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ABSTRACT: A three-dimensional global state estimate derived from Estimating the Circulation

and Climate of the Ocean (ECCO) using diverse error-weighted global data permits computation

of a multi-decadal time-average ocean circulation and its variability obeying the numerical require-

ments of the MITgcm and associated property conservation conditions. The result exhibits a variety

of underlying temporal structures in different regions: statistically stationary; non-stationary; long

memory; short memory; rednoise; bluenoise; etc. That variety renders difficult the interpretation

and understanding of quantities such as global averages and trends.The result undermines the hope

of simple global-scale description of air-sea interactions of all kinds and leads to the necessity of

specific attention to separate regions—but in a fully global context. Specific variables discussed are

sea level, and heat content both for the full water column and in the abyss alone with an emphasis

on the strong spatial variability of the underlying statistical structures—a result with important

consequences for observational sampling strategies. Absent a complete theory for the statistics of

very large multivariable time-series, a bootstrap is used to produce estimates of global trends in

sealevel and heat content.
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SIGNIFICANCE STATEMENT: The recent availability of multi-decadal time-averages of the22

computed ocean circulation leads to a system with a diverse set of statistical elements which persist23

for decades and presumably for arbitrarily long time scales. These elements in the underlying24

time variability, which include stationary and non-stationary, long-memory and short-memory,25

bluenoise etc., become part of the descriptive oceanography of the general circulation. A strong26

regionality in air-sea coupling in the climate system is implied, leading to questions about both27

the use of global means and over-simplified claims of localized global control (e.g., of the North28

Atlantic meridional overturning circulation). Implications for determination of means and trends29

are explored.30

1. Introduction31

That the global ocean circulation contains numerous dynamically distinct regions is an in-32

escapable inference from modern observation systems and models. One example from many is33

shown in Xu and Fu (2012) using altimeter observations and a dynamical one is Sonnewald et al.34

(2019). From the greatly intensified near-global ocean observations that became available starting35

circa 1992, it is now possible to compute estimates of the time-average ocean circulation that span36

decades. An example of such an estimate, based upon the inverse method of non-linear weighted37

least-squares fit of the MITgcm (general circulation model) to the great bulk of the available data, is38

the Estimating the Circulation and Climate of the Ocean (ECCO) result. Lagrange multipliers are39

used to enforce the model equations. The time-average state estimate was described by Fukumori40

et al. (2019), and Wunsch (2024, 2025) for ECCO(v4r4), that is version 4, release 4 and spanning41

𝑇𝐷 =26 years. (𝑇𝐷 has been extended since then, but there is an old rule of thumb in time series42

analysis that analyses are worth re-doing when the duration has doubled.)43

Interpretation of that time-mean raises a number of questions—ones that would apply also to44

estimates made directly from data without the intervening use of a general circulation model45

(GCM). Any real, finite-duration ocean time-average exists in a system changing on time-scales46

far longer than 𝑇𝐷 . Fig. 1 provides one approximate depiction of many of those time-scales.47

Several types exist including time-scales intrinsic to the ocean fluid system (e.g., the high latitude48

multi-decadal adjustment time of the baroclinic structure of the thermocline—see Anderson et al.,49

1979) and those induced by long-time-scales in the forcing (e.g., the atmospheric cold period of the50
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Fig. 1. Approximate time-scales of the changing ocean circulation including those associated with forcing and

some of those associated with coupled atmospheric changes. (From Wunsch, 2015.) The vertical axis is used

simply to separate the labels and has no dimensions. Some time-scales have characteristic space scales; others

have a broad spectrum; but all are global in scope. Abbreviations used include ENSO for El Niño Southern

Oscillation; AMO is Atlantic Multidecadal Oscillation; APE is available potential energy; MOM is momentum;

DIFF is diffusion; ADV is advection. Many time-scales refer to the replacement time of the global fluid

volume by changes in the listed variable. Others arethe sometimes radically shorter trans-oceanic travel times

for barotropic and coastal shelf waves. See the reference for a more complete description and interpretation.
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Little Ice Age; see Gebbie and Huybers, 2019). A third time-scale arises from the comparatively51

long-interval between major disturbances such as ENSO—precluding accurate calculation of their52

long-term average properties.53

Particular attention is called to the discussion by Anderson and Gill (1975), Anderson et al (1979)54

for the understanding of the linearized ocean basin spin-up problem. What emerges are distinct55

time-scales with a large spatial variation in the basin, with a particular dependence, on east-west56

position. Topography, such as the North Atlantic Mid-Ocean Ridge, exaggerates those differences.57

