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Abstract6

Estimates are made of the 20-year time means and their time evolution over that pe-7

riod of oceanic temperature, salinity, and sea surface height, during the data-dense inter-8

val 1994-2013–along with heuristic estimates of their uncertainties. Values are computed9

from a state estimate calculated from a free-running ocean-ice general circulation model10

whose initial/boundary conditions and internal mixing coefficients have been adjusted to11

produce consistency with nearly all globally available measurements. The essential step of12

separating stochastic from systematic or deterministic elements of the fields is explored by13

suppressing the globally correlated components of the fields. Uncertainties reflecting the14

stochastic elements of the state estimate are then calculated from bootstrap and jackknife15

estimates. Trends are estimated as 2.1±01mm/y in elevation, 0.00107±36×10−5◦C/y, and16

-3.2×10−5±1.5×10−6g/kg/y for surface elevation, temperature and salt, with uncertainties17

representing only the estimated stochastic component of error. The temperature change18

correspnds to a 20-year average ocean heating rate of 048± 0002W/m2 of which 0.1W/m219

arises from the geothermal forcing.20

1 Introduction21

Many papers have been directed at estimating, directly from observations, multi-decadal ocean22

heat uptake (Purkey and Johnson, 2010; Lyman et al., 2014), salinity change as an indicator of23

∗Also, Dept. of Earth, Atmospheric and Planetary Sciences, MIT
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fresh-water injection (Wadhams and Munk, 2004; Boyer et al., 2005), and sea level (elevation)24

changes (Nerem et al., 2006; Cazenave et al., 2013) or all together (Levitus et al., 2003; Peltier et25

al., 2009; Forget and Ponte, 2015). Many more such calculations have been published than can be26

listed here. A great difficulty with most of these estimates is the historical inhomogeneity in the27

various data sets employed, and the consequent use of nearly untestable statistical hypotheses28

used to extrapolate and interpolate into data sparse times and places (see Boyer et al., 2016 and29

Wunsch, 2016 for generic discussions). A number of papers have proclaimed “closure” of the sea30

level change budget, but that is accomplished through large and uncertain error budgets of the31

various components.32

Ocean general circulation models (GCMs) and coupled climate models have also been used to33

calculate space- and time-mean oceanic temperature ( ) salinity () , and sea surface elevations34

() Most models, including the ECCO system (Estimating the Circulation and Climate of35

the Ocean; Wunsch and Heimbach, 2013; Forget et al., 2015), compute the ocean state in a36

deterministic fashion. That is, given initial conditions and time-varying meteorological boundary37

conditions, the model time-steps the state vector, x (), as though the external fields, including38

initial conditions, were fully known. Ensemble (Monte Carlo) methods attempt to estimate the39

uncertainties of the state at a particular time, usually a forecast time, by computing families of40

disturbed initial and/or boundary conditions.41

A general discussion of the accuracy or precision of climate models does not appear to exist.42

As in all systems, errors will always include systematic ones e.g., from lack of adequate resolution43

or improperly represented air-sea transfer processes, amongst many others. Stochastic errors44

will arise from noisy initial and boundary conditions of all types, as well as rounding errors, and45

interior instabilities of many types, both numerical and physical. Analysis of systematic and46

stochastic errors requires completely different methods.47

The purpose of this paper is two-fold: to produce best estimates of oceanic    values48

and their variability from the nearly homogeneous (in the observational network sense) data49

sets 1994-2013, and to make a start towards the essential separation of random from systematic50

or deterministic processes. Estimation of systematic errors requires totally different procedures,51

involving a near line-by-line discussion of the individual computer codes used to calculate oceanic52

states. Both error types will be different in calculations of the mean state and in their temporal53

and spatial changes.54

For “state estimation” as done in ECCO (see Forget et al., 2015; ECCO Consortium 2017a,b;55

Fukumori et al., 2017), two major obstacles loom if Monte Carlo methods are to be used: (1)56

the immense state and control vector dimensions; (2) The absence of quantitative estimates57

(probability distributions) of the stochastic contributions in the initial/boundary conditions58
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and effectively stochastic structures generated by internal instability and turbulence. The same59

obstacles to uncertainty calculation loom in any ocean or coupled-climate model run for long60

times whether or not based upon combinations with data.61

A number of methods exist for calculating uncertainties in systems such as that of ECCO.62

To the extent that the system is linearizable, the method-of-Lagrange-multipliers/adjoint used63

there can be shown (e.g., Wunsch, 2006) to have identical uncertainties to those obtained from64

sequential estimates, such as the Rauch-Tung-Striebel (RTS) smoother.1 This approach is very65

well understood and is practical for small systems (Goodwin and Sin, 1981; Brogan, 1991;66

