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The motivation for many people here is undoubtedly what the meteorologists call
“data assimilation."
Example, Kalnay et al. (1996)

Cited 9500+ times. What is this? How is it done? Citation index gives about
9000 papers on “data assimilation" (June 2012).
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Now a considerable industry...
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Calculated trends in
southern hemisphere
winds. Same data, very
similar models, similar
methods. Why are they
so different? Do you
believe one of them is
best? Why?

Figure: From D. Bromwich. The
“jump”with the new data type
shows that (A) either something is
very wrong with the procedure
and/or, (B) the uncertainty of the
estimates exeeds the magnitude of
the jump.
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This short course is intended to be a high speed skim through the first part of C.
Wunsch, Discrete Inverse and State Estimation Problems, Cambridge, 2006.
(DISEP. Will not cover the oceanography in the last chapters.)

Approach is based upon the inference that the basic ideas are really very simple,
but in practice are obscured by a fog of jargon and unnecessary mathematics. I
intend only to convey the basic ideas.
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For those interested in a more mathematical approach, good starting points are R.
L. Parker, Geophysical Inverse Theory, 1996, Princeton Un. Press, 377pp., which
leads into the methods pioneered by George Backus and Freeman Gilbert and
which dominate the solid earth literature.
J. L. Lions, Optimal Control of Systems Governed by Partial Differential
Equations, 1971, Springer-Verlag, 396 pp. The entire business is perhaps best
looked upon as an application of methods borrowed from control theory.
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Consider the physics and construction of a bridge:

One can understand the basic principles in terms of levers, loads, stress-strain
relations etc. and have an understanding of how any particular design works and
why– enough to give confidence to cross on it. Actually building a real bridge is a
major engineering problem involving such things as the detailed geology of the
river bed and banks, the various strengths of different steel and concrete types,
costs, volume of traffi c,construction logistics etc. A great challenge.
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Of course, someone can come up with a modified design that requires going back
and working it through:

Sometimes unexpected things happen! (See Youtube for an animation — the
Tacoma Narrows bridge, http://www.youtube.com/watch?v=j-zczJXSxnw.) Are
in a parameter range that was not anticipated:

A bridge is a full-scale, analogue, model of the hypothetical equations and never
exactly conforms to them (e.g., stress-strain relationships are always
approximations).
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The Tay Bridge. And the Millennium Bridge,....
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The goal here is to make the basic concepts clear by discussing mainly very simple
examples. There is a huge amount of numerical engineering involved in building
an estimation system, including all of the details of computational effi ciency, IO
rates, parallelization, numerical stability, checkpointing, calibration, etc. Some
very clever people have been involved in the engineering effort– it isn’t easy. But
you should be able to understand the basic principles without slogging through
questions such as the relative effi ciency of storage versus recomputation– which
may be the key to practicality.
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BASIC NOTIONS:
Everything is eventually put onto a computer. That means all real problems are
discrete and of finite dimension. We work in finite dimensional vector spaces, not
infinite dimensional Hilbert or Banach spaces.
Essentially all methodologies and problems are solutions, exact or approximate, to
simultaneous algebraic equations, linear or nonlinear.
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ASSUMED BASIC KNOWLEDGE:
Elementary linear algebra, including matrices, A, vectors, y, transposes, AT , yT ,
inverses, A−1, where it exists, and the eigenvalue, eigenvector problem,

Bdi=λidi

A bit of intuition about vector spaces. Here, matrices are bold-face upper case, B,
and vectors are bold-face lower case, d, and by default are column vectors.
Differentiation rules such as

∂
(
aT b

)
∂b

= a,
∂
(
aT b

)
∂a

= b,
∂Ax
∂x

= AT ,
∂xTA

∂x
= A

(the first two imply the second pair). The size (norm) of a matrix is assumed to
be known in some useful definition.
The matrix inversion lemma. Several forms. One is,[

C−BTABT
]−1

=
[
I−C−1BTA−1B

]−1
C−1

(see DISEP, P. 29).
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Elementary statistics at the level of sample and theoretical means, variances, bias,
etc.
Simple analytical solutions of conventional linear differential and partial differential

equations
(
∇2φ = ρ

)
.

Very basic methods of discretization (simple differences). Many interesting
extensions are possible.
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Am going to try to convince you that in practice it can all (including the
“reanalyses”) be understood from consideration of the finding of useful
approximate solutions to simultaneous equations, with conventional least-squares
as commonly the method of choice.
(An immense jargon surrounds the subject: forward problems, inverse problems,
inverse methods, resolution, Kalman filters, Gauss-Markov Theorem, RTS
smoothers, adjoints, 4DVAR, 3DVAR, Pontryagin Principle, singular vectors,
EOFs, ensemble filters,...) Most of the complexity has nothing to do with
concepts, and more with coping with effi ciency issues. Less to it than meets the
eye!
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Some necessary terminology (jargon).
A forward problem:
Any of the conventional DE or PDE problems of physics or chemistry or
mathematics. Example:
Solve

d2y
dr2

= q (r) , y (0) = y0, y (R) = y1 (1)

where q (r) , y0, y1 are known (and no mathematical pathologies in q(r)). Many
ways to solve this (a boundary value problem.)
Or,

d2y
dr2

= q (r) , y (0) = y0, y
′ (0) = y ′0 (2)

q (r) , y0, y ′1 are known (an initial value problem). Or,

∇2φ = ρ (x , y) , φ (xb , yb) = φ0 (xb , yb) , xb , yb ∈ ∂D

(the Dirichlet problem), or

∇2φ = ρ (x , y) , φ′ (xb , yb) = φ0 (xb , yb) , xb , yb ∈ ∂D

the Neumann problem.
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These problems are classical in part because they are known to be “well-posed”,
meaning that they have unique, well behaved solutions in which e.g., small
changes in a function q, or in the boundary values lead to small changes in the
solution. (The Neumann problem is in fact ill-posed.) Commonly differentiability
etc. is assured. Textbooks will tell you that you should never try to solve an
“ill-posed”problem.
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Trouble is, well-posed problems almost never exist in practice for anyone using
observations. Consider one-more, the mass-spring oscillator (linear pendulum),

m
d2y
dt2

+ r
dy
dt
+ ky = q(t), y (0) = 1. (3)

A necessary initial condition is missing and it’s ill-posed. But Eq. (3) expresses a
large amount of information. Should one abandon it? Or, suppose instead,

y (0) = 1, y (10) = 2, y(50) = −6

Now there is too much information, so it is once-again ill-posed. (Extra
information could be redundant, or contradictory.)
Or suppose

y (0) = 1± 0.3, y (10) = 2± 1.
Solution cannot be unique, so it is again ill-posed. Or suppose,
q (t) = q0 (t)± ∆q (t)
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What is an inverse problem?
Defined relative to conventional forward problems. Consider again

d2y
dr2

= q (r)

but now suppose that y is known and the problem is to find q (r) . The solution to
this inverse problem is trivial: just differentiate twice and one is done. It’s an
inverse problem that can be solved by purely conventional means.
So what is an inverse method?
For our purposes, define it as any method that can be used to deal with ill-posed
problems, including the ones above, that is able to (1) tell us how (un)certain the
results are; and (2) which of our “data” really mattered; (3) whether some
elements of the solution remain completely unknown (a special case of (1)). So an
inverse problem might not formally involve an inverse method for solution.
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(The most famous inverse problem is probably “Can one hear the shape of a
drum?”posed by Mark Kač (1966):

Figure: Gordon et al. (1992)

Forward problem: Given the boundary, and membrane properties, compute the
eigen frequencies from

∇2φ− 1
c2

∂2φ

∂t2
= 0, (**)

Inverse problem: Given the eigen-frequencies (the spectrum) of all solutions to
(**) with φ = 0 on the boundary, can one determine the shape of the boundary?
Was answered in the negative a few years ago, Gordon et al. (1992). A real, and
important, analogy is the determination of the interior structure of the Earth from
the measured frequencies of its free oscillations.
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Postulate:
All real problems can be rendered into discrete, finite, form with accuracy
adequate for all practical purposes (might take a very large computer, but always
a finite dimensional one). Challenge: find me a counter-example.
So, Eq. (1) can be written

y (n∆r + ∆r)− 2y (n∆r) + y ((n− 1)∆r) = ∆r2q (n∆r)
y (0∆r) = y0, y (N∆r) = y1

(∆r may have to be extremely small, but it is never zero.) r might be a spatial
coordinate, in which case this represents a "static" problem. If r is time, it
represents a time-evolution.
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Writing it out,

y (0) = y0
y (1∆r) = y1

y (1∆r)− 2y (0∆r) + 0 = ∆r2q (0∆r)

y (2∆r)− 2y (1∆r) + y (0∆r) = ∆r2q (1∆r)

y (3∆r)− 2y (∆r) + y (0∆r) = ∆r2q (2∆r)

y (4∆r)− 2y (3∆r) + y (1∆r) = ∆r2q (3∆r)
.

.

y (N∆r)− 2y ((N − 1)∆r) + y ((N − 2)∆r) = ∆r2q ((N − 1)∆r)
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A set of N equations in N unknowns and which can in turn be rewritten,

Ex = q

where x = [y (0) , y (1∆r) , ..., y (N∆r)]T . Can solve it as

x = E−1q

(the well-behaved nature of this system of equations is one approach to proving
well-posedness). If one considers instead the initial value problem (2), the
equations are identical, except the second one is replaced by,

y (1∆r)− y (0∆r) = y ′1

with the same solution but with an matrix E1. Unlikely, however, to solve it that
way, as one can, with complete initial conditions as now, can step it forward in
∆r .The end result is identical to having inverted the matrix. Keep that in mind!
If y (1∆r) is replaced by an end-condition, y (N∆r), time-stepping is no longer
possible, but matrix inversion is.
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So now consider one of the ill-posed problems, with an “extra” value. That now
means there is one more row in the matrix E than there are columns. It is
conventionally labelled “overdetermined”. It’s clear that the system can be
“inconsistent”or “consistent”. Mathematically, a consistent solution exists only if
all equations, including the extra one, are exactly satisfied. Would be nice to
understand how to decide whether that is possible.
Alternatively, suppose the system is ill-posed because one of the boundary or
initial conditions is missing. Then there is one fewer equation than unknowns and
the problem is conventionally “underdetermined”and something many people find
off-putting. Yet it might still have no solutions at all. We repeat the remark
above: that there is in practice no such thing as an over-determined problem– if
any kind of observation is involved.
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This direction leads us to consider ordinary least-squares as one practices it in
beginning science courses. Many of the conceptual issues can be understood from
the most elementary problem of fitting a straight line to data:

40 41 42 43 44 45 46 47 48 49 50
180

200

220

240

260

T IME or DIST ANCE or ...

y(
n

∆
 r)

We can write the problem as above:

d2y
dt2

= 0, y (41∆r) = y41 ± ε41, y42 ± ε42, ....,

(r = 41, 42, ...,is totally arbitrary). Could discretize the equation as above,

y (r + ∆r)− 2y (r) + y (r − ∆r) = 0 (4)

and is a set of simultaneous equations, although with errors in some of them (the
ones involving the observations, and maybe the model isn’t perfect either).
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Alternatively, we can reformulate it as

y = a+ bt

which reduces the number of unknowns to 2 instead of all of y (41) , y (42) ,etc.
(Am setting ∆r = 1.)
Thus

a+ 41b = y (41)

a+ 42b = y (42)

..

a+ (40+N)b = y(40+N)

or 
1 41
1 42
. .
. .
1 40+N


[
a
b

]
=


y (41)
y (42)
.
.

y (40+N)


or

Ex = y
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but which from the graph we know is contradictory. No straight line will produce
a solution in the mathematical sense unless N = 2. Should really write it,

Ex ≈ y (5)
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But equations are much easier to deal with than constructs like, (5), so convert it,

Ex+ε= y

where ε represents the noise. It’s still just a set of simultaneous equations except
now we could write it as,

1 41 1 0 . 0
1 42 0 1 . 0
. . . . . .
. . . . . .
1 40+N 0 0 0 1




a
b

ε (41))
ε (42)
.