Questions include, among others: (1) What is the meaning of a finite duration temporal average66

in a system that contains time-scales far-longer than 𝑇𝐷? (2) Is a particular time-average equivalent67
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to a real fluid steady-state? (3) Were it possible to calculate an infinite duration time-average under68

the assumption that the ocean now, or sometime in the past or future, is in an equilibrium state,69

what spatial elements can be expected to survive the averaging process? That is, what controls the70

apparent zero-frequency ocean circulation spatial structure? (4) In a statistically inhomogeneous71

system, what are the accuracy and interpretation of global averages? The purpose here is descriptive72

and preliminary: to understand the temporal structure of the ocean circulation and begin exploring73

the extent to which time-means and time-trends can be computed with known accuracy over the74

almost 30 years of the state estimate.75

Of particular societal interest are the means and trends of sea level, heat, and carbon content76

among others. Wunsch and Heimbach (2016) discussed the generic problems of determining means77

and trends, and included some results from an earlier state estimate. Wunsch (2018, hereafter W18)78

discussed many of the generic issues based upon an earlier (20 year duration) state estimate. Results79

in that paper are focussed on removal of the apparently deterministic ocean circulation structures80

by way of a singular vector analysis, and the separation of stochastic and systematic errors in the81

system, prior to calculations of the uncertainties of the time-means. Although the goals of this82

present paper are basically the same as in W18, a different statistical methodology is employed,83

one focussed more directly on the nature of the multi-decadal time variability in the state estimate84

and its spatial structure.85

Most extant statistical estimates of oceanic (and many other) properties such as time-means,86

trends, spectra, are based upon important default assumptions about the time series of proper-87

ties. That they are: (A) Statistically stationary; (B) Gaussian or at least unimodal; (C) Have88

an uncertainty computable from a simple variance, or autocovariance (Gauss-Markov) estimate.89

Understanding of the reliability of those assumptions underlies understanding of ocean/climate90

change.91

The approach taken here has a context of the time series analyses in several textbooks (e.g.,92

Brockwell and Davis, 1991, Beran, 1994, Chatfield, 2004, Box et al., 2008) that are directed at93

understanding the import of deviations from (A), (C), and with brief examinations of (B). Un-94

derlying these discussions are the descriptors commonly known as autoregressive moving average95

processes (ARMAs) for linear time series, extended to account for non-stationarity as autoregres-96

sive integrated moving average processes (ARIMAs). Brockwell and Davis (1991) and Beran97
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(1994) have specific discussions of the ambiguities arising both from non-stationarity, and the98

specific behavior of the autocorrelations in stationary processes. Percival et al. (2001), Percival99

and Rothrock (2005), Overland et al. (2006), Gil-Alana (2012), Gil-Alana et al. (2022) among100

others provide more familiar climate-change related discussions of these processes. Dangendorf101

et al (2014) describe long-memory components in the altimetric record. Mudelsee (2001) is a102

textbook with applications to climate.103

To some degree, the story here is a simple cautionary one—time series and the uncertainties of104

their properties such as the time means and trends, have a strong regional variations, ones that must105

be accounted for in discussions of global averages, of changing climate, or predictions. Apart from106

the statistical consequences, the specific results here can be understood as an unorthodox, but useful,107

descriptive oceanography of the characteristics of global temporal variability. An underlying issue108

is the extent to which discussions of global average climate physics are a substitute for potentially109

radically different behavior in different regions.110

Consider the best linear unbiassed estimate (BLUE) estimate of an average, familiar in oceanog-111

raphy as arising from the Gauss-Markov theorem (e.g., Wunsch, 2006, P. 133) and the Yule-112

Walker equations. Let, 𝜉 (r, 𝑡) , be a stationary Gaussian time series at unit time step, Δ𝑡.113

(Here r are the position coordinates and 𝑡 is time. All variables are discrete.) Let its114

temporal autocovariance be denoted 𝜑𝜉𝜉 (r,𝜏) = ⟨𝜉 (r, 𝑡) 𝜉 (r, 𝑡 + 𝜏)⟩ taken about the true pro-115

cess mean, here assumed zero, the bracket denoting statistical expectation and estimated as116

𝜑̃𝜉𝜉 (r,𝜏) = 1/𝑁∑𝑁−1
𝑗=0 𝜉 (r, 𝑗Δ𝑡) 𝜉 (r, ( 𝑗 + 𝜏)Δ𝑡) at lag 𝜏, over 𝑁 samples. (A tilde is used throughout117

to denote an estimate.) Define R𝜉𝜉 as the Toeplitz matrix of 𝜑𝜉𝜉 (r,𝜏) for fixed r, and discrete 𝜏𝑛.118