Wunsch, 2006). It involves calculated covariance matrices that are square of the state vector67

dimension and of the control vector dimension at any time,  For the ECCO version 4, state68

vector dimension at each time step is approximately 39 million, a number far too large for the69

covariances to be calculated or manipulated, much less understood. With a time-step of one70

hour over 25 years, the total evolving ECCO state vector, if stored, would be about 30 terabytes,71

without including the covariance matrices. Similar dimensions and issues apply to the system72

control vector.73

Other methods include calculation of inverse Hessians (Kalmikov and Heimbach, 2014), some-74

times using Lanczos methods. Hypothetically, one could solve a Fokker-Planck equation corre-75

sponding to the model (Gardiner, 2004) and its initial/boundary condition, or the prediction-76

particle filtering methods of Majda and Harlim (2012). None of these methods is computationally77

practical for the global ocean or climate system with today’s computers–although that should78

gradually change in the future.79

Nonetheless, some form of useful uncertainty estimate is necessary for values calculated from80

models, whether from ordinary forward calculations, or from a state estimate. So for example,81

as described by ECCO Consortium (2017a), Fukumori et al. (2017), the 20-year average ocean82

temperature is 3.5319◦C found from the  = 24 × 106 volume weighted grid points of the83

model (centers of cells). How reliable is that number? On the one hand, it is extremely accurate84

up to the machine precision of 2−64 A standard error might be calculated by dividing the85

variance of the volume-weighted elements by 24 × 106 but such a number is meaningless: (1)86

much of the thermal structure of the ocean is deterministic on the large-scale–and with other87

effectively permanent sub-basin scale structures–stable over 20+ years. Treating that structure88

as stochastic would be a major distortion. (2) The distribution of values is very inhomogeneous89

1The RTS smoother employs the Kalman filter as a sub-component in the numerical algorithm. Kalman

filters are predictors and should not be confused with general smoothing estimators. In any case, true Kalman

filters, which require continual updating of the covariance matrices, are never used with realistic large-scale fluid

problems–the dimensionality is overwhelming. In practice, the prediction numerics are usually approximated

forms of Wiener filters, employing temporally fixed, guessed, covariances.
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over the three-dimensional volume and any supposition of uniform probability densities or of90

near-Gaussian values is incorrect (see Fig. 1). An empirical probability density could be fit to91

the model output, but as noted, that would lead to incorrect results as much of this structure92

is contained in the deterministic elements.93

Parts of the ocean structure and of the meteorological forcing fields are best regarded as94

deterministic processes over decades. For example, the depth and properties of the main ther-95

mocline, or of the dominant wind systems, do not vary significantly over 20 years. Superimposed96

upon the initial and boundary conditions are noise fields best regarded, in contrast, as stochastic.97

When integrated through a time-stepping fluid model, the stochastic elements, even distur-98

bances that are white noise in space and/or time, will give rise to complex structured fields (see99

for example Fig. B5 of Wunsch, 2002). A crux of the uncertainty problem for model outputs100

then is to separate the deterministic from the stochastic elements. Ensemble methods, generated101

by stochastic perturbations of initial/boundary conditions/parameters, face the same difficulty:102

What are the appropriate joint probability distributions to use in generating the ensembles (e.g.103

Evensen 2009)?2 To the extent that the stochastic influence can be regarded as perturbations104

about a stable deterministic evolution, the probability densities will be centered about deter-105

ministic fields, as in Eq. (3.5.9) of Gardiner (2004). Systematic errors will remain as part of the106

deterministic components, and must be dealt with separately.107

What follows is largely heuristic: methods for separation of deterministic from stochastic108

elements in large volumes of numbers do not appear to have been widely explored. (This issue109

should not be confused with the problem of separating “deterministic chaos” from true stochastic110

elements familiar in dynamical systems theory; e.g. Strogatz, 2015).111

2 Mean Values112

A start is made with time-mean three-dimensional fields which permits introducing the basic113

ideas while greatly reducing the volume of numbers required. A supposition is thus made that114

only the time average fields are available and sampled, temporarily suppressing the information115

contained in the time-variability. Suppression of the deterministic component, so as to leave a116

stochastic field, is required for both mean and time variations.117

Temperature118

Consider the problem of determining the 20-year global ocean average temperature and its119

corresponding uncertainty. A 20-year average, computed 50 years in the future, might usefully120

2Computationally practical ensemble dimensions remain orders of magnitude smaller than any reasonable

estimate of the number of degrees-of-freedom.
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be compared with the present 20-year average. The immediate simplification made is to as-121

sume that only the 20-year average model output is available, not the underlying time variation.122

Hourly values of the state estimate, averaged over 20-years, 1994-2013, produce point-wise cal-123

culated mean potential temperatures, ̄ Mean temperature at one depth can be seen in Fig.124