ε (40+N)

 =


y (41)
y (42)
.
.

y (40+N)


which is once again

E1x = y

except now there are still N equations, but N + 2 unknowns. Or use the finite
form to the same end.
One is taught in school to solve this problem by minimizing ∑ ε2i = εT ε (why?).
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Using matrix-vector notation, write

J = εT ε = (y− Ex)T (y− Ex)

and minimize it with respect to x = [a, b]T . Exercising matrix calculus:

∂J
∂x

=
∂
{
yT y− xTET y− yTEx+ xTETEx

}
∂x

= −ET y− ET y+2ETEx = 0

or,

~x =
(
ETE

)−1
ET y

We can then substitute, and find,

ε̃ = y− E~x = y− E
(
ETE

)−1
ET y

Not so obvious why this should vanish if there’s no noise. Notice that we now
know a, b plus N values of ε, that is, N + 2 values, although we only had N
equations. So why is it called “overdetermined”?
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The straight-line problem suggests looking at the nature of extremely small, but
provocative problems. Suppose have one relation,

x1 + 3x2 − 2x3 = 7

It’s clearly an ill-posed problem, with an infinite number of solutions, but if one
were interested in this particular linear combination, the inability to determine
x1, .., x3 separately may not matter. Suppose it were actually a measurement, so
that always, it is best written,

x1 + 3x2 − 2x3 + ε1 = 7

and now there’s a fourth unknown. Maybe it is known that 〈ε1〉 = 0 (the mean),
and that

〈
ε21
〉
= .01. What can one then say about the combination?

Suppose there are two measurements,

x1 = 3

x1 = 1
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Both can’t be true, and so this is a nonsensical statement. It is always sensible to
rewrite it as

x1 + ε1 = 3

x1 + ε2 = 1

Suppose it were known that
〈
ε21
〉
= 1,

〈
ε22
〉
= 10. What is best statement you can

make about x1? Does it make sense to minimize ε21 + ε22?
Suppose

x1 + 3x2 − 2x3 = 7

exactly. There again exists an infinite number of solutions to this relationship (can
you find them?) Suppose you are faced with

x1 + 3x2 − 2x3 = 7

x1 + 3x2 − 2x3 = 7 (1+ δ)

where δ is a very small number. Now there are no solutions in any mathematical
sense. Both underdetermined and inconsistent.
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Or,

x1 + 3x2 − 2x3 = 7

x1 + 3x2 − 2x3 = 10

which has no solutions, but

x1 + 3x2 − 2x3 = 7

x1 + 3 (1+ δ) x2 − 2x3 = 10

again has an infinite number no matter how small is δ.
All this suggests that the mathematical notion of a “solution” is not particularly
useful in this context.
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The straight-line problem suggests looking at the nature of extremely small, but
provocative problems. Suppose have one relation,

x1 + 3x2 − 2x3 = 7

It’s clearly an ill-posed problem, with an infinite number of solutions, but if one
were interested in this particular linear combination, the inability to determine
x1, .., x3 separately may not matter. Suppose it were actually a measurement, so
that always, it is best written,

x1 + 3x2 − 2x3 + ε1 = 7

and now there’s a fourth unknown. Maybe it is known that 〈ε1〉 = 0 (the mean),
and that

〈
ε21
〉
= .01. What can one then say about the combination?

Suppose there are two measurements,

x1 = 3

x1 = 1
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Both can’t be true, and so this is a mathematically nonsensical statement.
Sensibly, rewrite it as

x1 + ε1 = 3

x1 + ε2 = 1

Suppose it were known that
〈
ε21
〉
= 1,

〈
ε22
〉
= 10. What is best statement you can

make about x1? Does it make sense to minimize ε21 + ε22?
Suppose

x1 + 3x2 − 2x3 = 7

exactly. There again exists an infinite number of solutions to this relationship (can
you find them?) Suppose you are faced with

x1 + 3x2 − 2x3 = 7

x1 + 3x2 − 2x3 = 7 (1+ δ)

where δ is a very small number. Now there are no solutions in any strict
mathematical sense. Both underdetermined and inconsistent.
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Or,

x1 + 3x2 − 2x3 = 7

x1 + 3x2 − 2x3 = 10

which has no solutions, but

x1 + 3x2 − 2x3 = 7

x1 + 3 (1+ δ) x2 − 2x3 = 10

again has an infinite number no matter how small is δ.
All this suggests that the mathematical notion of a “solution” is not particularly
useful in this context.
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Another issue: suppose you have reason to believe that the straight line is
ỹ = ã+ b̃t, where ã = a± ∆a, b̃ = b± ∆b (where the ∆a etc. are to be thought
of as a standard error). But now you are given a single new measurement,
y (tnew ) = ynew ± ∆y . What is the most sensible thing to do with this
measurement? And how do you do it? (You might have a problem with 108

parameters such as a, b, c , ... and a single measurement. Are you stopped?)
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The most general tool for linear problems is probably the singular value
decomposition (SVD). Almost magical.
Start with two, simple, standard ideas.
(1) An N−dimensional vector q is completely known if its projection. qT fj onto
N independent vectors, fj are known. Particularly simple if the fTi fj = δij are a
complete orthonormal set or basis

q =
N

∑
j=1

αi fi =
(
fT1 q

)
f1 +

(
fT2 q

)
f2 + ...+

(
fTN q

)
fN
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Suppose you know only K of the coeffi cients; then there will be an error:

q =
K

∑
j=1

α′i fi + ε

Easy to show that to make the squared error magnitude, εT ε, as small as
possible, one can do no better than choosing, again, α′i = αi . That is, the best
representation would be,

~q =
K

∑
j=1

αi fi =
(
fT1 q

)
f1 +

(
fT2 q

)
f2 + ...+

(
fTK q

)
fK .

q = ~q+ε

(return to this later)
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Make an N ×N matrix of the fi ,

F = {f1 |f2 |...|fN }

then
q = F

(
qT F

)
If truncate to the first P columns,

~q = FP
(
qT FP

)
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Aside: If gi are a set of N-vectors such that

q =
N

∑
j=1

βjgi

exactly, for any N−dimensional q, then the gi are a basis, albeit the coeffi cients
βj are found trivially only if the gj are also orthogonal or orthonormal. Have to
solve the simultaneous equations

qT gi=
N

∑
j=1

βj

(
gTj gi

)
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(2) Let A be a square, symmetric matrix, A = AT of dimension, N. Then there is
a theorem that the “eigenvalue, eigenvector”problem,

Af i = λi fi

always has a solution such that the λi are all real, and the fi are a complete
orthonormal set.
Make

F = {f1 |f2 |...|fN }
N ×N from the column vectors, and from the λi ,

Λ = diag (λi ) ,

so that
AF =ΛF, FTAF =Λ

and hence,
A = FΛFT . (1)

We used, FT F = I = FFT (an orthogonal matrix). So F−1=FT and a theorem
proves that for a square matrix, a left inverse is also a right inverse.
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A = FΛFT . (2)

If some of the λj = 0, one has exactly,

A = FKΛKF
T
K

where K is the number of non-zero λj , and,

FK = {f1 |f2 |...|fK } , N ×K

ΛK =


λ1 0 0 0 0
0 λ2 0 0 0
0 0 . 0 0
0 0 0 . 0
0 0 0 0 λK


(Mathematically, zero really means zero. In the observed world, a decision is
required as to what zero actually means.)
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K is called the rank, and the first K eigenvectors are the range. The last (N −K )
are the nullspace, as Af j = 0. Define the nullspace matrix,

Fnull = {fK+1 |fK+2 |...|fN } , N × (N −K )

Because the f are an orthonormal basis, an arbitrary N−dimensional vector q can
be exactly represented as

q =
N

∑
j=1

(
fTj q

)
fj

The set of coeffi cients from the projections fTj q carry the essential information.
Note that should some of them be missing e.g., fTj q, j = P + 1, ...,N are
unknown, it follows that

~q =
P

∑
j=1

(
fTj q

)
fj

is the best representation of q that can be made, in the sense that ‖~q− q‖
cannot be made any smaller by any other choice of coeffi cients. ‖.‖ denotes the
norm, here just the square root of the sum of squares (other norms exist).
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Note FTKFK= I, and FKF
T
K 6= I. (FK is not square.) Note that

v = FFT v = Iv = v

~v = FK
(
FTK v

)
=
(
FKF

T
K

)
v 6= Iv

FKFTK is the resolution matrix. Its significance is that a truncated expansion is a
weighted linear combination of the elements of the true vector.
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Consider solving the simultaneous equations,

Ex = q,

using the completeness of the orthonomormal fj . Expand x =∑j αj fj ,

q =∑Nj=1
(
fTj q

)
fj and substitute:

N

∑
j=1

αjEf j =
N

∑
j=1

αjλj fj =
N

∑
j=1

(
fTj q

)
fj

By orthogonality,

αj =

(
fTj q

)
λj

and hence,

x =
N

∑
j=1

(
fTj q

)
λj

fj

Unless, one or more of the λj vanishes.

Carl Wunsch Harvard University () Inverse Problems, Inverse Methods, State Estimation, Data Assimilation, and All ThatJanuary 24, 2013 14 / 1



Alternatively,
Ax = FΛFT x = q,

hence,
ΛFT x = FT q,

or, UT x =Λ−1FT q, which are the expansion coeffi cients. Hence, x = FΛ−1FT q,
as long as no diagonal element of Λ vanishes.
Suppose there are only K non-zero λj . Then, N −K of the αj cannot be
determined, and the best we could do is to write,

x =
K

∑
j=1

(
fTj q

)
λj

fj +
N

∑
j=K+1

αj fj .