Then an estimate of the true mean is the sample mean,119

𝜉𝐺𝑀 =
D𝑇R−1

𝜉𝜉
ξ

D𝑇R−1
𝜉𝜉

D
(1)

where D = [1,1,...,1]𝑇 and 𝜉 is the ordered column vector of all of the individual values in time.120

The uncertainty of 𝜉𝐺𝑀 about the true mean is,121

𝜎̃2 =
1

D𝑇R−1
𝜉𝜉

D
(2)
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(If 𝜉 (r, 𝑡) are independent white noise processes, both these expressions reduce to the conventional122

simple average and its variance.) A central assumption is that for large 𝜏, 𝜑𝜉𝜉 (r,𝜏) → 0, rapidly,123

defining a “short-memory” process. Behavior of the autocovariance at large lags determines the124

statistical reliability of any such estimates of time-means or apparent trends. If the autocovariance125

fails to diminish sufficiently rapidly, the value of 𝜎̃ in Eq. (2) is no longer accurate and can be a126

gross underestimate of the true uncertainty of the sample mean.127

In much of the literature, commonly directed at econometric time series, processes with values128

of 𝜑𝜉𝜉 (r,𝜏) that diminish too slowly in 𝜏 for the validity of Eq. (2) and other quantities are called129

“long memory processes.” “Long memory” does not refer to the physical memory. Instead, it is130

a descriptor of processes whose autocovariances/autocorrelations decay sufficiently slowly so as131

to render inaccurate, sometimes grossly so, calculated means, trends and other estimates. One132

mechanism by which long memory arises naturally (Granger, 1980, Beran, 1994 ) comes from133

the summation into a physical variable of underlying independent processes of short memory.134

The concept is widely used in econometrics. That oceanic variations at a point are indeed at135

least in part the result of summations of fluctuations, perhaps independent, arriving from globally136

distributed distances is hardly in doubt. Whether they depict “long memory” behavior has to be137

determined. For purposes of this paper, “long memory” in the econometric sense will be labelled138

“long-autocovariance memory”, to distinguish it from “long-physical memory”, the latter based139

upon the various physics of the sort depicted in Fig. 1. Long-physical memory will be identified140

with the non-statistically stationary ocean regions. 1141

As an inverse problem solution method as practiced in ECCO, state estimation provides-in142

principle-a quantitative estimate of the uncertainty of the state estimate elements. In the global143

oceanic case, dimensionality is the overwhelming central problem. Consider that a coarse res-144

olution ocean model (1◦ of latitude and longitude) with 50 layers and a complete state vector145

consisting of three components of velocity, temperature, salinity, and pressure) contains at each146

time-step approximately, 𝑁 ≈ 107, elements, omitting e.g., the also uncertain meteorological fields147

and the various turbulence and other parameters that are also estimated. Conventional state esti-148

mates employing the above assumptions, embodied in such linear algorithms as the Kalman filter,149

require calculation of covariances that are square of dimension 𝑁, and which lie beyond most150

existing computational resources. (See Kalmikov and Heimbach, 2014, for discussion of various151

1The problem resembles some encountered in spatial epidemiology, as described e.g. by Lawson et al. (2020), Elliott et al. (2000).
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approaches; and Heimbach et al. (2011) for sensitivity analyses using the adjoint solution.) In-152

clusion of accompanying atmospheric, cryospheric, and regional turbulence models and their state153

vectors makes the situation even more challenging. Ensemble methods are again—in principle–a154

solution, but in practice almost all ensembles have dimensions minute compared to 𝑁 , leaving155

huge nullspaces in the range being covered.156

Until such time as rigorous uncertainty estimates become available, an interim approach is157

needed. Consider the time-dependent state estimate here as though it were a physical ocean that one158

can sample and analyze—treating the underlying model physics as a black-box parameterization.159

Thus, for example, the surface elevation at any point, 𝜂 (r0, 𝑡), can be analyzed for its time-average,160

its trends if any, its variance etc. At the end of the analysis one has a useful, if unorthodox,161

description of important elements of the global ocean circulation. This approach does assume that162

the temporal and spatial variability is primarily stochastic in nature—despite the omnipresence of163

the governing approximation to the Navier-Stokes equations, sometimes in a deterministic setting.164