2, displaying the classical large-scale features that are clearly deterministic over 20-years with125

superimposed stochastic elements. When the three-dimensional field is weighted by the relative126

volume contribution,  from the spatially varying model grid,  (
P

 = 1) produces a pop-127

ulation  = ̄ drawn from an unknown probability distribution, a probability distribution128

centered about the (also unknown) deterministic structures. As stated above, the raw mean129

value of the 20-year averages at all grid values is,130

̃ =

X
1

̄ = 35319
◦

with unknown reliability.131

The basic notion here is to use the bootstrap and related jackknife methods in the elementary132

sense described by Efron and Tibsharani (1993), Mudelsee (2014), and others. That is, we begin133

by generating 50 bootstrap samples of values (resampling with replacement from the values,134

) The result is shown in Fig. 3 with a bootstrap mean of 35318
◦±00024◦ almost identical to135

the ordinary average.3 These values are, however, incorrect: the basic assumption of the bootstrap136

is that the values making up the subsampled population are independent, identically distributed137

(iid), values. Any assumptions that stochastic elements in cold, deep, temperatures are drawn138

from the same population as the much warmer near-surface values, or that this structure is139

dominantly stochastic, cannot be correct.140

An ad hoc assumption will now be made that the strongest globally spatially varying struc-141

tures represent the deterministic component. This assumption is based on considerations of142

physics–that any three-dimensional, globally correlated structure can only have been generated143

by very long-term effectively systematic processes–and not upon any statistical methodology. If144

a process can be rendered indistinguishable from white noise, then at zero-order most covariance145

structure has been removed.4 Stochastic integration does produce correlated structures (e.g.,146

Fig. B5 in Wunsch, 2002), but 20 years is sufficiently brief that assumptions of mainly local147

covariance of the stochastic elements, and that globally correlated fields are effectively deter-148

ministic on multi-decadal time-scales, are not unreasonable. A plausible, if not demonstrable,149

3Worthington (1981) estimated the global average potential temperature as 3.51◦C, using a much more re-

stricted data set, and provided no uncertainty estimate. His value is remarkably close to the present one but was

meant to apply to the total historical period ending about 1977. See the discussion in Wunsch (2016).
4An alternative, not used here, would be a spectral expansion in spherical harmonics and a choice of vertical

basis functions, and the exploitation of the non-random character of the coefficients of the deterministic elements.
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assumption can be made that the residual values, 0 =
¡
̄

¢0
 drawn anywhere from each of150

the 50-levels of the model are iid if the overall spatial covariance has first been removed and151

that variances are nearly uniform.152

The 3-dimensional matrix of volume-weighted temperatures is, Ξ ( )  written with153

columns in longitude, latitude, and depths. Map this three-dimensional matrix into two dimen-154

sions by stacking the latitude columns, Ξ0 ( ) where  is just a reordering of longitude and155

latitude. Write Ξ0 as its singular value decomposition,156

Ξ0 ( ) = UΛV

   ≤ 50 (1)

where the vertical dimension is described by the 50 vectors making up the columns of matrix V157

 is the number of non-zero singular values and hence is the rank of Ξ0 (U V contain the158

first  columns, etc. and Λ is a  × diagonal matrix.) The fractional value of the squared159

singular values,  = (Λ) as the sum,160

() =

P
=1 

2
P50

=1 
2


  = 1  (2)

is shown in Fig. 3 and representing the cumulative variance by singular vector pair. The first161

singular vector pair u1v1 accounts for over 90% of the variance (compare Fukumori et al., 1991)162

and including the second pair, u2v2 raises it to about 96%. Fig. 4 shows the reduction in the163

range with depth of the spatial variance of temperature by removal of the first two singular164

vector pairs. In an ideal situation, the variance of an iid would be uniform with depth.165

Subtracting the lowest three pairs produces,166

Ξ01 ( ) = Ξ
0 − 1u1v


1 − 2u2v


2 − 3u3v


3 =

50X
j=4

uv

  (3) {projection1}

the projection on the highest 47 singular vectors, and which reduces the 2-norm of Ξ0 by 96%.167

The horizontal spatial patterns of the first three pairs, at 105m, are shown in Fig. 5. u1 carries168

the major climatological fields, with a zonal banding of low absolute values at high latitudes,169

with mid-latitude maxima, and a more extreme Atlantic than Pacific. In the vertical (Fig.170

