can also

be found in Danabasoglu et al. (2014) and Balmaseda et al.

(2015).

A first assessment of the relative importance of external,

parametric and structural model uncertainty in ECCO v4

can then be made from Table 3 (structural sensitivity tests)

and Table 8 (external and parametric sensitivity tests). Struc-

tural model uncertainty associated with choices of advec-

tion, mixed-layer and momentum schemes are sizable over

20 years (Table 3). Solutions perturbed by this much are suf-

ficiently distinct from the state estimate to prompt further

optimization, leading to a different state estimate. The most

important result, however, may be that adjusted control pa-

rameters generally have a much larger impact (Table 8) than

switching amongst numerical schemes (Table 3).

A ratio C of model uncertainty controlled by continuous

parameters (external or parametric) to structural model un-

certainty is introduced to better illustrate this result (Fig. 11).

The adjoint method allows for reduction of parametric and

external errors, but it does not lend itself to reduction

of structural errors that are fundamentally discontinuous.

Hence, C is an index of model controllability, which can be

interpreted as a signal-to-noise ratio of sorts, but for model

simulations rather than observations. Large values of C are

a priori favorable to state estimation.

It is therefore encouraging that log10(C) > 0 for all vari-

ables considered (Fig. 11), showing that controlled model un-

certainty exceeds the noise level set by structural model un-

certainty. Certain ocean characteristics are particularly prone

to structural model uncertainty, whereas others are highly

controllable. On the one hand, squared model–data distances

for regional sea level variability and in situ hydrography ap-

pear most controllable with log10(C) > 1.5 (top panels). On

the other hand, global mean temperature and sea surface

salinity appear most prone to structural model uncertainty

with log10(C) < 0.5. The high level of structural uncertainty

seen in global mean heat uptake (i.e., mT) is cause for con-

cern in the context of climate change monitoring (see also

Sect. 5.1).

Increasing model controllability is a priori favorable to

state estimation. To this end, one may seek to replace dis-

crete choices and switches with continuous parameter speci-

fications that enable smooth state transitions13, or simply add

adjustable parameters14. The replacement of the C-D scheme

by optional targeted viscosity, and the replacement of KPP

with GGL (Sect. 3.3) thus aim at increasing model controlla-

bility. For example, KPP is a very complex and non-linear

parameterization that involves many discrete switches and

13At this point it is assumed, for the sake of a simple preliminary

discussion, that an expert consensus could be reached to exclude

certain numerical schemes (see Marzocchi and Jordan, 2014).
14If algorithmic differentiation is the method of choice to this

end, then schemes that have fewer discrete switches are preferable

over other comparable schemes.
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Figure 11. Bootstrap distribution of a controllability index C for select ocean state characteristics. C is defined as log10(δb,j /δb,i) where

δb,i and δb,j denote perturbations in one ocean state characteristic b. Values reported as positive integers in Tables 3 and 8 are examples of

δb,i and δb,j , respectively. A set of 54 values of C is computed from δb,i , δb,j pairs formed from the last 9 rows of Table 3 (providing a set

of 9 δb,i values) and the last 6 rows of Table 8 (providing a set of 6 δb,j values). Bootstrap resampling (500 members) yields the displayed

distributions.

thousands of code lines. GGL yields broadly similar results

to KPP over 20 years (Table 3) and is in contrast a very sim-

ple code, so that a practical adjoint may be within reach.

It is also noteworthy that activating the C-D scheme gen-

erally trumps the impact of switching between mixed layer

schemes, albeit with the notable exception of global mean

characteristics (see Table 3). This result highlights the po-

tential benefits of further extending the inversion problem to

viscosity parameters.

5.4 Known issues

State estimation should aim towards universality and com-

pleteness (see Wunsch and Heimbach, 2013a, for a review).

Thus, its practice always warrants continuous improvement

in many respects. In ECCO v4, without trying to be exhaus-

tive, one can distinguish at least three types of issues.

Firstly, the state estimate would benefit from further op-

timization, with additional data, controls, and refined error

covariance specifications. Remaining misfits seen in the top

left panel of Fig. 10, for example, may point to the need for

further optimization. The adjustment of turbulent transport

parameters has largely reduced these misfits, but their spec-

ified covariances remain very imprecise. Parametric error

in the momentum equations also deserves further attention,

since it may limit model controllability. Error covariances be-

tween adjustable control parameters (e.g., atmospheric vari-

ables) are also neglected. A permanent issue is the need for

additional observations to further constrain models, particu-

larly in the abyss (Wunsch and Heimbach, 2014). Amongst

available data that is not yet in ECCO v4, the growing bio-

geochemistry data base is becoming a priority.

Secondly, the lack of “posterior” error estimates is re-

garded as the most outstanding issue with ECCO v4, re-

lease 1. Producing formal error estimates, at a reasonable

computational expense and with acceptable precision, for

the full, evolving ocean state would be another major break-

through. In principle, a number of methods are available to

this end. In practice, however, most of them are intractable

for problems of size > 108 (sizes are reported in Tables 5–

7). One approach that is being pursued is the use of second

derivative (Hessian) information that, under the assumption

of Gaussian distribution, can be readily related to the poste-

rior error covariance (see Kalmikov and Heimbach, 2014).

Also a possibly useful estimate of uncertainty in ECCO v4

may follow from computing the spread amongst available

ocean data syntheses, although it is unclear how such ensem-

ble spreads should be interpreted (Balmaseda et al., 2015).

Thirdly, the ECCO v4 model setup could be extended

and improved, with possibly important implications for

the state estimate. The lack of atmospheric, land, and

bio-geochemistry components is an obvious limitation of

ECCO v4 at this stage. The surface boundary conditions

and sea-ice model settings require further assessment. Issues

such as the use of the Boussinesq approximation (in Eqs. 1–

5), the omission of geothermal heating (Piecuch et al., 2015),

the omission of tides, and the lack of a coastal wetting/drying

mechanism are matters for further MITgcm development that

are also of importance to state estimation.