Much of the forcing is stochastic in nature, and with the existing resolution, no evidence has yet165

appeared for the presence of chaotic fluctuations.166

2. Statistical Issues and Notation167

A partial context for this and related discussions is the common “rednoise” behavior of the168

various geophysical variables with connections to fractal processes. That is, many variables of169

interest have power spectral densities (or equivalent periodograms) which appear to increase with170

increasing period—decreasing frequency, 𝑠 → 0. In the ocean context, rednoise spectra are very171

familiar, but are normally not examined closely for the physics present at the lowest accessible172

frequencies. A particularly interesting aspect concerns the question of what can be inferred about173

the influence of timescales of longer than the duration of observations or model runs? Discussion174

is far from straightforward. In W18 such processes were treated as though deterministic during the175

interval 𝑇𝐷—at least partially separating stochastic from systematic errors.2176

As described in a number of textbooks (e.g.,Priestley, 1982; Brockwell and Davis, 1991; Box177

et al., 2008) the general machinery of ARMA (autoregressive moving average) and ARIMA178

(autoregressive integrated moving average) processes provides a useful framework for discussion179

2Systematic errors in both observations and models are ubiquitous. Liu et al (2024) show the appearance of such errors in one type of observation
(Argo salinities).

8



of many linear time series. Here the discussion is confined to developing a useful notation180

(Chatfield, 2004, aptly characterizes the literature as “challenging.”). A somewhat more extensive181

summary is provided in the Appendix. What distinguishes the problem here from the textbook182

examples is the need to analyze a very large set of multivariable time series of interconnected,183

diverse, statistical distributions. Only a limited exploration of those statistics is undertaken.184

Consider a discrete-in-time series at spatial point r, and discrete time 𝑡 with time-step Δ𝑡 = 1.185

Let 𝐵 denote a backwards in time operator:186

𝐵𝜉 (r, 𝑡) = 𝜉 (r, 𝑡 −1) . (3)

Then if 𝜉 (r, 𝑡) is a stationary, causal, linear process, its time evolution can be described accurately187

in the ARMA(𝑝, 𝑞) form,188

𝜙 (𝐵) 𝜉 (r, 𝑡) = 𝜓 (𝐵) 𝜀 (r, 𝑡) (4)

where 𝜙 (𝐵) = 1− 𝜙1𝐵− 𝜙2𝐵
2 − ...𝜙𝑝𝐵

𝑝,𝜓 (𝐵) = 1−𝜓1𝐵−𝜓2𝐵
2 − ...−𝜓𝑞𝐵

𝑞 are polynomials in189

𝐵, of order 𝑝, 𝑞 respectively, and 𝜀 (𝑡) is a white-noise (uncorrelated) random process. Polynomial190

coefficients, 𝜙 𝑗 ,𝜓 𝑗 are all functions of r and are generally expected to be well-behaved (in particular,191

to be of finite length or rapidly convergent). A great deal is known about methods for estimating192

𝑝, 𝑞 and their reliability.3193

As much of the literature emphasizes, it is rare to be able to assert that any particular estimation-194

derived model is “correct”—only that it proves useful—e.g., in description or prediction. In the195

oceanic problem, one normally assumes that an extended form of the Navier-Stokes equations196

must describe the fluid behavior. The availability of known underlying physics represents an197

important contrast with econometric problems. In practice however, the physics equations are198

always approximated to a significant extent, producing major empirical elements analogous to the199

purely empirical econometric ones.200

Let,201

𝜉 (r, 𝑠) =
𝑁−1∑︁
𝑡=0

𝜉 (r, 𝑡) 𝑒−2𝜋𝑖𝑠𝑡 =

𝑁−1∑︁
𝑡=0

𝜉 (r, 𝑡) 𝑧𝑡 , 𝑧 = 𝑒−2𝜋𝑖𝑠, (5)

3The system can be generalized to vector fields ξ (𝑡 ) , with the polynomial coefficients 𝜙𝑖 , 𝜓𝑖 becoming matrices. Brockwell and Davis, (1991,
Ch. 11) discuss such multivariable MARMA. Extension to MARIMA processes does not appear to have been widely explored apart, surprisingly,
in studies such as tourist distributions (Goh and Law, 2002). Beran et al. (2013, P. 76) provide references to the financial literature.
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be the Fourier transform of 𝜉 (r, 𝑡) , starting at 𝑡 = 0 and extending to 𝑁 observations (and it is a202

polynomial in 𝑧, the 𝑧-transform). Then the periodogram is defined as,203

𝑃 (r,𝑠𝑛) = |𝜉 (r,𝑠𝑛) |2, 𝑠𝑛 =
𝑛

𝑁
. (6)