5d), v1 generally decays with depth, albeit with vertically localized mild maxima. u2 and v2171

convey a tropical structure, rapidly diminishing with depth. Somewhat arbitrarily, the first172

three pairs are here deemed to carry the deterministic structure, and the residual (Fig. 6) is173

assumed to represent the stochastic field. This projection onto the least correlated components174

leaves some obvious spatial covariances both in the vertical and the horizontal–as would result175

from integrated stochastic fields–and this residual is assumed to be stochastic. Although it176
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appears not possible to test these assumptions directly at the present time, they do provide a177

way forward.178

When the bootstrap is applied to the residual field, the temperature standard deviation is179

reduced to 69× 10−4◦C and which is tentatively accepted as the best estimate of the standard180

error uncertainty owing to the stochastic elements. The distribution of values (Fig. 1) has181

become unimodal and symmetric without the pronounced skewness of the original distribution.182

Much structure exists with latitude, longitude, and depth both in the suppressed singular183

vectors and in the residuals, here and in the fields described below. Understanding of the details184

of these structures takes one deep into the physics of temperature and salinity in the ocean and185

ultimately each will necessitate a separate discussion of their distributions and changes.186

Salinity187

The time mean salinity, (34.7281 g/kg), determined from the volume-weighted values  has188

the histograms shown in Fig. 7.5 The singular vectors and bootstrap histories are shown in Fig.189

8. If the first-3 SVD pairs of , (Fig. 9) containing about 96% of the variance, are subtracted190

(Fig. 10), the standard error is ±0.010g/kg. For reference, using ∆ = −0∆0 where 0 0191

are the starting values of mean depth and salinity (Munk, 2003), the uncertainty ±0.010g/kg192

corresponds to a freshwater change uncertainty of about ±11m . This value may seem surpris-193

ingly large, but it simply says that the salinity data permit inference of the total amount of194

added freshwater of about ∆ =1.1m out of a total average depth of about  =3800m, or about195

003% which by most standards is remarkable accuracy. One can hope that a comparison 50196

years hence will not find changes ∆ which are significantly different from zero!197

2.1 Sea Surface Height/Dynamic Topography198

Mean sea surface height,  the “dynamic topography” in the present ocean state, can in principle199

be compared to its value determined as a 20-year average, 50 years or any other time interval into200

the future. Values in the ECCOv4 state estimate are determined relative to the best available201

geoid known today (the GRACE-determined values). The dynamical variables are the horizontal202

gradient elements and thus if in the future a different geoid is used, offset by a constant from the203

one used in ECCO, that change would be of no significance. On the other hand, care would be204

needed in the future to accommodate changed geoids with for example, higher spatial resolution.205

The assumption used so far, that globally covarying fields can be interpreted as the determin-206

istic components, is physically sensible for temperature and salinity. For  however, the ability207

5Worthington’s (1981) value was 34.72g/kg, again with no stated uncertainty, but very close to the present

value, although pertaining to the historical period prior to about 1977.
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of the ocean to transmit barotropic signals globally within a few days, makes the assumption208

dubious. Nonetheless, with this caveat, the global time-mean value of  and an estimate of its209

accuracy is calculated within the model context. The spatial mean of the field in Fig. 11 is210

0048 in the interval 1994-2013.211

In contrast to the temperature and salinity fields, time-mean  exists only in two dimensions.212

Thus the singular vectors are calculated treating longitude and latitude as separate defining213

fields (the matrix has a latitude-longitude structure). Removal of the first 3 singular vector214

pairs results in Fig. 12. Applying the bootstrap to this field produces a mean standard error of215

6.7×10−4m. Thus the final estimate of the time mean  is 48±01 cm and which hypothetically216

could be compared to a time-mean relative to the geoid computed decades hence.217

3 Time Changes: Difference of Last and First Years218

In dealing with time changes, of intense interest for climate understanding, the difference between219

two yearly-averages, years 1 2, should largely remove the deterministic components contained220

in the initial/boundary conditions. A trend, e.g. in exchange of heat between ocean and at-221

mosphere as a part of the global warming signal and part of the surface boundary conditions,222

might be regarded as deterministic. But, as has been noted in numerous publications (e.g.,223

Ocaña et al., 2016), with a 20-year record, the duration is far too short to distinguish a true224

deterministic trend from the long-term stochastic shifts characteristic of red-noise processes, and225

here any trend present is treated as though arising from a stochastic process. Discussion here226

of temporal changes is done in two ways: (1) the value of the differences of the first and last227

years 20-years apart, and which makes no inferences about the nature of the trend. (2) The228

bootstrapped or jackknifed estimate of the trends, assumed to be linear ones.229

3.1 Temperature/Heat Content230

One interesting example is the comparison of the mean ocean temperature in 1994 to what it231

was in 2013 (shown for two depths in Figs. 13)–as a constraint on the rates of global warming.232

This difference is a static field and can be analyzed in the same fashion as the time-mean233

was treated. The spatial pattern of warming and cooling is a complicated one with large-scale234

structures corresponding to known physical regimes, e.g., the eastern tropical Pacific, the near-235