The equations give us no information about αj for j = K + 1, ..,N. These are the
nullspace—and we do know their structures.
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Then we can write e.g.,

q =
(
FFT q

)
= ∑

j
fj
(
fTj q

)
,

x =
(
FΛ−1F

T )
q = FFT x =∑

j
fj
(
fTj x

)
, K = N

~x = FK
(

Λ−1K FTK q
)
+ Fnullαnull , K < N

If αnull are set to zero (there is no reason to give them any finite value), one has
an estimated

~x = FKF
T
K x.

which one might call “the" SVD solution– a linear combination of the elements of
the correct one. When K < N, one can generate an infinite number of solutions
from arbitrary choices of αnull .
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Suppose, in the special case of a square symmetric problem, Ax = q, that it is
“rank-deficient” (K < N),

~x=FK
(

Λ−1K FTK q
)
+ Fnullαnull , K < N

so that,

A~x =
(
FKΛKF

T
K

)
FK
(

Λ−1K FTK q
)

= FKF
T
K q 6= q

The difference, q− FKFTK q =ε, is the “residual” and is easily seen to consist of
the projection of q onto the null-space vectors.
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A physical example of a simple inverse problem, often useful for thought
experiments, is that of generic tomography:

If integrals are of travel time (could be absorption or any equivalent property),
each integral is

τp =
∫ receiver
source

ds
c
.
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Suppose seek the anomaly of soundspeed ∆cij in box ij , cij = c0 + ∆cij

τp =
∫ receiver
source

ds
c0 + ∆cij

=
∫ receiver
source

ds
c0
(
1+ ∆cij/c0

)
=

∫ receiver
source

ds
c0

(
1− ∆cij/c0 +

(
∆cij/c0

)2
+ ...

)
τp =

∫ receiver
source

ds
c0
−
∫ receiver
source

∆cijds
c20

+ ...

∆τp = τp −
∫ receiver
source

ds
c0
≈ −

∫ receiver
source

∆cijds
c20

∆τp = ∑
path p(ij )

∆cij∆sij
c20

+ εp

Data represent integrals of some property (e.g., absorption or travel time) along
each ray through the intersected boxes. Depending upon the number of rays and
the number of boxes, there may be many fewer equations than (formal)
unknowns, or many more. (A mathematician would note that in the continuous
case, one can invoke the Radon transform. We don’t need it.)
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A tracer problem:

Cq (t + ∆t)− Cq (t)
∆t

= ∑
nbrs of q

JpqCp − ∑
nbrs of q

JqpCq − λCq + εq

Forward problem: given boundary values, and initial conditions Cq (0), compute
Cq (t) . Many inverse problems: given Cq (t) what are the J? What were the
boundary or initial conditions? Etc.
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Confirm the operation of the resolution matrix– example for an arbitrary vector v:
Let v = [3,−1]T . Let f1 = 1/

√
2[1,−1]T , f2 = 1/

√
2[1, 1]T a complete,

orthonormal pair. So

F =
1√
2

{
1 1
−1 1

}
(confirm FFT = FT F = I). Then,

F1 =
1√
2

{
1
−1

}

v =
1√
2

[
1
−1

]
f1

(
4/
√
2
)
+

1√
2

[
1
1

]
f2

(
2/
√
2
)
,

~v =
1√
2

[
1
−1

]
f1

(
4/
√
2
)

?
=

{
1√
2

[
1
−1

]
1√
2

[
1 −1

]}
F1FT1

[
3
−1

]
v

(It checks.)
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Most problems, like the tomographic one, are neither symmetric nor square,
M 6= N. Suppose now that one has an arbitrary M ×N matrix, E, perhaps being
used for a set of equations,

Ex+ε= y

Now the eigenvalue/eigenvector theorem for square, symmetric, matrices cannot
be used. So let’s construct a square symmetric matrix out of block sub-matrices:{

0 ET

E 0

}
≡ B.

where the non-square zero matrices have the right dimensions to make this work
(B is (M +N)× (M +N)). Then B = BT . Applying the eigenvalue/eigenvector
theorem,

Bf i = λi fi , i = 1, ...,M +N, fTi fj=δij
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Write it out:

{
0 ET

E 0

}


fi1
fi2
.
fiN
fi ,N+1
.

fi ,M+N


= λ



fi1
fi2
.
fN

fi ,N+1
.

fi ,M+N


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or

ET

 fi ,N+1
.

fi ,M+N

 = λi

 fi1
.
fiN

 ,
E

 fi1
.
fIN

 = λi

 fi ,N+1
.

fi ,M+N


Or, as a short-hand,

ET ui = λivi , (3a)

Evi = λiui

with the obvious substitutions. Left multiply the first of these by E :

EET ui=λiEvi = λ2i ui

and for the second, left multiplying by ET produces,

ETEvi = λ2i vi .
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But both ETE and EET are square symmetric matrices. Thus the ui , vi are
separately complete orthonormal bases (slightly amazing). Make matrices of the
ui , vi and λi

U = {u1 |u2 |...|uM } , V = {v1 |v2 |...|vN } , Λ = diag (λi )

where diag is generalized to an M ×N matrix. The equations can be collected as,

EV = UΛ , ETU = VΛT , (4)

ETEV = VΛTΛ , EETU = UΛΛT . (5)
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Left multiply the first by UT and right multiply it by VT , and invoking Eq. (??),

UTEV = Λ . (6)

So U, V diagonalize E (with “diagonal”having an obvious extended meaning for
a rectangular matrix)

E = UΛVT . (7)

This last equation represents a product, called the “singular value decomposition”
(SVD), of an arbitrary matrix, consisting of two orthogonal matrices, U, V, of
different dimension, (M,N respectively) and a usually non-square diagonal matrix,
Λ, dimension M ×N.
There is one further step to take. Notice that for a rectangular Λ, as in the
examples above, one or more rows or columns must be all zero, depending upon
the shape of the matrix. In addition, if any of the λi = 0, i < min(M,N), the
corresponding rows or columns of Λ will be all zeros. Let K be the number of
non-vanishing singular values (the “rank”of E). By inspection (multiplying it
out), one finds that the last N −K columns of V and the last M −K columns of
U are multiplied by zeros only. If these columns are dropped entirely from U, V so
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that U becomes UK , and is M ×K and V becomes Vk , N ×K , and reducing Λ
to a K ×K square matrix, then the representation (??) remains exact, in the form,

E = UKΛKV
T
K = λ1u1vT1 +λ2u2vT2 +...+λK uK v

T
K , (8)

What are usually called empirical orthogonal functions (EOFs), or sometimes
principal components, or Karhunen-Loève vectors (and other labels) are just the
ui or the vi (depending upon which dimension is space and which is time, if any).
Sometimes rows and columns are weighted in various ways before computing.

Carl Wunsch Harvard University () Inverse Problems, Inverse Methods, State Estimation, Data Assimilation, and All ThatJanuary 24, 2013 27 / 1



Because of the mixed dimensions in Eqs. (??), the only way there is consistency is
if the number of non-zero λi is no more than the minimum of (M,N) (called
K −−the rank). If one accounts for the zero λi , one has, exactly,

E = UKΛKV
T
K (9)

where the columns corresponding to indices greater than K are omitted from
UK ,VK and ΛK is now square of dimension K with all non-zeros on the diagonal.
(If some of the λi are very small, one might omit them from Eq. (??) with little
error. This becomes the basis for the use of reduced numbers of EOFs and is a
result of the Eckart-Young-Mirsky Theorem.)
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Suppose now we have a set of equations,

Ex+ε= y

There are two spaces of different dimensions, M,N present. ε, y are in an
M−dimensional space and x is in an N−dimensional one. Suppose

x =
N

∑
j=1

αivi , y =
M

∑
i=1

ui
(
uTi y

)
ε =

M

∑
j=1

βiui

(the αi , βi are at the moment unknown) Thus,

UΛVT x+U
(
UT ε

)
= y

Left multiply by UT :
ΛVT x+UT ε = UT y,
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or,

λiuTi x+ u
T
i ε = uTi y, i = 1, ..,K

0uTi x+ u
T
i ε = uTi y, i = K + 1, ..,M

If we want ε to be as small as possible, we can set βi = u
T
i ε = 0, i = 1, ..,K and

then αi = uTi x = u
T
i y/λi . For the remaining terms, , there is no choice,

βi = u
T
i ε = uTi y. Using the matrix notation,

x = V
(
VT x

)
= VK

(
VTK x

)
+Vnull

(
VTnullx

)
= VK

(
Λ−1K UTK y

)
+Vnull

(
VTnullx

)
if, UTK ε = 0. But UTK ε are the first K expansion coeffi cients of ε in the complete
basis set ui . Clearly we can make ε as small as possible by assuming that these
coeffi cients vanish.
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But suppose M > N which means that there are more ui vectors than vi vectors
and there are at most K = N of them. There’s no way that the solution could
fully reproduce y which is in the M dimensional space. Thus we are left in that
case with,

UTnull ε = UTnully

and

ε =
N

∑
K+1

ui
(
uTi y

)
.

This is the residual of ordinary least-squares, making ε as small as possible.
On the other hand, if M < N, then there will be more vi than ui , and if one
wanted (does it make sense?), the residuals could be set to zero. More generally,
K < min (M,N) and so there are null spaces in both ui , vi . One can now solve
problems of any dimension and write explicit statements about all possible
solutions, including the structure of the residuals.
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Recapitulation:
Forward problems can always be written as a set of simultaneous equations (they
may be nonlinear). Problems involving data of any sort always have errors in
them. Any equation involving observations always has an unknown error term in
it. Generic, linear, (or linearized) form,

Ex+ε= y, M ×N

Underdetermined problems (not always obvious) will have M 6= N, either bigger or
smaller. Even if, M = N, E−1 usually won’t exist. All of the fanciest methods are
algorithms, some of them very sophisticated (e.g. a Kalman filter– which doesn’t
actually solve it), for obtaining solutions to problems like this, usually without
having to write them all down at once or having to invert big matrices. (But A.
Ganachaud’s PhD thesis about 12 years ago involved about 5000 equations in
10,000 unknowns and was solved all-at-once.) Often the matrices are very sparse.
This short course is essentially how to exploit systems like this of any dimension,
to cope with contradictions, and to figure out what is determined and what isn’t
in any procedure.
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Simultaneous equations are so ubiquitous, it’s worth a simple-minded look at what
they say:

Ax = b, M ×N
A is made up of a series of known row vectors:

aT1
aT2

aTM


so the simultaneous equations provide information about M dot products with M
known vectors. If M ≥ N, and the aj are independent, more than enough
information to find x. (Unless some of the information is contradictory). If
M < N, not enough information to fully determine x under all circumstances.
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Alternatively, A is a set of known column vectors,

A =
{
c1 c2 . . cN

}
and the equations are

x1c1 + x2c2 + ...+ xN cN = b

So if over determined, too few vectors cj are given to fully describe b. If M < N,
too many vectors are available to describe it. Etc.
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Consider the conventional problem
Ex = b

for a square, N ×N not necessarily symmetric, E. One writes

x = E−1b

Does this always work?
Consider E = UΛVT . Then

x =
(
UΛVT

)−1
b.