The power spectrum, Φ (r,𝑠𝑛) is a smoothed and scaled version of 𝑃 (r,𝑠𝑛) , computed so as204

to reduce the variance of the elements of 𝑃 (𝑠𝑛) . (The Wiener-Khinchin theorem asserts that205

𝑃 (r,𝑠𝑛) can be computed from the Fourier transform of 𝜑𝜉𝜉 (r,𝜏) and so they have the same206

information content. Power spectra are commonly normalized to spectral densities to render the207

results somewhat insensitive to record length.) The periodogram of the ARMA(𝑝, 𝑞) is,208

𝑃𝐴𝑅𝑀𝐴 (r,𝑠𝑛) ˜

( ��𝜓 (
r,𝑒−2𝜋𝑖𝑠𝑛

) ��2��𝜙 (
r,𝑒−2𝜋𝑖𝑠𝑛

) ��2
)
, (7)

for fixed r; see Brockwell and Davis (1991, P. 377). For present purposes, the important assumption209

is that 𝑃𝐴𝑅𝑀𝐴 (r,𝑠𝑛) is a well-behaved, smooth, finite function as 𝑠𝑛 → 0. For stable polynomials,210

it can be confirmed that the corresponding autocovariance, 𝜑𝜉𝜉 (r,𝜏) , goes to zero at finite lags.211

Statistical stationarity requires that at 𝑠 = 0 the periodogram of 𝜉 (r, 𝑡) , as derived from Eq. (4) or212

equivalent, is finite.213

Much of the statistical literature is focussed on stationary processes. For non-stationary 𝜉 (r, 𝑡), a214

stationary representation can often be obtained by first taking a temporal difference. For example,215

sometimes a non-stationary 𝜉 (r, 𝑡) can be rendered temporally stationary by computing 𝑤 (r, t) =216

𝜉 (r, 𝑡) − 𝜉 (r, 𝑡 −1) = (1−𝐵) 𝜉 (r, 𝑡) and which can be represented as an ARMA. The process is217

made general by finding an ARMA of 𝑤 (r, t) , defined as,218

𝑤 (r,𝑡) = (1−𝐵)𝑑 𝜉 (r, 𝑡) ≡ ∇𝑑𝜉 (r, 𝑡) (8)

∇𝑑 = (1−𝐵)𝑑 =
∞∑︁
𝑘=0

Γ (𝑑 +1)
Γ (𝑘 +1) Γ (𝑑 − 𝑘 +1) (−1)𝑘 𝐵𝑘 , (9)

where 𝑑 does not have to be an integer and Γ is the gamma function.219

For present purposes and as sketched more fully in the Appendix, 𝑑 determines the behavior of220

the periodogram or spectrum for the underlying variable 𝜉 as 𝑠 → 0. The periodogram is (Beran,221
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1994, Hurvich and Ray, 1995),222

𝑃 (r,𝑠𝑛) ≈ 𝐹 (r,𝑠𝑛)𝑠−2𝑑
𝑛 , 𝑠𝑛 → 0. (10)

where 𝐹 (r,𝑠𝑛) is assumed to be a slowly changing smooth function derived from the corresponding223

ARMA(𝑝, 𝑞). 𝑠𝑛 = 𝑛/(𝑁 −1)Δ𝑡 are the Fourier series frequencies. The best-fitting straight line,224

log (𝑃 (r,𝑠𝑛)) = 𝛽0 (r) −2𝑑 (r) log(𝑠𝑛) + 𝜀 (r,𝑠𝑛) , (11)

provides an estimate of 𝑑 (r) where −2𝑑 (r) is the slope of the logarithm of the periodogram or225

power density, over a limited band of log frequencies close to 𝑠 = 0. 𝜀 (r,𝑠𝑛) is a residual being226

minimized in the mean-square and is preferably a white noise process. In the present context,227

determination of 𝑑 (r) for time series in the variables of the state estimate serves several purposes.228

It is a spatially varying: (A) Description of the low oceanic frequencies (e.g., rednoise, blue noise,229

etc.). (B) An indicator of statistical stationarity or otherwise. (C) A measure of the differing spatial230

variability regimes permitting averaging and trend determination in statistically homogeneous231

terms.232

In the present context, stationarity versus non-stationarity has important physical meanings: The233