Gulf Stream system/subpolar gyre, the Southern Ocean. Note that the two estimates are not236

independent ones–they are connected through the time-evolving equations of motion.237

To the extent that any systematic error in the ECCO system is time-independent, it will be238

subtractive in the time-difference. Without drawing any concrete inference about the validity of239
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that statement, Fig. 14 shows the first few SVD pairs and the variance reduction with depth can240

be seen in Fig. 15 and the histogram of difference values of  ( (2)−  (1)) is shown in Fig.241

16. The latter is much closer to a Gaussian than either of the two annual means alone (Fig. 1).242

The mean difference in temperature is found to be 00204◦C. Assuming that the full difference243

can be treated as a stochastic field, the bootstrap standard deviation is 10×10−4◦C. Removing244

the first two singular vector pairs decreases the standard deviation to 70×10−5◦C and thus the245

difference value appears highly significant in either case, and is thus 00204± 00001◦C.246

With a fixed heat capacity of  = 3994J/◦C/kg and an ocean mass of 137 × 1021 kg,247

the change in heat content is about 11 × 1023 ± 55 × 1020 J. This value corresponds to a248

net heat uptake of 048± 0002 W/m2, again including 0095W/m2 from the geothermal input249

(ECCO2017a). This accuracy is encouraging, but returns attention to the possible systematic250

errors in the model and data that could affect the rate of enthalpy gain. The geothermal heating251

rate is also partially uncertain.252

3.2 Salinity/Freshwater253

The pattern of differences of salinity between 1994 and 2013 (Fig. 17) and is already visually254

somewhat stochastic in character. Histograms, the bootstrap history, and the singular vectors255

are shown in Fig. 18.256

The mean salinity change between the two years is (-5.5±010)×10−4 g/kg from the bootstrap257

estimate with two singular vector pairs removed. A salinity change of −55× 10−4 corresponds258

to a freshwater addition of 5± 01cm over 20 years, or 25± 05mm/y.259

3.3 Surface Height260

The difference in height over 20 years (Fig. 19) is 401±0018 cm, or an average change of 2005±261

001mm/y where the standard error is obtained from the bootstrap with three singular vector262

pairs removed. (Nerem et al., 2006, quote a rate from altimeter data alone, as 31± 04mm/y.263

Although the estimates are not independent–the state estimate uses all the altimeter data–in264

a formal sense, no conflict exists between the values.) The total is all accounted for, within265

one standard error, by the salinity change. That leaves perhaps 0.5mm/y, within two standard266

errors, for the thermal contribution. The thermal contribution is complex because the coefficient267

of expansion of sea water is a complicated function of the ambient   and pressure,  fields.268

The  fields estimated here are derived from the changing density field, including all of   269

But accurately, additively separating the contributions of changing   and in particular given270

the large equivalent fresh water uncertainty, is not possible here.271
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4 Estimated Linear Trends272

4.1 Temperature/Heat Content273

The integrated temperature to various depths is shown in Fig. 20. The best fitting, assumed274

linear, trend over 20 years is sought. Whether deterministic or a red-noise random walk is275

immaterial at this stage. The mean slope for the top-to-bottom change is 00011±36×10−5◦C/y.276

Standard error is computed from a bootstrap of the full field (Fig. 21), under the assumption277

that the time differences are basically stochastic and which likely slightly overestimates the278

uncertainty. (A jackknife estimate was identical.) The mean slope implies a change over 20279

years of 002±72×10−4◦C and which necessarily, because of the noise, differs slightly from the280

value computed between first and last years. The temporal coefficients v of the annual spatial281

means are displayed in Fig. 22 and showing the noisy trend in the lowest pattern u1282

Although the temperature change as a function of depth is shown in Fig. 20, only the283

top-to-bottom integrals are used here. Integrals taken to intermediate depths, or intermediate284

densities, are related to the potential and internal energies of an open-system, and thus are285

not interpretable in terms of net external inputs. Depth dependence does provide insights into286

the physics governing heat redistribution (see e.g., Liang et al., 2017), but that subject is not287

pursued here.288

4.2 Salinity Trends289

Integrated salt anomalies are displayed for each year to several depths in Fig. 23. An overall290

freshening, top-to-bottom is evident, including a slight increase in salinity at and below 3600m.291

This abyssal change accompanies the general cooling seen below 3600m in Fig. 20, but this292

physics is not further described here.293

Fig. 24 shows the lowest SVD pairs. The mean bootsrapped salinity trend over the 20 years294

is −32 × 10−5 ± 152 × 10−6g/kg y for a net salinity change from the trend of 64 × 10−4 ±295