6 Conclusion and perspectives

This paper emphasizes the synergy between ocean modeling

and data analysis. The entanglement of models and obser-

vations is nothing new – Ekman (1905), Sverdrup (1947),

Munk (1966) and Wunsch (1977) are just a few historical ex-

amples. The synergy of ocean modeling and data analysis is

further becoming a reality as a growing community engages

in ocean state estimation, which in essence is the hybridiza-

tion of ocean modeling and data analysis. What is different
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now merely is the level of (in)completeness, complexity, and

diversity of the models and observations being employed in

modern oceanographic and climate science. The scope and

size of the ocean state estimation problem tackled in ECCO

v4 requires collaborative research and production activities.

This unescapable conclusion leads to this attempt at offer-

ing ECCO v4 as a fully integrated framework for non-linear

inverse modeling and global ocean state estimation. Along

with the MITgcm and its adjoint capability, the ECCO v4

framework currently includes the components listed in Ta-

ble 10.

Each component of the framework is being (re)designed

to be modular and of general applicability, as they all are

thought to provide valuable stand-alone pieces to different

degrees. Standardized in situ data sets in particular, while

a by-product of carrying out ECCO v4, allow for a variety

of scientific analyses in their own right. For example, they

are used for analyses of observed variance that is never fully

represented in numerical model solutions (Forget and Wun-

sch, 2007; Forget, 2015), of water mass volumetric census

(Forget et al., 2011; Speer and Forget, 2013), and of macro

turbulence (McCaffrey et al., 2015) and mixing (Forget et

al., 2015). A complementary description of the standardized

in situ observations and related ECCO v4 components is pro-

vided in Appendix D, directed towards users of in situ obser-

vations.

As another example, the gcmfaces Matlab framework

(Appendix C) is suitable for the analysis of gridded earth

variables (whether observational or modeled) beyond the

ECCO v4 model setup and state estimate. At this stage it has

already been applied to analyze MITgcm simulations on var-

ious grids, and to a variety of observations. Interfacing gcm-

faces with output from models other than MITgcm would

allow for rigorous model intercomparisons without the need

to introduce errors through interpolation. As a final example,

any interested modeling group should be able to take advan-

tage of the global grids.

The state estimate and the MITgcm are highly integrated

with each other. Beyond the few aspects of the solution that

have been investigated in some detail, the MITgcm pro-

vides numerous prognostic and diagnostic capabilities that

remain to be applied to, or employed within, ECCO v4. The

“ctrl”, “ecco” and “profiles” packages, are just examples of

the many MITgcm packages. The last two diagnose model–

data misfits and statistics. In contrast, the “ctrl” package de-

fines control parameters that act upon the forward prognos-

tic equations. It also lends itself to development of new pa-

rameterizations. Note that the roles of these packages (diag-

nosing or acting on the solution) are reversed in the adjoint.

Amongst forward prognostic MITgcm packages not yet used

in ECCO v4, biogeochemistry and simplified atmospheres

(Dutkiewicz et al., 2005; Follows et al., 2007; Marshall et al.,

2007a; Ferreira et al., 2011) are worth singling out, as they

offer a great potential for extending ocean state estimation.

The adjoint capabilities of MITgcm further allow for compu-

tations of sensitivity, Green functions, singular value decom-

position, mechanistic attribution of variability, and optimal

observation design (Marotzke et al., 1999; Köhl and Stam-

mer, 2004; Fukumori et al., 2007, 2015; Heimbach et al.,

2011; Zanna et al., 2011).

Furthermore, the MITgcm provides a convenient platform

for parallel computing and variational estimation that allows

for, but is not limited to, ocean data synthesis and analysis

(Hoteit et al., 2013; Goldberg and Heimbach, 2013). Opti-

mal interpolation (OI) of an individual variable, for instance,

can readily be carried out using Eq. (12) and its adjoint with

M= I (i.e., the identity operator) as illustrated by Forget

(2010). In between OI and full ocean state estimation, and

beyond, lie many interesting stages and possibilities. For in-

stance, stand-alone bulk formula configurations (available

at mitgcm.org, with or without sea ice) could readily al-

low for assessment and optimization of air–sea fluxes (along

the lines of, e.g., Yu and Weller, 2007; Maze et al., 2009).

The (re)implementation of Eq. (12) within MITgcm provides

a versatile environment for such projects, and for variational

estimation purposes most generally (and is complementary

to, e.g., Moore et al., 2011; Barth et al., 2014; Wilson et al.,

2014; Hoppe et al., 2014).

It is expected that all of the ECCO v4 components listed in

Table 10 will eventually be replaced. Most immediately, the

specifics of the ocean state estimation problem (grid, forcing,

ocean and sea-ice model settings, control parameters, data

constraints) can all be refined or substituted for improved

components. Our continued commitment is to make every

updated component freely and fully available online as soon

as possible. All of the Fortran and Matlab components are al-

ready available, and served through the CVS server of MIT-

gcm, where they were added in real time and with free access

over the years (“Code availability” section). The monthly

output of the state estimate and the model–data misfits (data,

model counterparts, and uncertainty) for in situ profiles are

also readily available. The rest of the numerical input and

output requires additional processing and web interfacing –

and is for now instead made available upon email request

(“Code availability” section).

At the present time, taking full advantage of the ECCO

v4 framework (Table 10) requires two third-party commer-

cial tools that are neither free nor open source: Matlab and

TAF. The ability to successfully generate efficient adjoint

code using alternative open-source tools, such as OpenAD

or Tapenade, is gaining increasing priority. Despite its lim-

itations, Matlab is one of the most portable, integrated and

popular analysis frameworks, and it is expected to remain

as such for the foreseeable future. However, a Python analy-

sis framework similar to gcmfaces is in planning and should

better handle massive output from high-resolution models

(R. Abernathey, personal communication, 2014).

Gridded observational products (such as hydrography cli-

matologies, ocean state estimates, etc.) are commonly used

as a practical shorthand to data. It should be stressed that
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Table 10. List of the ECCO v4 framework components, which are fully integrated with(in) the MITgcm and its adjoint.