Navier-Stokes equations are believed to be causal, and thus in principle their solution (the state) is234

dependent upon initial conditions. To the extent a time series at r, 𝜉 (r,𝑡) is found to be stationary,235

it represents a statistical equilibrium state, no longer evolving according to those initial conditions236

because of diffusion or the generation of a chaotic regime. If, on the other hand, 𝜉 (r,𝑡) is found to237

be non-stationary, implying a continued dependence upon initial conditions preceding the interval238

𝑇𝐷 , for example, from some long-ago meteorological cold-spell or wind-shift. Another possibility239

is that some internal process has not reached equilibrium—e.g., an upgradient turbulent flux still240

undergoing adjustment.241

Use of the periodogram (equivalently, the power density spectrum) for determining 𝑑 is not242

necessary—with known alternative tests being based upon the autocovariance. But with the large243

variety of physics present in the ocean, the frequency domain usually produces a more immediate244

physical interpretation. For 𝑑 < 0 in Eq. (10) the power is diminishing with diminishing frequency245

(blue noise) and conversely, if 𝑑 > 0, the result is rednoise and implying a singularity at 𝑠 = 0 in246
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𝑑 = 𝐻 − 1/2 𝐻 = 𝑑 +1/2 Character

0 ≤ 𝑑 ≤ 1/2 1/2 < 𝐻 < 1 Stationary, long memory

0 1/2 Stationary white noise

−1/2 ≤ 𝑑 ≤ 0 0 ≤ 𝐻 ≤ 1/2 Stationary, finite 𝑃 (0) ,short memory

𝑑 ≤ −1/2 𝐻 < 0 Stationary

𝑑 ≥ 1/2 𝐻 ≥ 1 Non-stationary

Table 1. General behavior of a time series for a given value of d. H is the Hurst parameter. Various

assumptions apply to the p,q polynomials. Stationarity implies a local statistical equilibrium not dependent

upon earlier initial conditions, while non- stationarity likely means that dependence is still present in the ocean.

Discussion can be found in Beran (1994), Chatfield (2004), Box et al. (2008) and elsewhere.

257

258

259

260

the complex frequency domain. In the interval, 0 < 𝑑 (r) < 1/2, 𝜉 (r, 𝑡) is both stationary and has247

long- autocovariance memory in the econometric sense. See Table 1. (Note that 𝐻 = 𝑑 + 1/2 is248

called the Hurst parameter, deriving historically from hydrology and the ancient behavior of the249

Nile River.) Global maps of 𝑑 (r) are here being regarded as part of the basic description of the250

oceanic general circulation.251

In some variables of interest (e.g., surface height, heat content) the annual cycle can be quite252

prominent and is of interest in its own right; see Ponte et al. (2024) for a discussion of the oceanic253

annual cycle. It is readily removed a priori, albeit the ARIMA estimation machinery can detect254

such behavior—if not anticipated. Here, the values of the periodogram at periods shorter than 2.6255

years are not used and the annual cycle is ignored or suppressed in what follows.256

261

It is important to note that 𝑑, as well as any 𝑝, 𝑞, will be estimated values, written as 𝑑, 𝑝, 𝑞, each262

with a corresponding uncertainty. A rigorous understanding of the uncertainty e.g., of a linear263

trend in the presence of multiple physical processes, is a formidable task. A form of bootstrap264

Monte Carlo strategy will be used below (see e.g., Mudelsee, 2014, for examples).265

Means, Variances, Trends266

For Gaussian white noise, 𝜀 (𝑡) , Eqs. (1, 2) for the the sample mean and its variance reduce to,267

𝑚̄ =
1
𝑁

𝑁−1∑︁
0

𝜀 (𝑡) , (12)
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268

𝜎̄2 =
1
𝑁

𝑁−1∑︁
0

(𝜀 (𝑡) − 𝑚̄)2 → 0, 𝑁 →∞, (13)

the conventional mean and variance. (A fixed position r is implicit.) Modifications such as the269

Gauss-Markov estimate are readily made for processes having finite autocovariances (Eqs. 1, 2).270

The main point is that the variance diminishes with 1/𝑁, 𝑁 →∞, in these cases. If however, a271

process 𝜉 (r, 𝑡) is an ARIMA(𝑝, 𝑑, 𝑞), −1/2 < 𝑑 < 1, then, Brockwell and Davis (1991, P. 527), the272

variance about the sample mean is,273

𝜎̄2 → 𝐶

𝑁1−2𝑑 , (14)

where 𝐶 is a finite constant, having potentially much slower convergence with 𝑁 for 𝑑 > 0 than is274

the value in Eq. (13). With 𝑑 = 1/2, the variance does not diminish with 𝑁 for large 𝑁. (𝑑 = 1/2275

corresponds to a random walk in 𝑤 (r,𝑡) and which has a variance increasing with time).276