0304× 10−4g/kg. (For comparison, Boyer et al., 2004, estimated the trend as 54× 10−4g/kg/y296

from a much longer and much more inhomogeneous data set. No uncertainty was specified.)297

The corresponding freshwater change from the present estimate is a net 70 ± 03cm addition298

over 20 years.299

4.3  Trends300

Fig. 25 displays the annual spatial average values of  and the first differences between sequential301

years. The spatial patterns do not show a single dominant singular value (10 of them are required302
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to account for 90% of the variance). Fig.26 displays u1 and its temporal coefficient, and clearly303

accounts for the trend-like behavior seen overall.304

An estimate of the trend is 2.1×10−3 ± 74 × 10−5m/y, again from a bootstrap of the full305

annual spatial average, about 2mm/y. The corresponding mean surface height change is then306

4.1±015cm over the 20 years.307

5 Discussion308

The best fitting linear elevation trend is 21±01mm/y. Twenty-year average global temperature309

and salinity linear trends are 000107 ± 36 × 10−5◦C/y and −32 × 10−5 ± 152 × 10−6g/kg/y310

respectively. Net changes, based upon the spatial mean differences of 2013 and 1994 are 40 ±311

001cm, 00204±10×10−4◦C, −546±10×10−5g/kg. Listed uncertainties are approximate one-312

standard deviations derived from the stochastic elements. In general, histograms of the inferred313

residual stochastic fields become unimodal without long tails, apart from isolated outliers.314

Although 20-year time-means and changes in the global average oceanic heat, salt, and dy-315

namic topography (sea surface height) have been estimated here, the important by-product is316

the provision of useful uncertainties from the random error in the values when computed from317

general circulation or climate models. Results are almost entirely heuristic, but the approach318

using resampling (bootstrap and jackknife) methods can perhaps be made rigorous. In par-319

ticular, methods for separating deterministic and stochastic elements of the three-dimensional,320

time-dependent fields, in the absence of real knowledge of the probability distributions, should321

be explored. Apparent stochastic two-standard deviation uncertainties tend to be small com-322

pared to the two-decade changes. Attention must then turn to the issue of systematic errors323

in the model and state estimate. These will never be zero, but because of the data-fitting in324

the state estimation process, they are expected to be much-reduced compared to those found in325

unadjusted climate models.326

A full discussion of the global structures and causes of the various fields appearing in the327

means and in the heating/cooling, salinification/freshening, elevation increases/decreases in time328

and space requires a specialized study of each field separately and is not attempted here.329
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Figure Captions

1. (a) Histogram values over the full volume of the 20-year average potential tempera-

ture in ECCO v4 (nov 2016). (b) Values in (a) weighted as  where   is the time mean

temperature in model volume cell  and  is the fraction of the total volume of fluid repre-

sented. (c) Residual of   after removal of first two pairs of singular vectors. Skewness of

the original values is greatly reduced.

2. Twenty-year mean temperature at 105m (◦C). Inset shows the multi-modal histogram

of values. The gyre structure is dominant and regarded here as a deterministic element of

the field. (From Fukumori et al., 2017)

3. (a) The means computed from 50 bootstrap samples of  each of the 20-year mean

volume-weighted temperatures. The mean of means is 3.54 degrees with a standard deviation

of 3.1×10−3◦ Singular values,  (c) Bootstrap means with the first 3 singular vector pairs
removed. Standard error is reduced to 6.8×10−4◦C (d) Cumulative sum of normalized 2 

 () showing that removal of the first three singular value pairs reduces the variance by

about 96%.

4. Variance with depth of the 20-year mean temperature before and after of removal of 3

singular vector pairs. After removal, the variance is closer to uniform with depth.

5. (a-c) first three of the u singular vectors of time-mean temperature. (d) Corresponding

v (d-f) are the histograms of values in the corresponding uThose for u1 are distinctly non-

normal and almost all negative corresponding to the negative values in u1 Here uv are

regarded as dimensionless with physical dimensions carried by the singular values 

6. Residual at 555m of volume weighted temperatures after removal of the first three

singular vector pairs. This residual field and those at other depths are treated as stochastic.

7. Raw values (a) of model 20-year average salt. (b) shows the values weighted by relative

volumes, ̄ and (c) is the same as (b) after removal of first 2 singular vectors.

8. Same as Fig. 3 except for salinity.

9. (a-c) 100u  = 1 2 3 for the 20-year mean salinity. Distribution of values is highly

non-normal. (d) Corresponding v in depth.

10. Salinity residual at 555m after removal of the first three singular vector pairs (g/kg

volume weighted).

11. Twenty-year mean  relative to the geoid (m). The large-scale gyre structure is

deterministic, but the extent to which the remaining structures are stochastic remains unclear.

(From Fukumori et al., 2017) Arrows indicate the sense of the corresponding geostrophic flow.