– The 2 km CS and LLC grids, as well as descending resolution grids

– The MITgcm estimation framework implementation charted in Fig. 5

– The model setup subjected to forward and adjoint daily regression tests

– The state estimate output, including model–data misfits

– The observational data input, including weights, to the state estimate

– The forward model input needed to re-compute the 1992–2011 solution

– The testreport_ecco.m tool to verify re-runs of the 1992–2011 solution

– The gcmfaces Matlab framework to analyze global, gridded solutions

– The MITprof Matlab framework to process and analyze in situ profiles

– The solution’s standard analysis produced by gcmfaces and MITprof

a gridded field in itself does not provide any information

about its errors. Therefore, and since data coverage is un-

even and restricted to a few variables, state estimate users

are strongly encouraged to consider the underlying data base.

This being said, and despite the need for continued improve-

ment, the usefulness and scientific value of the ECCO v4

solution is by now largely documented in a number of pa-

pers (Speer and Forget, 2013; Wunsch and Heimbach, 2013b,

2014; Buckley et al., 2014, 2015; Forget and Ponte, 2015;

Forget, 2015; Forget et al., 2015; Liang et al., 2015; Fuku-

mori et al., 2015; Balmaseda et al., 2015).

As compared with earlier ECCO solutions, the state es-

timate benefits from an extensive revisit of model settings.

The improved fit to in situ observations (Argo profiles of T

and S in particular) as compared with earlier ECCO solu-

tions may be the defining characteristic of ECCO v4, release

1. The inclusion of turbulent transport parameters in the set

of adjustable control parameters was instrumental in achiev-

ing that goal – their inversion guided by in situ observations

is further assessed in Forget et al. (2015). Nevertheless, it

should not be assumed that broad-scale model–data misfits

are completely absent (e.g., see Fig. 10). Users of the state

estimate are expected to question its realism, while being

provided with capabilities to assess model–data misfits for

themselves. More generally, it should not be assumed that all

ocean state variables are fully constrained by available obser-

vations. Integrated transports, global averages, etc., are not

directly observed, and it is a priori unclear how well they can

be constrained by available observations (see Forget et al.,

2008a, b; Heimbach et al., 2009; Forget et al., 2015).

Looking to the future, the need for associating formal er-

ror estimates with the full, evolving ocean state remains of

utmost importance. Aside from this aspect, extensions of the

state estimation framework to include other climate compo-

nents (atmosphere, land, cryosphere) and different variables

(biology, chemistry) would be desirable (see, e.g., Blessing

et al., 2014; Prinn et al., 2011). By providing ECCO v4 as

a fully integrated framework along with a useful baseline so-

lution that any interested investigator should be able to re-

produce for the foreseeable future, the authors aim to stimu-

late independent research along those lines. The very modest

computational requirement of ECCO v4 (Appendix F) is fa-

vorable to scientific experimentation, multi-centennial simu-

lations and extensions to biochemistry for example (see For-

get and Ponte, 2015; Forget et al., 2015).

The overarching scientific problem (setting aside techni-

calities) for data–model combination lies in the attribution of

errors amongst the various elements of Eq. (12). We make no

claim to having achieved the proper attribution of errors, but

experience gathered in developing ECCO v4 suggests that

a paradigm shift, as compared with earlier ECCO publica-

tions, is in order. Our results indeed indicate that internal pa-

rameters are of first-order importance to state estimation, and

to fitting the observed hydrography in particular (Table 8).

Our assessment is in contrast to that of Liu et al. (2012), who

suggest that the importance of internal parameters is of or-

der 10–20 %, depending on the model variable of interest.

Furthermore, the inversion of parameters in the momentum

equations, which has received comparatively little attention,

emerges as a topic of importance as one gets closer to data,

and is expected to gain further importance as resolution in-

creases. To provide a frame of reference for future research

along those lines, a first attempt at defining and gauging var-

ious categories of model uncertainty has been presented.

Alleviating structural model errors is a prerequisite to im-

proved dynamical interpolation of observations. In this re-

gard, the main improvement compared with previous ECCO

estimates may be the extension of the gridded domain to the

Arctic, the addition of the non-linear free surface, and the

switch to real freshwater flux (Sect. 3). These specific expert

choices (Marzocchi and Jordan, 2014) should not be contro-

versial. For many other model settings, the situation is not

so clear but structural model errors are generally regarded

as a more difficult issue than parametric model errors. In-

deed, structural model errors by definition consist of funda-

mentally discontinuous modeling choices that cannot be op-

timally controlled. In contrast, sensitivity to continuous pa-

rameters can readily be probed in adjoint mode (Sect. 4.2) so

that they can be estimated objectively under the constraint of

fitting observations (Sect. 5.2).

Parametric and external model uncertainty (Table 8) gen-

erally appear to dominate over structural model uncertainty
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(Table 3), as illustrated by Fig. 11. Such a conclusion most

likely depends on spatial resolution, the chosen 20-year du-

ration, and the necessarily limited array of model settings

being considered in Tables 3 and 8. In particular, we expect

that the choice of momentum schemes would be more impor-

tant in eddy-resolving models, as kinetic energy overcomes

potential energy at the meso-scale. Examples of large struc-

tural uncertainty in eddy permitting models can be found in

Barnier et al. (2006) and subsequent studies. Here, however,

the estimated control parameter adjustments appear to deter-

mine the solution beyond the level of structural model uncer-

tainty (Sect. 5.2 and 5.3).

Parametric model uncertainty (associated here with inte-

rior turbulent transports) and external model uncertainty (as-

sociated here with surface forcing fields) appear to be of

comparable magnitude (Table 8). Depending on the charac-

teristic of interest, one predominates over the other. Hence,

the importance of including turbulent transport parameters in

the control vector cannot be overstated. Much remains to be

understood regarding these highly uncertain parameters and

their inference from data though (see Forget et al., 2015).