Determining global changes and trends in quantities such as heat content involves computing a277

global spatial average through time. A global average can always be computed, either directly or278

one whose elements are weighted as in Eq. (1) where the weights are known. Spatial variations279

in 𝑑, if they exist, imply that the simplest spatial averaging method, generally used also for directly280

observed data (e.g., temperature from CTDs) is averaging “apples and oranges”—stationary and281

non-stationary, long- and short-autocovariance memory, and those from regions subject to long-282

physical memory time series.283

3. Spectral Behavior of ECCO(v4r4)284

a. Sea Surface Height285

Consider as a first example the behavior of the sea surface height, 𝜂 (r𝑖, 𝑡) , estimated as monthly286

averages, producing 312 samples at Δ𝑡 = 1/12year for 26 years (and see the corresponding dis-287

cussion in W18). r𝑖 is the collection of two-dimensional grid positions and 𝑡 is discrete. Unless288

otherwise stated, spatial resolution is 2◦ in longitude, 1◦ in latitude (model grid resolution is sig-289

nificantly higher). A plausible, greatly simplifying, physical interpretation is that with the existing290

spatial resolution, 𝜂, is dominated by the surface geostrophic flow. Measurements from the series291

of altimetric satellites make it the most uniform and spatially dense of all of the observation types292

to which ECCO(v4r4) was fit. Dominance (mostly) of thermal wind balance over the bulk of the293
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ocean also suggests that treating it as a linear variable is also a useful approximation. The ordinary294

time-averaged map from a shorter interval, 𝜂 (r𝑖) , can be seen in Wunsch (2024), and is generally295

oceanographically conventional in the magnitude and shape of the spatial structures. Hughes and296

Williams (2010), Xu and Fu (2012) display estimates of the complicatd spatial structure of the297

frequency spectral density from altimetric data.298

Fig. 2 shows not untypical monthly time series at various latitude points along 180◦W in the299

Pacific Ocean. Visually, weak (relative to the variations) trends appear and as discussed e.g., by300

Percival et al. (2001), one confronts the question as to whether the trend is a stochastic accident301

of these times and places, or whether it represents the externally deterministic global warming302

consequences—a conundrum of finite 𝑇𝐷 . In some locations, the annual cycle is prominently303

visible in the variability.304

In what follows, the discussion of 𝜂 (r,𝑡) is restricted to the region equatorward of 60𝑜N and 65◦S305

to avoid the complexities of determining sea level change in the presence of sea-ice. The restricted306

region corresponds to the coverage latitudes of the TOPEX/POSEIDON, Jason, and Sentinel series307

of altimetric measurements. Fig. 3 displays the histogram of the time-dependent elements of308

𝜂 (r𝑖,𝑡) for all r𝑖,𝑡 with their time-average removed. Unimodality is clear, although a Gaussian309

would be only a crude approximation. The periodograms from the time series along 180◦W and310

the global average spectra before and after removal of the annual cycle are displayed in Fig. 4.311

For 𝜂 (r, 𝑡) , the presence of a trend owing to global warming is plausible in many regions, but334

whether it is visible in all regions is much less clear. For that reason, the analysis here is carried335

out twice: (1) With the full value of 𝜂 (r, 𝑡) , and (2) with 𝜂 (r, 𝑡) from which a linear time trend336

has been removed at each grid point by conventional, unweighted least-squares. In the statistical337

context, the linear trend is then being assumed to be an externally imposed deterministic forcing;338

although given the multiplicity of causes of sea level change, its existence and magnitude is a339

potentially strong function of position.340

The area weighted average of 𝜂(r,𝑡) is depicted in Fig. 5. Based on this result it is concluded that341

representation of the overall trend by a straight line is adequate at this stage of understanding. (In342

contrast, Cazenave and Moreira, 2022, conclude that deviations from a linear rule are detectable.)343

Fig. 6 shows the average of 𝜂 at year 26 minus that from year 1, producing a spatial average of344

0.0016 m/year=1.6mm/y or 4 cm over 26 years—with an uncertainty discussed below. Fig. 7345
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Fig. 2. Representative time series of 𝜂 (r,𝑡) along 180◦W in the central Pacific Ocean. The qualitative change

with latitude is clear. A visible annual cycle exists at some latitudes and has generally been suppressed in the

analysis here.