12. Residual of the 20-year mean of  after removal of the 3 lowest singular vector pairs.
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13. (Upper panel) Difference of temperatures in 2013 and 1994 at 105 m. The spatial

complexity is apparent. High outliers in the Pacific warm pool have been truncated in the

plot. Physically interpretable changes by region, particularly in the tropics, suggest an at

least partially determinstic structure. Lower panel is similar, except at 3900 m and showing

the distinct difference between high southern latitudes and the rest of the world ocean. (cf.

Wunsch and Heimbach, 2014).

14. Variance (solid line) of the temperature difference as a function of depth. Dashed

line is the same result after removal of the first 2 pairs of singular vectors, producing a much

more uniform result.

15. First three u and first 5 v of the temperature difference fields for 1994 and 2013.

16. Histogram of values of the difference in temperature over 20 years (upper left panel).

Volume weighted difference (upper right panel) of values in the left panel. Lower panels show

the bootstrapped temperature difference statistics without removing the two lowest singular

vector structures (c) and after they are removed (e). (d), (f) are the singular values and their

cumulative square normalized to one.

17. Salinity differences 2013 minus 1994 at 105m depth, g/kg. This field might be treated

as wholly stochastic, but the first two singular value pairs are removed prior to bootstrapping

the mean.

18. Histogram of salinity differences over 20 years (upper left panel) and as weighted by

relative volumes,  =  (upper right panel). Weighted distribution values are more nearly

Gaussian than salinity itself. Lower panels. Same as Fig. 3 except for the salinity differences

between 2013 and 1994. No singular value dominates and there is no obvious deterministic

component in the current definition. The ocean circulation itself is capable of considerable

randomization.

19. Difference (m) of the mean elevation in 2013 and 1994. Note the long positive tail in

the histogram.

20. Vertically integrated mean temperatures over 20 years. Upper panel shows the result

for 100m, 700m and top-to-bottom. Lower panel shows the values to 3600m, the abyssal

component (below 3600m) and a repetition of the total value. Heat content change requires

accounting for the different masses of these layers. The top 100m is much noisier than the

thicker volumes below.

21. Bootstrapped slope from annual means of the top-to-bottom temperature anomaly

with the lowest pair of singular values removed. Bootstrapped mean is 3.1×10−5◦C/y with
a standard error of 5×10−4◦C/y.

22. Time-dependent v  = 1 2 3 for temperature slope estimates. v1, with a gross overall
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trend, is deemed deterministic, while higher v and corresponding spatial u are treated as

stochastic.

23. Integrated salt anomaly for each year to various depths. Curve for the total is repeated

in both panels and shows an overall freshening, top-to-bottom. As in temperature, the upper

layer is quite noisy.

24. (a) First singular vector u1 of the annual mean salt anomalies, but which is not

here suppressed in the uncertainty calculation. (b) First 3 v of the annual mean salinity

anomalies. v1 corresponds to an overall trend, but whose sign depends upon the sign in (a),

and is removed for the uncertainty calculation. The positive slope in v1 corresponds to a

freshening in regions where u1 is negative in (a).

25. Annual means of the anomaly of  (upper panel, m) and of the differences of successive

years (lower panel, m/y).

26. (a) u1 singular vector for annual anomalies of  The spatial pattern has a strong

ENSO-like component, but the temporal coefficient (b) includes a trend-like component su-

perimposed. (b) Temporal v for the annual mean anomalies of . v1 has a trend-like

behavior while v23 are influenced by the ENSO event of 1997-1998. These are treated here

as stochastic.
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Figure 1: (a) Histogram values over the full volume of the 20-year average potential temperature in

ECCO v4 (nov 2016). (b) Values in (a) weighted as  where   is the time mean temperature in

model volume cell  and  is the fraction of the total volume of fluid represented. (c) Residual of

  after removal of first two pairs of singular vectors. Skewness of the original values is greatly

reduced.

Figure 2: Twenty-year mean temperature at 105m (◦C). Inset shows the multi-modal histogram of

values. The gyre structure is dominant and regarded here as a deterministic element of the field.

(From Fukumori et al., 2017)
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Figure 3: (a) The means computed from 50 bootstrap samples of  each of the 20-year mean

volume-weighted temperatures. The mean of means is 3.54 degrees with a standard deviation of

3.1×10−3◦ Singular values,  (c) Bootstrap means with the first 3 singular vector pairs removed.
Standard error is reduced to 6.8×10−4◦C (d) Cumulative sum of normalized 2   () showing that

removal of the first three singular value pairs reduces the variance by about 96%.

Figure 4: Variance with depth of the 20-year mean temperature before and after of removal of 3

singular vector pairs. After removal, the variance is closer to uniform with depth.
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Figure 5: (a-c) first three of the u singular vectors of time-mean temperature. (d) Corresponding v.