ECCO v4 will hopefully prove a useful stepping stone in that

direction and stimulate further parameter inversion experi-

ments.

Geosci. Model Dev., 8, 3071–3104, 2015 www.geosci-model-dev.net/8/3071/2015/



G. Forget et al.: ECCO version 4 3093

Appendix A: Grid generation method

At high latitude, the LLC mesh is generated numerically

by adapting the two-dimensional conformal mapping algo-

rithm developed by Zacharias and Ives in the 1980s (see Ives

and Zacharias, 1989; Trefethen, 1989; Wilkin and Hedström,

1998) to spherical geometry. The approach is similar to that

used in the SeaGRID package (Denham, 2000), except that

here spherical polar coordinate geometry defines sub-domain

boundaries. The numerical mesh is generated separately for

the Arctic cap and the transition sector. Each quarter of the

transition sector is bounded by the 57◦ N parallel (southern

edge), two 90◦ spaced meridians (eastern and western edges),

and a small-circle arc that crosses the eastern and western

edges at 67◦ N (northern edge). The four northern edges of

the transition sector bound the Arctic cap.

To numerically mesh each sub-domain it is first confor-

mally projected onto a plane, using a polar stereographic

transformation. The result is then conformally mapped to

a rectangular shape by iteratively applying the so-called

“hinge-point” or “power” transformation to each of the four

arc segments that make up the sub-domain edges. The trans-

formation works with points (x,y) in the complex plane

x+ iy and applies the mapping ω = (x+ iy)P . The transfor-

mation is applied iteratively to adjacent pairs of discrete line

segments that define the sub-domain edges. The transforma-

tion adjusts P at each iteration for successive line segment

pairs, so that the angle between adjacent segments is adjusted

to be π
2

at corners and π for all intermediate segments.

The result of the transformation is a rectangular shape in

a new coordinate space denoted by coordinates ζ and η. The

rectangular shape has two edges that are line segments of

constant ζ and two edges that are lines of constant η. The

points that define the line segments have corresponding map-

pings to the line segment points in the original (x,y) coordi-

nate system. A set of x and y locations that describe orthog-

onal grid lines in the sub-domain interior can then be gener-

ated numerically by solving two Laplace equations (Ryskin

and Leal, 1983) of the form

∂2X

∂ζ 2
+
∂2X

∂η2
= 0

∂2Y

∂ζ 2
+
∂2Y

∂η2
= 0

over the (ζ ,η) rectangular shape and subject to the respective

boundary conditions X = x and Y = y on the respective ζ =

constant and η = constant rectangular shape edges.

Appendix B: Time-stepping

The time-discretized version of Eqs. (1)–(5) and (7) calcu-

late the updated state (vn+1,wn+1, ηn+1,θn+3/2,Sn+3/2)

at time t +1t from the current state at time t

(vn,wn,ηn,θn+1/2,Sn+1/2) following

(8′)n+1/2
=
g

ρc

ηn∫
z

(ρ′)n+1/2dz (B1)

with (ρ′)n+1/2
= ρ(θn+1/2,Sn+1/2,−ρcgz

∗)− ρc,

vn+1
− vn

1t
−
[
Gn

v

]AB
+ g∇z∗η

n+1
+∇h8

′(n+1/2)

= Dnz∗,v +Dn+1
⊥,v +F

n+1/2
v , (B2)

ηn+1
− ηn

1t
+∇ ·

ηn∫
−H

vn+1dz= Fn+1/2, (B3)

1

H

ηn+1
− ηn

1t
+∇z∗(s

∗nvn+1)+
∂wn+1

∂z∗
= s∗nFn+1/2, (B4)

s∗n+1θn+3/2
− s∗nθn+1/2

1t
−A

(
θ,un+1

+ub

)
= s∗n

(
Fn+1
θ +D

n+1/2
σ,θ +D

n+3/2
⊥,θ

)
, (B5)

s∗n+1Sn+3/2
− s∗nSn+1/2

1t
−A

(
S,un+1

+ub

)
= s∗n

(
Fn+1
S +D

n+1/2
σ,S +D

n+3/2
⊥,S

)
, (B6)

where u represents the three-component velocity vector

(u,v,w), ub the bolus velocity, and A( ) the advection term.

Momentum advection and the Coriolis term are evaluated

at time t from vn,wn in Gn
v =−(f +ζ )k̂×v−∇z∗KE−w ∂v

∂z
and the resulting tendency (Gn

v) is extrapolated forward

in time to t +1t/2 using the Adams–Bashforth 3 (AB-3)

scheme:

G
n+1/2
v =

[
Gn

v

]AB
= (1+αAB+βAB)Gn

v

− (αAB+ 2βAB)Gn−1
v +βAB Gn−2

v .

Here we use (αAB,βAB)= (1/2,0.281105) to improve the

stability (Shchepetkin and McWilliams, 2005) compared to

the true third-order in time Adams–Bashforth (αAB,βAB)=

(1/2,5/12). The precision of the scheme drops to just

second-order accuracy with only minor consequences here

since most of the other terms are also second-order in time

(tracer time-stepping, internal-wave dynamics). Note that the

precision is still improved compared to the quasi-AB-2 used

in previous ECCO configurations, which only becomes first-

order accurate with the stabilization factor (εAB ∼ 0.1).

Simple Eulerian time-stepping (first-order, forward in

time) is used in Dnz∗,v for horizontal dissipation (harmonic

and bi-harmonic viscosity) and quadratic bottom drag. Using

a quasi-AB-2 scheme instead (as in previous ECCO config-

urations) would reduce the stability limit from 1 to 0.9 (for
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pure damping terms, with εAB = 0.1). AB-3 would reduce it

even further to 0.55, and therefore was not considered here.

Also, for stability reasons, a backward time-stepping is used

for the other dissipation term in Eq. (B2) (i.e., Dn+1
⊥,v ), which

represents vertical viscosity effects in the interior, except for

bottom friction:

Dn+1
⊥,v =−∂/∂z

(
−ν⊥∂/∂z(v

n+1)
)
.