By inspection,
(
UΛVT

)−1
= VΛ−1UT (check it). Then

x = VΛ−1UT b =
N

∑
j=1

(
uTj b

λj

)
vj

if no non-zero λj . Confirm b = Ex, with b = ∑Nj=1
(
uTj b

)
uj .
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If one or more does vanish, the inverse does not exist, and at best,

~x =
K

∑
j=1

(
uTj b

λj

)
vj +

N

∑
j=K+1

αjvj

E~x= ~b =
L

∑
j=1

(
uTj b

)
uj 6= b

and there is a residual (noise), ε = ∑Nj=K+1
(
uTj b

)
uj . Noise has zero projection onto

the range vectors. Why? Usually put the αj = 0 as no information about them is
available. (Ocham’s Razor: don’t introduce any structure not required by the data.)
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Some statistical notation. 〈·〉 is used to denote expected value in the theoretical
sense,

〈x〉 =
∫ ∞

−∞
Xpx (X ) dX = m

Here, px (X ) is the probability density for variable x . The variance is,〈
(x − 〈x〉)2

〉
=
∫ ∞

−∞
(X −m) px (X −m) dX = σ2.

The covariance is,

〈
(x − 〈x〉) (y − 〈y〉)T

〉
=
∫ ∞∫
−∞

(X −mx ) (Y −my ) pxy (X −mx ,Y −my ) dXdY

where pxy (X ,Y ) is the joint probability density for x , y , or in general vector form,〈
(x− 〈x〉) (x− 〈x〉)T

〉
=
∫
· · ·

∫
(X−m) (X−m)T px (X−m) dX

For “unimodal”distributions (the Gaussian or normal is one), finding an estimate
of something, x̃ , that minimizes either the variance about its mean value (〈x̃〉), or
sometimes about the true value, x , is sensible (but arbitrary).
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Suppose Ex = b, but there are known to be errors in y. Can account for that by
writing explicitly

Ex+ ε = b.

(Could absorb this, by writing again,

E1ξ = b

but leave as is for now. Implies b = b0 − ε. Thus

~x =
K

∑
j=1

(
uTj b

λj

)
vj + 0

=
K

∑
j=1

(
uTj b0 − uTj ε

λj

)
vj −

N

∑
j=K+1

αjvj

The expected difference is,

〈~x− x〉 =
K

∑
j=1


〈
−uTj ε

〉
λj

 vj − N

∑
j=K+1

αjvj

Perhaps, 〈ε〉 = 0,
〈
−uTj ε

〉
= −uTj 〈ε〉 = 0. There is only a bias error due to the

missing null space.
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What about
〈
(~x− x) (~x− x)T

〉
?

〈
(~x− x) (~x− x)T

〉
=

K

∑
j=1


〈(
−uTj ε

)2〉
λ2j

 vjvTj +
N

∑
j=K+1

α2j vjv
T
j

assuming no cross-covariances amongst the αi ,j .
For resolution, one wants K to be as large as possible. But for small variance,
want to omit small λj . A classical statistical tradeoff.
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Back to least-squares for the moment. Consider a general problem: Ex+ε= y
where we arbitrarily decide to minimize,

J = εTW−1ε+ xT S−1x (1)

= (y− Ex)TW−1(y− Ex) + xT S−1x , (2)

Setting the derivatives with respect to x to zero results in,

~x=
(
ETW−1E+ S−1

)−1
ETW−1y, (3)

ε̃=y− E~x, (4)

Cxx = (5)(
ETW−1E+ S−1

)−1
ETW−1RnnW−1E

(
ETW−1E+ S−1

)−1
,

Cxx is the covariance about the expected value of the estimate. The matrix
inversion lemma permits rewriting Eqs. (19− 21):
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~x=SET
(
ESET+W

)−1
y, (6)

ε̃=y− E~x, (7)

Cxx = SET
(
ESET+W

)−1
Rnn

(
ESET+W

)−1
ES. (8)

The different forms make it easy to let W−1 → 0, etc.
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Consider the two limiting forms, J = min : εT ε. Then,

~x =
(
ETE

)−1
ET y.

if the inverse exists (?). Suppose we have the SVD of E = UKΛKVTK . Then

~x =

((
UKΛKV

T
K

)T
UKΛKV

T
K

)−1 (
UKΛKV

T
K

)T
y

=
(
VKΛKU

T
KUKΛKV

T
K

)−1 (
UKΛKV

T
K

)T
y

= (VKΛ2KV
T
K )
−1VKΛKU

T
K y

When does the inverse exist? By inspection,

(VKΛ2KV
T
K )
(
VKΛ−2K VTK

)
= VKV

T
K

which is the identity if, and only if, K = N (the dimension of the vi ). (If one
subsituted the full matrices for VK etc., the inverse “blows up”and the
least-squares solution does not exist. Now we know when that is.) Suppose
K < N (meaning that there are fewer effective equations than unknowns).
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Let us use UKΛ2KV
T
K as the best we can do:

~x =
(
VKΛ−2K VTK

)
VKΛKU

T
K y = UKΛ−1K UTK y =

K

∑
i=1

viλ
−1
i

(
uTi y

)
and there is a “missing”null space, xnull = ∑Nj=K+1 αjvj .
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Now look at the other limit, J = xT x, commonly used for underdetermined
problems,

~x = ET
(
EET

)−1
y

x̃ = VKΛKU
T
K (UKΛKV

T
KVKΛTKU

T
K )
−1y

= VKΛKU
T
K

(
UKΛKU

T
K

)−1
y
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Again, by inspection,
(
UKΛKUTK

)−1
= UKΛ−1K UTK , if and only if, K = M.

(That is, the effective number of equations is equal to the total number.) Then,

~x = VMΛ−1M UTM y =
M

∑
i=1

viλ
−1
i

(
uTi y

)
+

N

∑
j=M+1

αjvj

as before. In this case, (full rank underdetermined)

ε̃ = y− E~x = y− EET
(
EET

)−1
y

= 0
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If K < N, the best we can do is,

~x = VKΛ−1K UTK y =
K

∑
i=1

viλ
−1
i

(
uT y

)
+

N

∑
j=K+1

αjvj

But since,
(
EET

)−1
does not exist,

ε̃ = y− E~x = y−
(
UKΛKV

T
K

) (
VKΛ−1K UTK y

)
= y−UKUTK y

and there is a residual despite there being fewer equations than unknowns. (Many
more things can be done.) No solution can reduce this residual.
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Consider minimizing J = γ2xT x+εT ε. Then, with a little algebra or substituting,
S−1 = γ2I, W−1 = I,

x̃ = V(ΛTΛ+ γ2I)−1VTVΛTUT y (9)

= Vdiag
(

λ2i + γ2
)−1

ΛTUT y,

or,

x̃ =
N

∑
i=1

λi (uTi y)

λ2i + γ2
vi . (10)

called “tapered least-squares”. Note,

Cxx =
N

∑
i=1

N

∑
j=1

λiλjuTi Rnnu
T
j

(λ2i + γ2)(λ2j + γ2)
vivTj

= σ2n

N

∑
i=1

λ2i
(λ2i + γ2)2

vivTi

= σ2nV(Λ
TΛ+ γ2IN )

−1ΛTΛ(ΛTΛ+ γ2IN )
−1VT ,

(11)
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and consider the limit as γ2 → 0 when one or more λi is small. Even if some λi
vanishes, there is still a finite solution. For λi small compared to γ, the
contribution of the term to the solution is reduced from what it ought to be. The
reader might want to confirm that this solution is also obtained by adding γ2 to
the diagonal of the matrix ETE which has to be inverted in conventional
least-squares. This action assures the inverse exists; it represents a form of
“regularization”which can be recognized as just reducing the influence of small λi .
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Summary:
Given any set of linear simultaneous equations, Ex+ ε = y, of arbitrary dimension,
one can characterize solutions ~x in terms of the their resolution, ~x = VKVTK x, and
the residual, ~ε = y− E~x, in terms of the ui vectors. It remains to understand the
statistical uncertainty of these solutions. The central point is that you can handle
almost anything – if you know what you are doing....Given any set of linear
constraints, of dimension M ×N, it’s possible to find the components that are
determinable, which ones are not, how stable are the ones that are known, which
structures of the “data”are explainable, which structures cannot be explained by
any solution, and which elements of the solution are determined by which data.
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Thus for the least-squares problem,

〈~x〉 =
〈
SET

(
ESET+W

)−1
(y0 + ε)

〉
= SET

(
ESET+W

)−1
y0

assuming 〈ε〉 = 0. (Note that in general, 〈~x〉 6= x.) Then,

Cxx =
〈
(~x− 〈~x〉) (~x− 〈~x〉)T

〉
=

〈(
SET

(
ESET+W

)−1
ε

)(
SET

(
ESET+W

)−1
ε

)T〉

= SET
(
ESET+W

)−1 〈
εεT

〉 (
ESET+W

)−1
ES

= SET
(
ESET+W

)−1
Rnn

(
ESET+W

)−1
ES

=
(
ETW−1E+ S−1

)−1
ETW−1RnnW−1E

(
ETW−1E+ S−1

)−1
(and can take limits as

∥∥W−1∥∥→ 0, etc. Cxx is the covariance about the
expected value of the estimate. It is distinguished from the later use of P to
denote the covariance about the true value. If 〈~x〉 = 〈x〉 , one has a special case
of an unbiassed estimator.
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What do S,W signify? In least-squares they are arbitrary (as long as they have
inverses). You can choose anything you want. The motivation for a special choice
comes from a digression– the Gauss-Markov Theorem.
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Gauss-Markov
Consider e.g., a map-making problem in one-dimension to start. We have some
data y = {y (ri )} = {x + ni} = x+ ε, where the measurement noise has zero
mean, and a known covariance,

〈
εi εj
〉
= Rnn ,ij (it might be diagonal). We’d like

to “map” y onto a regular grid, r̃α. Call the mapped value x̃ = x̃ (r̃α) . We think
that x has zero mean and has a covariance

〈
x (r̃α) x

(
rβ
)〉
= R

(
r̃α, rβ

)
. (Maybe

we think it has a large-scale.) The mapped value x̃ (r̃α) is assumed to be some
linear combination of the data points,

x̃ (r̃α) = ∑
j
bj (r̃α) y

(
rj
)
= bT (r̃α) y = yT b.

(Linear interpolation is a special case, as is a spline, etc.). How should we choose
the bj ? Let’s demand that 〈

(x̃ (r̃α)− x (r̃α))2
〉
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is to be as small as possible (an arbitrary, but reasonable choice). Then we want
to choose b to obtain the minimum of

J =

〈(
bT (r̃α) y−x (r̃α)

)2〉
= bT (r̃α)

〈
yyT

〉
b−2bT (r̃α) 〈yx (r̃α)〉+

〈
x (r̃α)

2
〉
.