Figure 6: Residual at 555m of volume weighted temperatures after removal of the first three singular

vector pairs. This residual field and those at other depths are treated as stochastic.

Figure 7: Raw values (a) of model 20-year average salt. (b) shows the values weighted by relative

volumes, ̄ and (c) is the same as (b) after removal of first 2 singular vectors.
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Figure 8: Same as Fig. 3 except for salinity.

Figure 9: (a-c) 100u  = 1 2 3 for the 20-year mean salinity. Distribution of values is highly

non-normal. Red contours are positive, blue are negative. (d) Corresponding v in depth.
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Figure 10: Salinity residual at 555m after removal of the first three singular vector pairs (g/kg

volume weighted).
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Figure 11: Twenty-year mean  relative to the geoid (m). The large-scale gyre structure is

deterministic, but the extent to which the remaining structures are stochastic remains unclear.

(From Fukumori et al., 2017) Arrows indicate the sense of the corresponding geostrophic flow.

Figure 12: Residual of the 20-year mean of  after removal of the 3 lowest singular vector pairs.
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Figure 13: (Upper panel) Difference of temperatures in 2013 and 1994 at 105 m. The spatial

complexity is apparent. High outliers in the Pacific warm pool have been truncated in the plot.

Physically interpretable changes by region, particularly in the tropics, suggest an at least partially

determinstic structure. Lower panel is similar, except at 3900 m and showing the distinct difference

between high southern latitudes and the rest of the world ocean. (cf. Wunsch and Heimbach, 2014).

Figure 14: Variance (solid line) of the temperature difference as a function of depth. Dashed line is

the same result after removal of the first 2 pairs of singular vectors, producing a much more uniform

result.
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Figure 15: First two u and first 2 v of the temperature difference fields for 1994 and 2013.

Figure 16: Histogram of values of the difference in temperature over 20 years (upper left panel).

Volume weighted difference (upper right panel) of values in the left panel. Lower panels show the

bootstrapped temperature difference statistics without removing the two lowest singular vector

structures (c) and after they are removed (e). (d), (f) are the singular values and their cumulative

square normalized to one.
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Figure 17: Salinity differences 2013 minus 1994 at 105m depth, g/kg. This field might be treated as

wholly stochastic, but the first two singular value pairs are removed prior to bootstrapping the mean.

Figure 18: Histogram of salinity differences over 20 years (upper left panel) and as weighted by

relative volumes,  =  (upper right panel). Weighted distribution values are more nearly

Gaussian than salinity itself. Lower panels. Same as Fig. 3 except for the salinity differences between

2013 and 1994. No singular value dominates and there is no obvious deterministic component in the

current definition. The ocean circulation itself is capable of considerable randomization.
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Figure 19: Difference (m) of the mean elevation in 2013 and 1994. Note the long positive tail in the

histogram.

Figure 20: Vertically integrated mean temperatures over 20 years. Upper panel shows the result for

100m, 700m and top-to-bottom. Lower panel shows the values to 3600m, the abyssal component

(below 3600m) and a repetition of the total value. Heat content change requires accounting for the

different masses of these layers. The top 100m is much noisier than the thicker volumes below.

13



Figure 21: Bootstrapped slope from annual means of the top-to-bottom temperature anomaly with

the lowest pair of singular values removed. Bootstrapped mean is 3.1×10−5◦C/y with a standard
error of 5×10−4◦C/y.

Figure 22: Time-dependent v  = 1 2 3 for temperature slope estimates. v1, with a gross overall

trend, is deemed deterministic, while higher v and corresponding spatial u are treated as stochastic.

Figure 23: Integrated salt anomaly for each year to various depths. Curve for the total is repeated in

both panels and shows an overall freshening, top-to-bottom. As in temperature, the upper layer is

quite noisy.
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Figure 24: (a) First singular vector u1 of the annual mean salt anomalies, but which is not here

suppressed in the uncertainty calculation. (b) First 3 v of the annual mean salinity anomalies. v1

corresponds to an overall trend, but whose sign depends upon the sign in (a), and is removed for the

uncertainty calculation. The positive slope in v1 corresponds to a freshening in regions where u1 is

negative in (a).
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Figure 25: Annual means of the anomaly of  (upper panel, m) and of the differences of successive

years (lower panel, m/y).

Figure 26: (a) u1 singular vector for annual anomalies of  The spatial pattern has a strong

ENSO-like component, but the temporal coefficient (b) includes a trend-like component

superimposed. (b) Temporal v for the annual mean anomalies of . v1 has a trend-like behavior

while v23 are influenced by the ENSO event of 1997-1998. These are treated here as stochastic.
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