This vertical shear term is independent of the pressure gra-

dient contribution (g∇z∗η
n+1), so that these two operations

commute. This allows one to find D⊥,vn+1 even before know-

ing ηn+1 by solving a tri-diagonal system in each water col-

umn.

The updated ηn+1 is found by combining Eqs. (B2) and

(B3) to form a two-dimensional elliptic Poisson equation for

surface pressure (pressure method) that is solved iteratively

using the conjugate-gradient method (Marshall et al., 1997).

The solver matrix and preconditioner are updated at each

time step as the water column height changes due to the non-

linear free surface (Campin et al., 2004).

The tracer Eqs. (B5) and (B6) contain several subgrid-

scale (SGS) terms within D⊥,Dσ that can use different

time-stepping methods. They represent small-scale vertical

mixing (K⊥) due to a time-invariant background diffusiv-

ity field (Kd; Sect. 3.3) and time-variable contributions from

GGL (Gaspar et al., 1990), as well as isopycnal diffusion

(Kσ ; Sect. 3.3). The effect of unresolved eddies parame-

terized as a bolus velocity (vb) advecting tracers (Gent and

Mcwilliams, 1990) is included in A(θ,v+ vb). All SGS pa-

rameters, including vb, isopycnal slope (αx,αy) and vertical

diffusivity and viscosity (K⊥,ν⊥) are computed at the begin-

ning of the time step from the current state.

Isopycnal diffusivity (Kσ ) is discretized as a tensor (Redi,

1982) where all the terms are treated explicitly (i.e., as

a function of the θn+1/2 gradient), except for the pure verti-

cal component ∂
∂z
(|α|2Kσ ∂(θ)∂z ) where |α| = (α2

x+α
2
y)

1/2 de-

notes the magnitude of the isopycnal slope. The pure vertical

component is combined with K⊥ and applied to the future

tracer field (θn+3/2) using a backward time-stepping, leading

to

s∗n
(
D
n+1/2
σ,θ +D

n+3/2
⊥,θ

)
=−∇σ

(
−Kσ∇σ θn+1/2

)
−

∂

∂z∗

(
−(K⊥+ |α|

2Kσ )
∂θn+3/2

∂z

)
.

Rather than evaluating bolus advection A(θ,ub) separately

from Eulerian advection, the three-component residual mean

velocity un+1
res = ub+un+1 is used to advect tracers, per

s∗n+1θn+3/2
− s∗nθn+1/2

1t
+∇z∗(s

∗nθn+m/2vn+1
res )

+
∂(θn+3/2wn+1

res )

∂z∗
= s∗nFn+1

θ −∇σ

(
−Kσ∇σ θn+1/2

)
−

∂

∂z∗

(
−(K⊥+ |α|

2Kσ )
∂θn+3/2

∂z

)
. (B7)
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Figure C1. Example of a field (ocean bathymetry) mapped to the

LLC90 grid (Fig. 1, right panel) displayed in a way that reflects

the MITgcm layout of LLC90. The five grid “faces” number are

indicated in red, and their dimensions are shown in black. See also

Table C1.

Horizontal advection (second term in Eq. B7) uses the third-

order direct space and time (DST-3) advection scheme (MIT-

gcm Group, 2002; Adcroft et al., 2004b) with the direction-

splitting method (also called multi-dimensional advection) as

described in Adcroft et al. (2004b). The tracer field (m= 2)

obtained after applying one-dimensional advection (in the X

or Y direction) on the current tracer (m= 1) is used to com-

pute the advective fluxes in the other direction (Y or X) and

ensures second-order accuracy in space and time. Regarding

vertical advection, the backward time-stepping (uncondition-

ally stable) is applied with a third-order advection scheme;

this involves solving a penta-diagonal system (with some ad-

ditional contributions from vertical mixing to the three main

diagonals) for each column. This choice in particular allevi-

ates adjoint stability restrictions.

Appendix C: Diagnostics

The MITgcm “diagnostics” package is generally used to gen-

erate binary output for offline analysis of the solutions. In the

case of the LLC90 grid, a two-dimensional field is thus out-

put as an array of size 90×1170. It can easily be re-organized

according to Table C1 to match the MITgcm layout of the

LLC90 grid (Fig. C1). The state estimate output is made

available online in a tiled netcdf format (nctiles) where each

tile is a 90× 90 subdivision of a face (i.e., of f1, f2, f3, f4 or

f5 in Table C1) and is written to an individual netcdf file.

The need for nctiles files stems from the fact that there is

no simple, robust and general way to re-arrange global model
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Table C1. Gridded earth variable (two-dimensional) represented in

Matlab as a gcmfaces object (a set of connected arrays) when the

LLC90 grid is used. See also Fig. C1.

fld=

nFaces: 5

f1: [90× 270 double]

f2: [90× 270 double]

f3: [90× 90 double]

f4: [270× 90 double]

f5: [270× 90 double]

output in a single two-dimensional map. For LLC fields, it is

only the LL sector that can readily be re-assembled as a sin-

gle two-dimensional array. To this end a simple Matlab script

is provided (eccov4_lonlat.m; see Sect. “Code availability”).

It is mainly intended for users of earlier non-global ECCO

estimates that may want to re-use their old analysis codes.

ECCO v4 users are generally advised against interpolating,

which introduces errors, and often precludes accurate trans-

port computations. Instead, mimicking the gridded earth de-

composition of general circulation models is regarded as the

most convenient, robust and general way to carry out offline

analyses of the solutions.

This approach is readily implemented in Matlab by the

gcmfaces toolbox. It defines a class of objects (the gcmfaces

class depicted in Table C1) that is a natural extension to the

common array class. Basic operators (such as “+”) are read-

ily overloaded (i.e., re-defined) for the gcmfaces class. For

example, the addition of two gcmfaces objects can simply be

written in the compact and general “fld1+fld2” form – ex-

actly as if fld1 and fld2 were two array objects. Note that the

grid-specific internal organization of gcmfaces objects (e.g.,

Table C1) does not appear in “fld1+fld2” , so that this com-

pact code is immediately applicable to all supported grids

(Fig. 1).