So take the partial derivatives,

∂J
∂b
= 2

〈
yyT

〉
b−2 〈yx (r̃α)〉 = 0,

or 〈
yyT

〉
b (r̃α) = 〈yx (r̃α)〉 = 〈(x+ ε) x (r̃α)〉

=
〈
xxT + εεT

〉
b (r̃α) = 〈xx (r̃α)〉

assuming,
〈

εxT
〉
= 0. Or,(
Rxx

(
ri , rj

)
+Rnn

(
ri , rj

))
b = Rxx (ri , r̃α)

and so,
b =

(
Rxx

(
ri , rj

)
+Rnn

(
ri , rj

))−1 Rxx (ri , r̃α)
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Usually want to find the best value at several points. Let’s do all at once, by
considering a collection of points r̃α, α = 1, 2,...,N. Make a matrix whose rows
correspond to each point,

B =


b (r̃α)

T

b (r̃α+1)
T

.

b (r̃M )
T


Then can do all at once by writing ~x = By, and minimizing the diagonal elements
(so it’s M separate problems) of

P
(
~rα, rj

)
=
〈
(~x− x) (~x− x)T

〉
=
〈
(By− x) (By− x)T

〉
= B

〈
yyT

〉
BT −

〈
xyT

〉
BT −B

〈
yxT

〉
+
〈
xxT

〉
= BRyyBT −RxyBT −BRTxy +Rxx
= (B−RxyR−1yy )Ryy (B−RxyR−1yy )T −RxyR−1yy RTxy +Rxx
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Skipping some steps, the minimizer of the diagonal is actually the obvious choice,

B = RxyR−1yy

The subcripts indicate generally, Rxy =
〈
xyT

〉
, etc.

For mapping, we have Ryy = Rxx +Rnn , Rxy = Rxx (assuming Rxn = 0). So the
mapping problem is solved by

~x(~rα) = Rxx (Rxx +Rnn)
−1 y

(
rj
)

and we know the uncertainty,

P = Rxx −RxyR−1yy RTxy

(the various arguments in the R matrices involves both r̃α, and ri . Extending it to
two or more dimensions changes nothing except that the scalar ri becomes a
vector ri . P shows that the maximum possible variance is Rxx . This procedure is
called objective mapping. Meteorologists mis-call it OI for optimal interpolation.
But it’s neither of those things. (Also called 3DVAR.) Easy to see that
x̃ (ri ) 6= y (ri ) (“interpolation”as in linear or splines or anything else requires that
at the data point, the estimated value is the same as the measured one). It also
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wouldn’t be optimal unless one really knew the R matrices– which is almost never
true. Two advantages: (1) it is repeatable, and (2), there is an estimate of the
accuracy. (It is common for people to simply guess covariances written as

functions, like Rxx ,ij = A exp
(
−
(
ri − rj

)2 /b2
)
), etc.)
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This Gauss-Markov result is very general, not confined to mapping. Let’s use it on

y = Ex+ε, so that e.g., Ryy =
〈
(Ex+ε) (Ex+ε)T

〉
= ERxxET +Rnn ,

Rxy = 〈x(Ex+ ε)T 〉 = RxxET ,and we now have,

~x=RxxET
(
ERxxET+Rnn

)−1
y (12)

ε̃=y− E~x (13)

P=Rxx−RxxET
(
ERxxET+Rnn

)−1
ERxx (14)

=
(
R−1xx +E

TR−1nn E
)−1

(15)

where the last relationship is from the matrix inversion lemma (MIL).
This is the minimum variance (maximum likelihood) solution to a set of
simultaneous equations.
IMPORTANT INFERENCE:
The solution is identical to the least-squares solution for
J = εTW−1ε+ xT S−1x :

Carl Wunsch Harvard University () Inverse Problems, Inverse Methods, State Estimation, Data Assimilation, and All ThatJanuary 24, 2013 24 / 26



~x=SET
(
ESET+W

)−1
y, (16)

ε̃=y− E~x, (17)

Cxx = SET
(
ESET+W

)−1
Rnn

(
ESET+W

)−1
ES. (18)

if we choose S = Rxx ,W = Rnn (note that P and Cxx are different) and must
also be identical to the alternate least-squares solution (again using the MIL),

~x=
(
ETR−1nn E+R

−1
xx

)−1
ETR−1nn y, (19)

ε̃=y− E~x, (20)

Cxx = (21)(
ETW−1E+ S−1

)−1
ETW−1RnnW−1E

(
ETW−1E+ S−1

)−1
,

The form is usually chosen so as to minimize the dimension of matrices being
inverted– assuming that dominates the calculation (it need not). Notice that if
‖Rnn‖ → ∞, that ~x→ 0 and P = Rxx (cannot be any worse than its own
variance). Etc.
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The logic of the derivations is entirely different. It is a great convenience that
least-squares produces the Gauss-Markov solution, but one must understand why
one is using it– not because it’s least-squares but usually because it reproduces
the G-M solution– by construction.
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Consider any problem in which an estimate ~x might logically be written as a linear
combination of some observations y, ~x = By. Logical to minimize the diagonal
elements (so it’s M separate problems for each element xi ) of,

P
(
~rα, rj

)
=
〈
(~x− x) (~x− x)T

〉
=
〈
(By− x) (By− x)T

〉
= B

〈
yyT

〉
BT −

〈
xyT

〉
BT −B

〈
yxT

〉
+
〈
xxT

〉
= BRyyBT −RxyBT −BRTxy +Rxx
= (B−RxyR−1yy )Ryy (B−RxyR−1yy )T −RxyR−1yy RTxy +Rxx

Skipping some steps, the minimizer of the diagonal is actually the obvious choice,

B = RxyR−1yy

The subcripts indicate generally, Rxy =
〈
xyT

〉
, etc.

For mapping, we have Ryy = Rxx +Rnn , Rxy = Rxx (assuming Rxn = 0). So

~x = Rxx (Rxx +Rnn)
−1 y
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and we know the uncertainty,

P = Rxx −RxyR−1yy RTxy

P shows that the maximum possible variance is Rxx– if you say that the best
estimate is zero– there being no additional information contained in y.
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Try it on y = Ex+ε, where it’s reasonable to think that x depends linearly on y.
Then Ryy =

〈
(Ex+ε) (Ex+ε)T

〉
= ERxxET +Rnn ,

Rxy = 〈x(Ex+ ε)T 〉 = RxxET , and

~x=RxxET
(
ERxxET+Rnn

)−1
y (1)

ε̃=y− E~x (2)

P=Rxx−RxxET
(
ERxxET+Rnn

)−1
ERxx (3)

=
(
R−1xx +E

TR−1nn E
)−1

(4)

where the last relationship is from the matrix inversion lemma (MIL).
This is the minimum variance (maximum likelihood) solution to a set of
simultaneous equations.
IMPORTANT INFERENCE:
The solution is identical to the least-squares solution for
J = εTW−1ε+ xT S−1x :
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~x=SET
(
ESET+W

)−1
y, (5)

ε̃=y− E~x, (6)

Cxx = SET
(
ESET+W

)−1
Rnn

(
ESET+W

)−1
ES. (7)

if we choose S = Rxx ,W = Rnn (note that P and Cxx are different) and must
also be identical to the alternate least-squares solution (again using the MIL),

~x=
(
ETR−1nn E+R

−1
xx

)−1
ETR−1nn y, (8)

ε̃=y− E~x, (9)

Cxx = (10)(
ETW−1E+ S−1

)−1
ETW−1RnnW−1E

(
ETW−1E+ S−1

)−1
,

The form is usually chosen so as to minimize the dimension of matrices being
inverted– assuming that dominates the calculation (it need not). Notice that if
‖Rnn‖ → ∞, that ~x→ 0 and P = Rxx (cannot be any worse than its own
variance). Etc.
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The logic of the derivations is entirely different. It is a great convenience that
least-squares produces the Gauss-Markov solution, but one must understand why
one is using it– not because it’s least-squares but usually because it reproduces
the G-M solution– by construction.
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Example.
Consider the problem of estimating a mean value. Suppose that we have a set of
measurements, yi = m+ εi where the “noise” is probably the signal, but never
mind. This is a set of simultaneous equations

1
1
.
.
1
1


m+


ε1
ε2
.
.

εM−1
εM

 =


y1
y2
.
.

yM−1
yM


Suppose that Rxx = m20 (perhaps very large). Then the solution formula produces

m̃ =

{
1
m20

+ ETR−1nn E

}−1
ETR−1nn y

(using the alternate form because only a scalar needs to be inverted).
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Now suppose Rnn = σ2ε I (“white noise”), then

m̃ =

{
1
m20

+ σ2εE
TE

}−1
ETR−1nn y

=
σ2ε

1/m20 +Mσ2ε

M

∑
j=1

yj

and if m20 → ∞, m̃ = 1/M ∑Mj=1 yj , the ordinary average. The uncertainty of the
estimate is

P =

{
1
m20

+ ETR−1nn E

}−1
=

1

1/m20 + E
TR−1nn E

→ σ2ε /M

in the same limit and using the alternate form. This last result is the classical
statement that the standard error of the mean goes like σε/

√
M.

(A good exercise is to work this problem through for trend determination– that is
fitting a straight line and computing the uncertainty of the result.)
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A further comment about the estimate of the mean. The example used prior
information only about the variance of x (m20) which says nothing about whether
it might be positive or negative. In practice, one might suspect that m = mprior .
The easiest way to use that information is to subtract mprior from the data, and
then solve for its correction, m = mprior + ∆m. The value of m20 would then be
the estimate of the variance of ∆m for which the sign would be irrelevant.
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Recursive Least-Squares

Suppose we have solved a big, M ×N, least-squares problem,

Ex+ε= y

and gotten a solution ~x = ~x (1), along with its uncertainty, P = P (1) . Someone
offers us another measurement, eTM+1x+εM+1 = yN+1, where〈

ε2M+1

〉
= R (M + 1) . One approach to using it is simply to make a new

(M + 1)×N problem,

E1x+ε= y1, E1 =
{

E
eTM+1

}
, etc. (11)

and recompute. But having done all that work, do we really need to repeat
everything? The answer is no, and leads to the notion of recursive least-squares.
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The derivation proceeds by manipulating the partitioned problem (11) and
produces (see P. 137 of DISEP):

~x (2) = ~x (1) +

P (1) eM+1
[
eM+1P (1) e

T
M+1 + R (M + 1)

]−1 (
qN+1 − eTM+1~x (1)

)
= ~x (1) +K (2)

(
qN+1 − eTM+1~x (1)

)
P (2) = P(1)−K (2) eM+1P (1)

(NOTICE THAT THE PREVIOUS DATA HAVE DISAPPEARED! ALL
INFORMATION IS CONTAINED IN ~x (1) and P(1).)
More generally, if there is a previous solution ~x (1) of uncertainty P (1) , obtained
from anywhere, and if there are N (2) additional measurements

E (2) x+ε (2) = y (2)
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of noise covariance R (2) , the same logic produces,