Transport and budget computations are coded with the

same degree of generality within gcmfaces. Hard-coding ar-

ray sizes or exploiting specific grid symmetries (e.g., the

zonal symmetry of the LL grid) is excluded, in order to avoid

having to re-code the same diagnostics on different grids.

Two basic elements are instrumental to the generality of gcm-

faces codes, which are worth noting here. First, any trans-

port is computed following a grid line path, as illustrated in

Fig. C2. Three types of paths are readily treated in a general

fashion: small circles of constant latitude, great circles de-

fined by two points (as shown in Fig. C2), and the edge of

a specified subdomain. Second, the familiar mechanism15 by

which rows and columns of neighboring faces are appended

at the edges of an array (e.g., to f1, f2, f3, f4 or f5 in Table C1)

is readily implemented. This yields general code to compute

15It is commonly called exchanges in the parallel computing ter-

minology.
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Figure C2. Example of a grid line path (in red) that approximates

a great circle between 45◦ E, 85◦ N and 135◦W, 85◦ N (a meridian

crossing the North Pole) in the central part of face 3 (see Fig. C1).

Shading: ocean bottom depth. Blue lines: grid cell edges.

gradients, rotationals, divergences, etc. that is immediately

applicable to all supported grids (Fig. 1).

From the state estimate output made available online, users

can readily re-compute the gcmfaces standard analysis. The

standard analysis document serves as a general documenta-

tion of the state estimate, and allows for a direct comparison

with other MITgcm simulations regardless of grid specifics.

It proceeds in two steps:

diags_driver

(’release1/’,’release1/mat/’,

1992:2011);

diags_driver_tex

(’release1/mat/’,{},

’release1/tex/standardAnalysis’);

The computational loop (i.e., diags_driver.m) uses model

output in “release1/nctiles/” and results are stored to files in

“release1/mat/”. The display phase (i.e., diags_driver_tex.m)

then generates “release1/tex/standardAnalysis.tex”.

Diagnosing mass, heat, and salt budgets requires snapshots

of the ocean+ sea-ice+ snow model state (to compute the

tendency terms), as well as time-averaged fluxes between

snapshots (to match the tendency terms). The MITgcm flux

output accounts for variations of layer thicknesses in the z∗

coordinate. Tendency terms are computed after the fact using

snapshots of, e.g., η and θ (Sect. 3.1). The assembled mass,

heat and salt budgets are provided online in the extensive

form (in kg s−1, J s−1, and g s−1, respectively) and in nctiles

format (monthly, three-dimensional). The budget residuals

are less than 10−6 times the budget magnitude (a Euclidean

norm is used). Here “mass budget” simply denotes the con-

stant Boussinesq density ρc times volume – in contrast to the
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hydrostatic pressure budget that is most directly relevant to

diagnosis of sea level variability (Forget and Ponte, 2015).

The full specification of the MITgcm “diagnostics” pack-

age (“data.diagnostics”) are available online for ECCO v4,

along with the gmfaces (Matlab) codes that assemble the

budgets and compute the standard analysis. They can be

readily applied to re-runs of the state estimates, or to most

perturbation experiments. Re-running the state estimate after

editing “data.diagnostics” is the re-commended method for

users that desire output that is not readily online.

Appendix D: Profiles

The MITgcm “profiles” package subsamples the model solu-

tion, while it is being computed, at the locations and times of

observed in situ profiles. It uses input files in the “MITprof”

format described below. At model initialization, observed

profile dates and locations are read from file and each profile

is allocated to the processor corresponding to its sub-domain

tile. The latter is generally facilitated by a pre-processing

step: observed profiles are collocated with grid points using

gcmfaces (see Appendix C) and grid locations added to the

MITgcm input files. During model integration, profiles are

sampled at time steps and locations closest to observations,

vertically interpolated to the MITprof depth levels, and writ-

ten to file. At the end of the forward model integration, these

profiles are re-read from file along with observed and weight

profiles, and the squared distance between modeled and ob-

served profiles is computed (see Sect. 4).

MITprof files contain in situ profiles (prof_T and prof_S)

as well as corresponding state estimate profiles (prof_Testim

and prof_Sestim) and least square weights (prof_Tweight

and prof_Sweight) as illustrated in Fig. D1. Weights are set

according to the method of Forget and Wunsch (2007), al-

beit with updated variance fields. The squared model–data

distance (Eq. 12; Sect. 4.3) is thus readily computed as

jT= (prof_Testim-prof_T)2 · prof_Tweight,

jS= (prof_Sestim-prof_S)2 · prof_Sweight, (D1)

from the content of any MITprof file. The intention is to

eventually distribute all data constraints used in ECCO (e.g.,

altimetry and SST) in a similarly self-sufficient and practi-

cal format (i.e., data, model counterparts and weights all to-

gether).

The MITprof format contains a limited amount of ancil-

lary information: profile locations, dates, and an identifying

code (prof_descr). This choice, along with the use of stan-

dard depth levels, yields data sets that are both more com-

pact and simpler than most data center formats (e.g., the Argo

format), providing easy access to vast collections of profiles

of various origins (Table 5). The identifying code may be

a cruise ID (e.g., for shipboard CTDs) or an instrument ID

(e.g., for Argo profiles). They are informative of the data ori-

gin, and used for analyses of transects or time series.

Table 12. Netcdf file header illustrating the MITprof format used in MITgcm/pkg/profiles.

netcdf argo_feb2013_2008_to_2010 {

...

double prof_T(iPROF, iDEPTH) ;

prof_T:long_name = "potential temperature" ;

prof_T:units = "degree C" ;

double prof_Tweight(iPROF, iDEPTH) ;

prof_Tweight:long_name = "least-square weight" ;

prof_Tweight:units = "(degree C)^-2" ;

double prof_Testim(iPROF, iDEPTH) ;

prof_Testim:long_name = "pot. temp. estimate" ;

prof_Testim:units = "degree C" ;

...

double prof_depth(iDEPTH) ;

double prof_YYYYMMDD(iPROF) ;

double prof_HHMMSS(iPROF) ;

double prof_lon(iPROF) ;

double prof_lat(iPROF) ;

char prof_descr(iPROF, lTXT) ;

prof_descr:long_name = "profile description" ;

...

}

Eq.13) yields a practical method to omit scales at which observations and models are not expected

to be consistent with each other. This approach is useful, for example, to constrain eddying mod-

els to coarse grained climatological fields, or to constrain models with along-track altimetric data

(Forget and Ponte, 2015).1025

When the smoother is applied to uncorrelated grid scale noise, the resulting fields have a Gaussian

correlation (Fig. 14) with a e-folding scale L determined by the joint specification of integration time

and diffusivity. The noise amplitude reduction by the smoother (Fig. 14, color scale) can be computed

exactly or approximately (Weaver and Courtier, 2001). Normalizing the smoother to account for this

effect yields a spatial correlation operator that conserves variance (in the case of uncorrelated noise).1030

A spatial covariance operator is then immediately obtained by further multiplying the normalized

smoother with a specified error field, and grid cell areas or volumes are used as a preconditioner (in

two- and three-dimensional cases respectively), following Weaver and Courtier (2001).

45

Figure D1. Netcdf file header illustrating the MITprof format used

in MITgcm/pkg/profiles.

As part of the MITprof Matlab toolbox, the pre-processing

of in situ profiles consists of four basic steps: (1) applying

relevant data quality flags, if provided by the data center,

(2) converting in situ to potential temperature or pressure

to depth, if needed, (3) interpolating to standard depth lev-

els16, (4) resetting weights to 0 for standard levels that are not

closest neighbors to observed levels, for S outside the 25–42

range, and when jT (resp. jS) exceeds 50 (i.e., seven stan-

dard errors) when computed for an Argo-based atlas (Forget,

2010). Zero weights thus indicate suspicious data points that

users are advised to discard.

Appendix E: Smooth

The MITgcm “smooth” package is an implementation of

recipes presented in detail by Weaver and Courtier (2001).

At the core of this method, a diffusion equation is time-

integrated to smooth a field. Applying the smoother directly

(without additional factors) to model–data misfits (as part of

P in Eq. 13) yields a practical method to omit scales at which

data and model are not expected to be consistent with each

other. This approach is useful, for example, to constrain ed-

dying models to coarse-grained climatological fields, or to

constrain models with along-track altimetric data (Forget and

Ponte, 2015).

When the smoother is applied to uncorrelated grid-

scale noise, the resulting fields have a Gaussian correla-

16An option also exists to interpolate to standard density levels,

which was used in McCaffrey et al. (2015), although the corre-

sponding option is lacking in MITgcm.
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Figure E1. Diffusion applied to grid-scale noise (set to unit vari-

ance) introduces correlation (contours, drawn for select points) and

yields a reduced noise variance (color shading). The smoothing

scale was set to three grid points.

tion (Fig. E1) with an e-folding scale L determined by the

joint specification of integration time and diffusivity. The

noise amplitude reduction by the smoother (Fig. E1, color

scale) can be computed exactly or approximately (Weaver

and Courtier, 2001). Normalizing the smoother to account for

this effect yields a spatial correlation operator that conserves

variance (in the case of uncorrelated noise). A spatial covari-

ance operator is then immediately obtained by further mul-

tiplying the normalized smoother by a specified error field,

and grid-cell areas or volumes are used as a preconditioner

(in two- and three-dimensional cases, respectively), follow-

ing Weaver and Courtier (2001).

This method is used for all control parameter covariances

(see Sect. 4.4; Q in Eq. 15). Key advantages of this method

are that it is matrix free, naturally handles coastlines, and

easily accommodates a variety of grids. In practice, “smooth”

also damps grid-scale noise that can arise from the adjoint

model, and it thus facilitates optimization.

Appendix F: Regression tests

While MITgcm evolves continuously its results are subjected

to regression testing (Myers et al., 2011) on a daily ba-

sis, with a variety of compilers, on a variety of computing

platforms. The tests not-only evaluate strict bit-wise repro-

ducibility, but also examine the magnitude of the deviation

in numerical metrics from reference calculations and com-

pare it to acceptable limits. This allows partially automated

testing in the context of numerical innovations and computer

platform variations.

Automated daily regression tests are carried out using the

“CVS” and “testreport” capabilities for short runs (a few time

steps), on a small number of processors (or just one), and

exclude optimization by compilers. This design is suited to

detect mistakes in code revisions and distinguish them from

truncation errors. The ECCO v4 model setup (Sects. 2 and 3)

takes full advantage of that framework, which makes it both

portable and stable (“Code availability” section).

Advanced usage of ECCO v4 may include re-running for-

ward model solutions (the state estimate in particular) or its

adjoint. Computational requirements are modest – the 20-

year forward model integration typically takes between 6 and

12 h on 96 processors. ECCO v4 users can thus easily re-run

the state estimate solution to generate additional output and

carry out analyses that may not already be covered by the

publicly distributed material. Running the adjoint model al-

lows for analyses of processes and mechanisms (e.g., Fuku-

mori et al., 2015) as well for the possibility of further opti-

mization of the state estimate.

While the “testreport” tool is very useful and practical, it

does not directly apply to the state estimate, but rather to

the underlying model code and setup. An extension to the

regression testing framework is therefore proposed that is

suited for the full state estimate solution. It is implemented

as a self-contained Matlab routine (testreport_ecco.m). It re-

lies upon squared model–data distances and monthly mean

model output (Table 2). It provides a simple mechanism that

allows users to verify that their 20-year solution is accept-

ably close to the released state estimate. The first three lines

of Table 3 are reflective of small differences that user should

expect when re-running the state estimate using a different

computer or an updated MITgcm code. Such slight changes

typically result from compiler optimization of slightly differ-

ent codes and slightly different arithmetic and MPI libraries.