~x (2) = ~x (1) +P (1)E (2)T
[
E (2)P (1)E (2)T +R (2)

]−1
(y (2)− E (2)~x (1))

= ~x (1) +K (2) (y (2)− E (2)~x (1))
P (2) = P(1)−K (2)E (2)P (1)

And do it again....K (2) is the gain matrix. Notice that ~x (2) is unchanged from
~x (1) , if the predicted extra observations. E (2)~x (1) coincide with what is
observed, y (2) . The uncertainty would, however, sensibly change.
This result is almost the Kalman filter. Coming... Note that (1), (2) do not imply
successive times, only two different sets of observations.
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Recapitulation: To find an estimate of x,ε, given

Ex+ε= y

〈x〉 = 0, 〈ε〉= 0, Rxx =
〈
xxT

〉
, Rnn =

〈
εεT

〉
can minimize

J = xTR−1xx x+εTR−1nn ε

and which will coincide with the Gauss-Markov or minimum variance solution.
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Let’s look at a similar problem in the G-M framework. Suppose there is an
estimated solution with known uncertainty, ~x1,P1.An independent second
estimate ~x2,P2 becomes available, and one seeks to combine them into a best
solution. It is not diffi cult to show that the minimum variance estimate is the
weighted average,

~x3 = P2 (P1 +P2)
−1~x1 +P1 (P1 +P2)

−1~x2 (12)

= ~x1 +P1 (P1 +P2)
−1 (~x1 −~x2)

= ~x1 +K2 (~x1 −~x2)

with new uncertainty,

P3 = P1−P1 (P1+P2)P1
= P1−K (2)P1

=
(
P−11 +P−12

)−1
Notice that the combined solution behaves sensibly as the norm of P1 or of P2 go
to zero or infinity. The 3rd line of Eq. (12) reduces properly, as it must, but
somewhat hides what is still a simple weighted average. The recursive
least-squares and G-M updated solutions are identical if the weights are properly
chosen in the former.
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The Kalman Filter
Suppose we have a system that evolves in time (but it could equally well be space.
“Time” is purely conventional.) . Define the system state as that information
required to make a prediction an infinitesmal time, ∆t, in the future, along with
any externally prescribed conditions. So e.g., for the mass-spring oscillator,

m
d2y (t)
dt2

+ r
dy (t)
dt

+ ky (t) = q(t), (13)

y(t) is the state variable (the position) at a continuum of times so that it’s first
derivative, the velocity, y ′ (t) is also known. With knowledge of q (t) (externally
prescribed), the equation permits the calculation dt into the future. As with
everything else in these lectures, we prefer to assume that there is an adequate
discretization e.g. (not unique),
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ξ(t + ∆t) =
(
2− r∆t

m
− k(∆t)

2

m

)
ξ(t) +

(
r∆t
m
− 1
)

ξ(t − ∆t) + (∆t)2
q(t)
m

This says given,ξ (t) , ξ (t − ∆t)we can compute ξ(t + ∆t), and at any future
time. So the state vector is x (t) = [ξ (t) , ξ (t − ∆t)]T (because the
discretization is not unique, neither is the state vector). The above equation
permits time-stepping (if two starting conditions are known) and is, of course,
nothing but a set of simultaneous equations (for all of the ξ (q) ,all q), even if the
extra conditions are not specified at t = 0. From here, set ∆t = 1.
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Rewrite this in state space form:

[
ξ(t)

ξ(t − ∆t)

]
=

{
2− r

m∆t − k
m (∆t)

2 r∆t
m − 1

1 0

}[
ξ(t − ∆t)

ξ(t − 2∆t)

]

+

[
(∆t)2 q(t − ∆t)

m
0

]

x(t) =
[
ξ(t) ξ(t − ∆t)

]T
, B(t)q(t) =

[
(∆t)2 q(t)/m 0

]T
.

This is a canonical form:

x (t) = A (t) x (t − 1) +Bq (t − 1)
(may prefer to write as x (t + 1) = ... ) Can show that any linear model can be
put into this form (try it with any of your favorite ordinary or partial differential
equations).
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Note that any non-linear model is still a time-stepping rule:

x (t) = L (x (t − 1) ,Bq (t − 1))

and, as with the linear model, is again just a set of simultaneous equations:

x (1) = L (x (0) ,Bq(0))
x (2) = L (x (1) ,Bq(1))

.

x (tf ) = L (x (tf − 1) ,Bq(tf − 1))

although non-linear. (For now, we confine ourselves to the linear system, and with
A (t) ,B (t) being time-independent: time-independence saves a lot of writing
without any essential loss of generality).
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Suppose, somehow, we have an estimate ~x (t − 1) , with uncertainty, P (t − 1) .
At time t, we have some observations of x (t) , with error, written as,

E (t) x (t) + ε (t) = y (t)

Can we combine the observations with the state vector at the previous time to
take advantage of the information in both?
Let’s use the model to make a prediction of the state vector at the observation
time. Suppose too, that the Bq (t) are partially known, but have an unpredictable
component, so that the model is of the form,

x (t) = A (t) x (t − 1) +Bq (t − 1) + Γu (t − 1)

where 〈u (t)〉 = 0,
〈
u (t) u (t)T

〉
= Q(t). Will drop the t in Q, for convenience.

(As with B, Γ can be used to describe known spatial dependencies in the “control”
u (t) . At t − 1, we don’t know x (t) = ~x (t − 1) + γ (t − 1) , where by definition,〈

γ (t − 1) γ (t − 1)T
〉
= P (t − 1)

Carl Wunsch Harvard University () Inverse Problems, Inverse Methods, State Estimation, Data Assimilation, and All ThatJanuary 23, 2013 19 / 28



The best prediction we can make is probably,

~x (t,−) = A~x (t − 1) +Bq (t − 1) + 0,

replacing the unknown control by its zero mean. The minus sign is put into the
argument to show that it is a pure prediction (the observations not yet used).
How good is this? Let’s find the expected error in the prediction,〈

(~x (t,−)−x (t)) (~x (t,−)−x (t))T
〉
= P (t,−)

= A
〈

γ (t − 1) γ (t − 1)T
〉
AT + Γ

〈
u (t − 1) u (t − 1)T

〉
ΓT

= AP (t − 1)AT + ΓQ (t − 1) ΓT

The “prediction error” is made up of two pieces– a part from the erroneous
“initial condition”and a part from the unknown external driving (control). If one
must integrate multiple time steps into the future before observations become
available, one simply loops on the above equation, propagating the error forward.
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Now make an estimate of ~x (t) from the data alone using e.g., the Gauss-Markov
estimate, but with R−1xx = 0 (so it’s independent of anything coming
before– complete initial uncertainty). Then from the previous recursive
least-squares, or recursive Gauss-Markov, solution,

x̃+ (t) = x̃ (t,−) +
P (t,−)E(t)T [E(t)P (t,−)E(t)T +Rnn(t)]−1(y (t)− E(t)x̃ (t,−)) ,

P+(t) =
(
P (t,−)−1 + E (t)T Rnn (t)−1 E (t)

)−1
= P (t)

= P(t,−)−K (t)E (t)P (t,−)
K (t) = P (t,−)E(t)T [E(t)P (t,−)E(t)T +Rnn(t)]−1

This algorithm is the famous Kalman filter (KF). (In the estimation literature, a
filter, usually refers to the best estimate of the “now”state or to prediction– the
“prediction filter”.)
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x̃ (t) = x̃ (t,−) +K (t) (y (t)− E(t)x̃ (t,−)) ,
P (t,−) = AP (t − 1)AT + ΓQ (t − 1) ΓT

P (t) = P(t − 1)−K (t)E (t)P (t − 1)
K (t) = P (t,−)E(t)T [E(t)P (t,−)E(t)T +Rnn(t)]−1

Can be rewritten in different ways for accuracy, effi ciency etc. Tens of thousands
of papers on it. Note that P (t) and hence, K (t) , evolves with time in a way
dependent, among other elements E (t) and Rnn (t) .
Sometimes with a steady observational stream, E (t) = E, P (t) ultimately
becomes steady,

P∞ = P∞ −K∞EP∞

a matrix Riccati equation with its own extensive literature. K is then also steady.
But with time dependencies in the observation distribution or technology, such a
steady-state will not normally be obtained.
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There are ways of deriving the KF that look entirely different and more impressive.
In practice, it is nothing but a linear, weighted combination of a model forecast,
with an estimate made from observations. It is not hard to prove that x̃ (t,−) is
the prediction with the minimum error variance (the best possible predictor in the
G-M sense). This scheme was published by Kalman (1960) to predict locations of
ballistic missile impacts from observations. It is part of the control problem: what
should you do to the system to make it land in the right place (or better, to land
an airplane or a drone or lunar lander?) You need to know where it will be if you
don’t intervene (prediction).
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On the other hand, look at the general problem from the point of view of a finite
time span, 0 ≤ t ≤ tf :

x (0) = x0, with P (0)
x (1) = Ax (0) +Bq (0) + Γu (0)
x (2) = Ax (1) +Bq (1) + Γu (1)

...

x (tf ) = Ax (tf − 1) +Bq (tf − 1) + Γu (tf − 1)
E(1)x (1) + ε (1) = y (1)
E(2)x (2) + ε (2) = y (2)

.

E(tf )x (tf ) + ε (tf ) = y (tf )
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Might want to re-write the first equation, instead, as
x (0) + ε (0) = x0,Rnn (0) = P (0) . Each ε (t) is accompanied by an error
covariance, as is each u (t) and it is assumed that there is no time correlation in
either u (t) or ε (t) (it there is, various methods exist for handling it). The most
effi cient way to solve the above set of equations, which represents everything one
knows, is to proceed with weighted least-squares or G-M solution, if it will fit into
your computer. The KF does not solve these equations. Consider that it doesn’t
produce any estimate of u (t) , and that e.g., the estimate made previously for
time ~x (t − 1) is never changed when data come in at time t or later. It’s fairly
obvious that the early solution might look very different with a later measurement.
(Consider the situation when a hurricane is suddenly observed in the middle of an
atmospheric region, an observation that was not predicted by the model an hour
earlier. One would probably want to modify that earlier estimate.) But if all one
cares about is the best prediction, there is no point in worrying about the earlier
state (who cares where the ballistic missile was?)
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The best estimate of the state, x (t) and of the unknown u (t) comes from solving
the whole equation set as simultaneous equations. If that approach is impractical,
how to do that? A smoother refers to estimation of the state in the past. An
important alternative algorithm is called the RTS smoother. (RTS is for Rauch,
Tung, Striebel who first worked it out.) It consists of running the KF all the way
to the end of the data set. There is then no future data to modify that last point.
Thus ~x (tf ,+) = ~x (tf ) , with uncertainty, P (tf ) , the + being used to show that
future data have been used. One then goes one step backwards in time, knowing
that the discrepancy between the value predicted at tf , which was ~x (tf ,−) and
the value finally estimated, ~x (tf ) , had to be due to (A) the missing u (tf ) ,
and/or the error in ~x (tf − 1) .The RTS smoothing algorithm partitions the
corrections between them in a second recursion,
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RTS algorithm (see DISEP),

~x(t,+) = ~x(t) + L(t + 1) [~x(t + 1,+)−~x(t + 1,−)]
L(t + 1) = P(t)A(t)T P(t + 1,−)−1

u (t,+) = M (t + 1) {x (t + 1,+)−x (t + 1,−)}
M (t + 1) = Q (t) Γ (t)T P (t + 1,−)−1

P (t,+) = P (t) +L (t + 1) [P (t + 1,+)−P (t + 1,−)] L (t + 1)T

Q (t,+) = Q (t) +M (t + 1) [P (t + 1,+)−P (t + 1,−)]M (t + 1)T

The formulas are a bit complex appearing because successive estimates with the
KF have temporally correlated errors. The smoothing rotates and stretches the
KF solutions to render them uncorrelated with equal variance, averages them
appropriately, then rotates and stretches back. The estimated control u (t) is
proportional to the estimated covariance Q (t) and the value of ~x(t,+) is a
covariance-weighted average of the KF prediction and the estimated new value
using the formally future data. Consider Q (t)→ 0, etc.
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The Kalman filter is in very wide use (it’s used to land airplanes and is part of the
control circuits of robotic systems everywhere). Its use has remained the goal of
many weather forecasters. For a linear system with known covariances it is truly
optimal. One pays a huge price for its use however (here, a practical issue!):
Consider the computation of P (t,−) = AP (t − 1)AT + ΓQΓT . The P (t)
matrices are square of the dimension of the state vector. A meteorological model
with 4 degree spatial resolution, will have about 22 meridional grid points, 90
zonal ones, and perhaps 25 levels. At each grid point, one must compute 3
components of velocity, the ambient pressure, the water content etc., thus the
state vector will be of order (22) (90) (25) (5) = 105 − 106 elements, minimally.
Thus the P matrix is 106 × 106. Running the model one time step into the future
(if it were linear), involves multiplication of x (t) by A (t) which is also
106 × 106at each time step. Forming AP (t − 1)AT = A (AP (t − 1))T is
equivalent to running the model 2N times at every time step (2× 106 times).
Such a requirement remains far beyond reach (ocean models can have state
vectors 100+ times larger).
What to do? (Are still ignoring the nonlinearity.)
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Consider again the Kalman filter (KF), the wholly grail of prediction,

~x (t,−)
forecast

= A ~x (t − ∆t)
"initial" condition

+Bq (t − ∆t) + 0
unknown control

,

x̃ (t) = x̃ (t,−)
forecast

+K (t) (y (t)− E (t) x (t,−))
correction−from−obs

P(t,−)
forecast−uncertainty

= AP (t − ∆t)AT
error−from−prev−est

+ ΓQ (t − ∆t) ΓT

error−from−unknown−control

P (t)
uncertainty−of −combined−est

= P(t,−)−K (t)E (t)P (t,−)

K (t)
Kalman−gain

= P (t,−)E(t)T [E(t)P (t,−)E(t)T +Rnn(t)]−1

(These notes are not entirely consistent in the use of the tilde notation. But if
x (t) or u (t) are calculated, they should technically be ~x (t) ,~u (t) to distinguish
them from the true values. Usually the context makes it clear.)
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One can try to guess the gain matrix K (t), typically by assuming it is in a
steady-state, and not bother with the error covariances. In weather forecasting,
one finds out rather quickly if the forecast was any good and can readily
experiment with different guesses. Unfortunately, this is not an attractive option
in climate forecasting! Many other approximations have been tried. Some seem to
work usefully. These ad hoc weather forecast schemes are what are called data
assimilation. They are mostly about prediction and involve a lot of numerical
experimentation and engineering. Textbooks are devoted to their use. They are
not directed at the problem of making a best estimate of the state vector or the
controls and if one is not doing prediction, they are not the right choice.
(Furthermore, smoothing, or interpolation, is a far more forgiving process than is
prediction or extrapolation.)
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The Kalman filter is a (hypothetically) optimum prediction method. From a
general estimation point of view, it has some extremely undesirable properties:

Figure: In a KF-like structure, the solution “jumps” at the analysis times. Introduces
artificial sources and sinks. (From I. Fukumori)

The update step at the “analysis time”, in going from ~x (t,−) to ~x (t) , even with
a rigorously correct K (t) , forces the model state to “jump” from the prediction
to the corrected values– thus without a properly determined control vector,
unphysical sources and sinks of momentum, energy, freshwater, vorticity, etc. are
being introduced. One thus cannot do physically meaningful budgets of these
quantities– the essence of climate change.
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The best estimate of the state, x (t) and of the unknown u (t) comes from solving
the whole equation set as simultaneous equations. If that approach is impractical,
how to do that? A smoother refers to estimation of the state in the past. An
important alternative algorithm is called the RTS smoother. (RTS is for Rauch,
Tung, Striebel who first worked it out.) It consists of running the KF all the way
to the end of the data set. There is then no future data to modify that last point.
Thus ~x (tf ,+) = ~x (tf ) , with uncertainty, P (tf ) , the + being used to show that
future data have been used. One then goes one step backwards in time, knowing
that the discrepancy between the value predicted at tf , which was ~x (tf ,−) and
the value finally estimated, ~x (tf ) , had to be due to (A) the missing u (tf ) ,
and/or the error in ~x (tf − 1) .The RTS smoothing algorithm partitions the
corrections between them in a second recursion,
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RTS algorithm (see DISEP),

~x(t,+) = ~x(t) + L(t + ∆t) [~x(t + ∆t,+)−~x(t + ∆t,−)]
L(t + ∆t) = P(t)A(t)T P(t + ∆t,−)−1

u (t,+) = M (t + ∆t) {x (t + ∆t,+)−x (t + ∆t,−)}
M (t + ∆t) = Q (t) Γ (t)T P (t + ∆t,−)−1

P (t,+) = P (t) +L (t + ∆t) [P (t + ∆t,+)−P (t + ∆t,−)] L (t + ∆t)T

Q (t,+) = Q (t) +M (t + ∆t) [P (t + ∆t,+)−P (t + ∆t,−)]M (t + ∆t)T

The formulas are a bit complex appearing because successive estimates with the
KF have temporally correlated errors. The smoothing rotates and stretches the
KF solutions to render them uncorrelated with equal variance, averages them
appropriately, then rotates and stretches back. The estimated control u (t) is
proportional to the estimated covariance Q (t) and the value of ~x(t,+) is a
covariance-weighted average of the KF prediction and the estimated new value
using the formally future data. Consider Q (t)→ 0, etc.
Other smoothing algorithms exist, too.
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The origin of the computational load in the Kalman filter and in any smoothing
algorithm lies with the sequential property: the forecast state has to be weighted
appropriately relative to the data-based estimate of it in both the filter and
smoother sequences. (If you don’t do it right, you will get a wrong answer!) Can
one find another way to solve the simultaneous equations without holding them all
in the computer at once? (Repeating: if one can do it all at once, that’s the most
effi cient way.)

It leads one to think about methods that might be called “whole domain” rather
than “sequential,” so that the uncertainties are not required, and in the spirit of
least-squares, to the notion of Lagrange multipliers (and what will be called the
adjoint method).
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First, a bit more about “data assimilation”as practiced by meteorologists. The
atmosphere isn’t dynamically linear over weather forecast time scales. Using a
nonlinear model is not, per se, an issue. It’s only when combined with data at the
“analysis” time of the update by data that one has trouble: one needs the
uncertainty of the forecast. A critical step in the KF derivation was the assertion
that the forecast uncertainty, P (t,−) was the sum of the error from that in the
previous state plus that of the unknown controls, AP (t − ∆t)AT+ΓQΓT . But if
the model is nonlinear, among other issues, errors are not additive. They are also
very unlikely to be Gaussian or even unimodal, which raises all kinds of other
problems when averaging the forecast with a data-based estimate which might be
Gaussian.
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Resort is commonly had to Monte Carlo or ensemble methods, a kind of brute
force approach: Given ~x (t − ∆t) ,P (t − ∆t) , and Q (t − ∆t) , generate an
ensemble of forecasts by running the model forward on a whole series of initial and
boundary conditions disturbed randomly, ~x (t − ∆t) + ∆~x (t − ∆t) ,
Bq (t − ∆t) + ∆q (t − ∆t) , where the ∆ fields are in principle consistent with
P (t − ∆t) , and Q (t − ∆t) . One then has an ensemble of forecasts,~x(i ) (t,−)
which are then used to calculate an empirical covariance, P (t,−) . Generating a
useful realistic set of disturbances is not trivial, and ensemble sizes are usually
orders of magnitude smaller than the dimension of x,P so that the empirical
covariance matrix is necessarily highly singular. One then assumes that the best
estimate is still a linear combination of forecasts and estimate from the data
alone. Nonethless, these methods are useful and Evensen (2007) is an entire book
on the subject. Not pursued here.
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The KF and smoothers can be extended in numerous ways, usefully remembering
the underlying structure of trying to solve sets of simultaneous equations. The
“linearized”filter is applied to the equations governing the deviation from a
guessed state, x0 (t) . The “extended”filter is applied to a linearization about the
previous best estimate: ~x (t − ∆t) (stability issues arise). The update of P (t) can
be numerically inaccurate if done by successive subtractions over many time-steps.
Can rewrite as a propagation in

√
P (t) (retains the non-negative definite

property; the “square-root filter”), or in terms of P (t)−1 (“information matrix”).
Etc. These are numerical algorithm problems, not conceptual ones.
If one of the parameters, e.g., k in the mass-spring oscillator, is to be estimated,
one can augment the state vector, [x (t) , x (t − ∆t) , k (t − ∆t)]T , perhaps with
an extra equation, e.g., k (t) = k (t − ∆t) , or something more interesting if the
spring constant were time-dependent. The problem is now nonlinear, and one
might start by writing k = k0 + ∆k (t) , thus linearizing, etc., etc.
All of these techniques can be applied to smoothing algorithms.
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Let’s go back and look briefly at the so-called reanalyses. The “analysis” is the
original weather forecast done by some workable approximation to a best estimate
(bridges are not normally built optimally– they are still useful). The models
(operator L) have changed greatly over time beginning at their origin around
1955. That generated sensible worries about a changing estimated atmospheric
state arising artificially from model changes alone. So the model is “frozen” in the
reanalysis, and is commonly the most recent weather forecast model.
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The motivation for many people here is undoubtedly what the meteorologists call
“data assimilation."
Example, Kalnay et al. (1996)

Cited 9500+ times. What is this? How is it done? Citation index gives about
9000 papers on “data assimilation" (June 2012).
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Trends in southern
hemisphere winds.
Same data, very similar
models, similar
methods. Why are they
so different? Do you
believe one of them?
Why?