For any given model run, squared model–data distances

are simply read from a summary text file (typically named

cost function0011) that MITgcm generates at the end of

the model integration. Reference values are then read from

a Matlab file (typically name testreport_release1.mat) and

relative differences are reported as shown in Table 3. The

other tests are slightly more computationally intensive as

they read binary output of model fields – a subset of the fields

that are distributed online as nctiles files (Appendix C). It

was chosen to focus on integrated quantities (global means

and transports) that are known to be model sensitive (e.g.,

see Table 3) and of common interest to ECCO users. Com-

putations of monthly global mean free surface height, tem-

perature and salinity illustrate usage of grid cell surfaces and

volumes. If gcmfaces is activated in Matlab (see Appendix C

and the “Code availability” section), then integrated trans-

ports can also be tested.

Appendix G: Solution history

The ECCO v4, release 1 state estimate was produced in sev-

eral phases over the course of the ECCO v4 development.

In total, 45 iterations were performed, and a summary of the

different phases is provided below. We should stress that the

documented solution history reflects the progressive develop-

ment of ECCO v4 – as opposed to a systematic or advocated

approach to the optimization of model solutions.
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The first series of 14 adjoint iterations was carried (with

the MITgcm’s checkpoint62k) using a non-synchronous time

step (3 h for tracers, and 20 min for momentum), sea surface

salinity relaxation to climatological values, and the linear

free surface method. Revision 1 was the switch to the 1 h

time step (for both tracers and momentum) and to the non-

linear free surface, followed by 14 adjoint iterations (with

checkpoint62y).

In revision 2, the Duffy et al. (1999) parameterization

as implemented for the MITgcm by Nguyen et al. (2009)

was added, the solution was extended through 2011, and

13 more adjoint iterations were carried out (with check-

point63g). In revision 3, the surface salinity relaxation was

removed and its effect replaced by an adjustment of precip-

itation controls, followed by three adjoint iterations (with

checkpoint63r). The resulting solution is used in Speer and

Forget (2013), Wunsch and Heimbach (2013a), Wunsch and

Heimbach (2013b), Buckley et al. (2014), and Balmaseda

et al. (2015). In revision 4, the adjustment of precipitation

from revision 3 was removed, followed by eight adjoint iter-

ations (with checkpoint64f).

Up to this point (revision 4, iteration 8), time-variable

global mean sea level had been omitted from the altimetry

constraint – letting the other data constraints, primarily from

in situ hydrography, SST and regional altimetry, determine

the solution variability. Then, revision 4 iteration 9 consisted

in estimating a time-variable global mean precipitation ad-

justment under the sole constraint of fitting the time-variable

global mean altimetry. This operation had very little influ-

ence on the rest of the model–data misfits – consistent with

the analysis presented in Sect. 5.1. This solution is used in

Forget and Ponte (2015).

Revision 4 iteration 10 consisted in a trimming of atmo-

spheric control parameter adjustments to reduce irregulari-

ties in the forcing that had appeared during adjoint iterations.

To this end, the four leading empirical orthogonal functions

were subtracted from atmospheric control parameter adjust-

ments. To further reduce dynamical imbalances during the

first years of integration, the initial state of 1 January 1992

as adjusted during the adjoint iterations was replaced with

the state of 1 January 1995. This solution is used in Wunsch

and Heimbach (2014). Finally, revision 4 iteration 11 con-

sisted in a reduction of vertical viscosity to 5× 10−5m2 s−1

to reduce a low bias in the Equatorial Undercurrent velocity,

albeit with little impact on model–data misfits.

Revision 4 iteration 11 is the ECCO v4, release 1 state es-

timate, which originally ran with MITgcm’s checkpoint64t.

For regression testing purposes (Appendix F), the 20-year so-

lution is re-run once a month with the up-to-date MITgcm.

As of MITgcm’s checkpoint65i, it matches the original solu-

tion within the precision seen in Table 3 (top three rows).
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Code availability

The MITgcm is developed and maintained within the Con-

current Versions System (CVS). This framework allows users

to download frozen versions of the model code (checkoint65i

at the time of writing) or to keep their local copy up to date.

The evolving code is subjected to regression tests on a daily

basis using the “testreport” capability (Appendix F). Docu-

mentation for the MITgcm itself, the CVS framework, and

the “testreport” capability can, respectively, be found at

– http://mitgcm.org/public/r2_manual/latest/online_

documents/manual.pdf

– http://mitgcm.org/public/using_cvs.html

– http://mitgcm.org/public/devel_HOWTO/devel_

HOWTO.pdf

The ECCO v4 model setup (Sects. 2 and 3) exploits the

MITgcm CVS and testreport capabilities, to allow any in-

terested user to obtain the up-to-date setup and re-run the

short ECCO v4 benchmark (Appendix F). Results of the au-

tomated daily regression tests are reported at

– http://mitgcm.org/public/testing.html

The Matlab analysis framework (gcmfaces and MITprof;

see Appendices C and D) is also developed and maintained

within CVS. The ECCO v4 model setup, gcmfaces, and MIT-

prof can be found, along with their respective documenta-

tions, at

– http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/

gael/verification/

– http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/

gael/matlab_class/

– http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/

gael/profilesMatlabProcessing/

The state estimate monthly output, profile output, budget out-

put, and the standard analysis (see Appendices C and D) can

be found at

– http://mit.ecco-group.org/opendap/ecco_for_las/

version_4/release1/

that also provides ancillary data (e.g., grid files), and

the stand-alone Matlab routine (eccov4_lonlat.m) that ex-

tracts the LL sector out of global LLC fields. The ecco-

support@mit.edu mailing list provides for collaborative user

support (analogous to mitgcm-support@mitgcm.org).

The Supplement related to this article is available online

at doi:10.5194/gmd-8-3071-2015-supplement.
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