Figure: From D. Bromwich. The
“jump”with the new data type
shows that (A) either something is
very wrong with the procedure
and/or, (B) the uncertainty of the
estimates exeeds the magnitude of
the jump.

Carl Wunsch Harvard University () Inverse Problems, Inverse Methods, State Estimation, Data Assimilation, and All That. Lecture 5January 26, 2013 13 / 27



The error analyses are usually inadequate and unconvincing: The data base
changes hugely over that same time period, but the equivalent of the K (t) matrix
is (A) guessed at and (B) held constant in time. Because of the use of KF-like
structures, the earlier estimates do not “know”about information in the later
data. Why use a prediction method on what is obviously a smoothing
(interpolation) problem? Would at least be useful were there error estimates.
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A major issue is the many orders of magnitude change in the observation system
since 1950 or 1870 or whenever the reanalysis begins. The sensitive dependence of
the time evolution of K (t) (and through it of P (t,−1) , P (t)) on E (t) shows
that there will be qualitative changes in the correct weighting of model and data
over the decades. These changes are not normally accounted for– K (t) being
held fixed.

(Courtesy P. Heimbach). Why does the model spread become greater toward the
end when there are many more data? Answer is probably that with more data,
more options are available for interpolation, smoothing, weighting etc.
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Bengtsson, L., Hagemann, S., Hodges, K. I. Can climate trends be calculated
from reanalysis data? JGR, 2004

The answer they give is “no” (widely ignored). Trends seen are dominated by
changes in the observing system. But note the confusion in their title of the
“reanalysis”with “data”. Model outputs are never data.
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Optimal sequential methods are beyond computational reach. What to do?
Consider a toy least-squares problem:
minimize J = x21 + x

2
2 . (The solution is x1 = x2 = 0 and J = 0). But suppose

one wanted the solution to also satisfy x1 − x2 = 7? One approach is to eliminate:
x1 = 7+ x2, J = (x2 + 7)

2 + x22 and minimize with respect to x2 (left to the
reader; x2 = 7/2, x1 = 7+ 7/2). This is a constrained optimization problem. An
alternative (apparently due to Lagrange, circa 1800): Introduce a new variable, µ.
Modify J to

J ′ = J − 2µ (x1 − x2 − 7)
Treat it as unconstrained, but with µ also to be determined:

1
2

∂J ′

∂x1
= x1 − µ = 0

1
2

∂J ′

∂x2
= x2 + µ = 0

1
2

∂J ′

∂µ
= − (x1 − x2 − 7) = 0
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Three equations in three unknowns, which produces the same solution for x1, x2
as well as µ = 7/2. The “trick” is explained in all textbooks on the calculus of
variations, classical mechanics, and least-squares, including DISEP. It converts a
constrained problem into an unconstrained one– which can be much simpler if it
isn’t so easy to eliminate enough variables. Price paid is the enlargement of the
number of unknowns.
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What problem are we trying to solve?
Minimize:

J =
tf

∑
t=1

(y (t)− E (t) x (t))T Rnn (t)−1 (y (t)− E (t) x (t))

+
tf

∑
t=1

u (t)T Q−1u (t) + [~x(0,+)−~x (0)]T P(0)−1 [~x(0,+)−~x (0)]

subject to the model:

x (t) = Ax (t − ∆t) +Bq (t − ∆t) +Γu (t − ∆t)

So let’s modfiy J using a Lagrange mutliplier for the model at each time step,
µ (t)
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Rewriting the above J,

J = [~x(0,+)−~x (0)]T P(0)−1 [~x(0,+)−~x (0)]

+
tf

∑
t=1

[y (t)− E(t)~x(t,+)]T R(t)−1 [y (t)− E(t)~x(t,+)]

+
tf −1
∑
t=0

~u(t,+)TQ (t)−1~u (t,+)

−2
tf

∑
t=1

µ(t)T [~x(t,+)−A~x(t − ∆t,+)−Bq(t − ∆t,+)− Γ~u(t − ∆t,+)]

(the + has been put into the arguments to emphasize that the solution uses all
data, past and future to t). µ (t) is now a vector. Take the partial derivatives and
set them to zero:
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1
2

∂J
∂~u (t,+)

= Q (t)−1~u (t,+) + ΓT µ(t + ∆t) = 0 , t = 0, 1, ..., tf − 1 (1)

1
2

∂J
∂µ(t)

= ~x (t,+)−A~x(t − ∆t,+)−Bq(t − ∆t)− Γ~u(t − ∆t,+) = 0,

t = 0, 1, ..., tf (2)

1
2

∂J
∂~x(0,+)

= P(0)−1 [~x(0,+)−~x (0)] +AT µ(∆t) = 0 , (3)

1
2

∂J
∂~x (t,+)

= −E (t)T R (t)−1 [y (t)− E (t)~x (t,+)]− µ (t) +AT µ (t + ∆t) = 0,

(4)

t = 1, 2, ..., tf − 1
1
2

∂J
∂~x(tf )

= −E(tf )TR(tf )−1 [y (tf )− E(tf )~x(tf )]− µ(tf ) = 0 (5)

another set of N ×N simultaneous equations.
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The so-called adjoint model is the 4th equation,

µ (t) = AT µ (t + ∆t) + E (t)T R (t)−1 [E (t)~x (t,+)−y (t)] ,

with time (apparently, but not actually) running backwards and with the
estimate-data misfit as a forcing term (the problem has a fixed time span– so
time runs in both directions).
The “adjoint method” solves these equations (usually with a nonlinear model
present). For a linear model, this system has an analytic solution (see DISEP).
Computationally it is far smaller than the KF-RTS system or equivalent, because
it does not require computation of the P. On the other hand, one does not have
the P !

Meteorologists call their algorithms for solving this system iteratively,
approximately, “4DVAR”(although it’s neither (necessarily) four-dimensional nor
is it variational); electrical engineers call it the Pontryagin (minimum) Principle. I
call it the method of Lagrange multipliers, because that description is more
meaningful to a wider community.
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Nobody in his right mind writes a code for a real GCM with the A matrix being
formed explicitly. Rather one time-steps each element according to some rule. A
is implicit. So how does one get it? There are several ways, discussed in DISEP,
but not pursued here.
The time-stepping is done in practice by a large Fortran code (circa 100,000 lines)
and J is similarly another Fortran code.
The simultaneous equations are solved by numerical search for a stationary value
of J, most commonly by a “downhill” search algorithm (quasi-Newton method).
In particular, the µ (t) are the partial derivatives of J with respect to the state
variables. Set the downhill direction.
How do you take the partial derivatives of a Fortran code? The answer is
algorithmic differentiation or AD. One feeds the Fortran code into the AD tool,
and it produces a second Fortran code which represents the partial derivatives
(work originally of R. Giering).

Assertions are commonly made that this method works only for “perfect models.”
But no limits exist on the magnitudes, nor the representation of u (t) , and in
principle the original model can be greatly modified. Note that after a solution is
found, the free-running, adjusted model is run forward in time from the modified
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initial conditions so that the solution one would analyze for its physics, biology,
chemistry, etc. satisfies these new, exactly known governing equations.
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This adjoint method is used in the ECCO project at MIT, in which there are about
2 billion data constraints, a one hour time-step over 20 years, a state vector of
approximate dimension, 0.7(180)(360)(21)(6)≈ 6× 106 at each hourly time step.
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There’s a lot more to it than that, but it really does work. (A lot of further
information, particularly about the Lagrange multiplier/adjoint method, can be
found on the ECCO webpage, (http://ecco.mit.edu/), that of OpenAD
(http://www.mcs.anl.gov/OpenAD/), and Patrick Heimbach’s MIT webpage.)
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Some parting comments.
People make a career out of these methods and their applications, and we’ve just
seen the tip of a large iceberg. There are many good textbooks, including those in
control theory, in electrical engineering, pure mathematics, etc. They are very
powerful methods, but like all powerful tools, can be dangerous to the user!
We know how to do a dynamically and statistically consistent, useful climate state
estimate. Because of its enormous dimensions, it is a very challenging numerical
engineering problem– one that must be solved, but that will not be done
overnight.
Thanks for listening to the end.
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Suggested Self-Teaching Exercises: Harvard University Shortcourse

Inverse Problems, Inverse Methods, State Estimation, Data Assimilation, and

All That

Carl Wunsch January 2013

If you can work these through, you have a reasonable understanding of the short-course

material. If you get stuck, come see me in Room 451, Geological Museum or MIT Rm

54-1426.

1. Discretize the Laplace/Poisson equation,

∇2φ = ρ (1)

in two-dimensions on a rectangular grid, i, j.Make the grid big enough that there is an interior

separate from the boundaries. A minimum number of grid points of 6 in each direction is

probably about right to keep the output manageable, but much larger is ok too. Let the

coordinates be x, y. Let ρ be zero except on one interior grid point (say, 4,4). Let the

boundaries be x = 0, L, y = 0, L so that the domain is square (you can change that). Put

φ (x = 0, y) = φ (x = L, y) = φ (x, y = L) = 0, φ (x, y = 0) = 1.

(a) Solve for φij by matrix inversion. (Check that it works.)

(b) Solve for φij using the SVD, increasing the rank from 1 to the maximum possible and

calculating the residual at each rank choice.

(c) Using φij from (a) calculate the boundary conditions and values of ρ that must have

been imposed (you know them, but pretend you don’t).

(d) Keeping the system of equations used in (a,b), add “observations”that φ3,4 = 2, φ4,3 =

7 (but use your own grid values– any interior points). Resolve the system and find the new

values of φij everywhere?. How do they differ? Use both some form of least-squares and

the SVD. Then let there be some uncertainty: φ3,4 = 2 ± 1, φ4,3 = 7 ± 10 and make a new

estimate of φij .

(e) Suppose the boundary values φ (x, y = 0) = 1 are not known, but you know those on

the other three boundaries. And you know φ3,4 = 2 ± 1, φ4,3 = 7 ± 10. What can you say

about the missing boundary conditions?

2. Now consider a time-dependent tracer equation,

∂C

∂t
− k∇2C = 0 (2)

1



discretized spatially as in Problem 1, and also in time over an interval ∆t (your choice).

Initial conditions are zero. Boundary conditions are also zero, except C(x, y = L) = 1, t > 0.

Write it as a state-space form,

x (t+ ∆t) = Ax (t) (3)

(a) Write it out as a large set of simultaneous equations over some finite time t = 0...M∆t

and solve by matrix inversion. It should be an N ×N system if done right. (Notice that the

coeffi cient matrix is sparse– which you can exploit if you wish.)

(b) Take the solution at t = M∆t, add a bit of corrupting white noise to it, and solve for

the initial conditions, pretending you don’t know them, using least-squares.

(c) Using those corrupted data, use a Kalman filter to predict x (t) , t = (M + 1) ∆t, (M + 2) ∆t, ..

and calculate their uncertainty.

(d) From the corrupted “data”of (2) find the initial conditions using (i) any smoother of

your choice; (ii) Lagrange multipliers.
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