312

313

314

Fig. 3. (a) Histogram of 𝜂 (r𝑖 , 𝑡) with local time averages and the annual cycle removed for all times and

positions. A unimodal description is accurate, and a Gaussian is a plausible first approximation. A small

number of extreme outlier values are omitted here. (b). Histogram of estimated values of Δ𝜂/Δ𝑡 and which is

non-Gaussian. An excess of positive values is apparent. Bootstrap values are drawn from this distribution, which

varies with 𝑑.

315

316

317

318

319

displays the estimated sea level height trend, Δ𝜂/Δ𝑡, from the fit to 𝜂 (r𝑖,𝑡) over the 26 years. (The346

strong regionality of the temporal variability in 𝜂 (r𝑖,𝑡) can be seen in Xu and Fu (2012; reproduced347

in Wunsch and Heimbach, 2016), rendering complex the determination of the uncertainty of the348
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Fig. 4. (a) Periodogram estimates of 𝜂 (r, 𝑡) at points along 180◦W in the central Pacific Ocean and (b) the

global average of the 𝜂 (r,𝑡) periodograms showing the prominence of the annual peak. (A secondary peak

appears at 6 mos. period, but is being ignored.) (c) Periodograms without the annual cycle along 180◦W and

(d) the global average of all periodograms without annual cycles. First 10 periodogram frequencies are used to

determine 𝑑.

320

321

322

323

324

Fig. 5. Spatial average of the area-weighted value of 𝜂 (r,𝑡) for each of 26 years in the latitude range depicted

in Fig.6. An issue, not addressed here, is whether deviations from a straight line are significant.

325

326

slope, and which is taken up below.) A few regions of negative slope (falling sea level) are apparent.349

Cazenave and Moreira (2022) review previous estimates of sea level rise and report a global trend350

from 1992 to 2022 of 3.33± 0.33mm/y, where the uncertainty is intended as a 90% confidence351

interval (but see Lanzante, 2005; Ambaum, 2010). That Fig. 6 has more structure than Fig. 7 is an352

indication of the noisiness in any particular one-year average relative to that of the entirety of 𝑇𝐷 .353

(The W18 value was based solely upon the difference of the average in the first and last years, as a354

way of eliminating systematic errors in the state estimate.) Apart from the extreme positive values355
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Fig. 6. 𝜂 (r𝑖 , 𝑡) (in meters) averaged over year 26 minus the same average over year 1. Generally positive

values dominate. As argued in W18, this difference will tend to be insensitive to systematic errors, although each

averaged year (not shown) is noisier than the average over all 𝑇𝐷 . The spatial structure hints at the observational

sampling issues.

327

328

329

330

in the Arctic Seas (not shown), a few comparatively small regions, particularly in the Southern356

Ocean, appear to have declining sea level. Like the Arctic Seas, the immediate regions of the357

Antarctic continent are strongly affected by sea ice cover. Otherwise, a nearly uniform increase in358

sea level of about 1.5mm/y is seen over the bulk of the global ocean and its spatial simplicity, a359

contrast with most other oceanic fields, strongly suggests causation by externally imposed physics.360

If a best fit is made to the logarithms of the periodograms (Eq. 11) of 𝜂 (r, 𝑡) for the 10 frequencies361

lying between 1 cycle/26 years, and 1 cycle/2.6 years, the resulting value of 𝑑 can be seen in Fig.362

8. With the use of only 10 frequencies, the uncertainty in 𝑑 (r) is substantial. Emergence of large363

regions of nearly constant 𝑑 provides some reassurance as to the robustness of the result; that the364

variability in these regions is not independent must however, also be kept in mind.365

Much comparatively small spatial scale structure emerges, and perhaps calling for spatial366

smoothing—given that 𝑑 is only an estimate of the true value. This and other figures are left367

unsmoothed to give some impression of the noisiness even of a 26 year temporal average. Among368
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Fig. 7. Best fitting (ordinary least-squares) estimated linear trend, Δ𝜂 (r𝑖 , 𝑡) /Δ𝑡, of 𝜂 (r𝑖 , 𝑡) over 26 years

(M/Y). Arctic values are ignored here, as sea ice physics must be accounted for. Areal mean value is 1.6mm/y.

The open ocean 26-year trend is spatially much simpler then the trend computed from two individual years.

331

332

333

the striking features are the east-west change in sign across the North Atlantic. It appears that369

the eastern North Atlantic Ocean has reached a form of statistical equilibrium, while the western370

portion is still responding to forcings and adjustments on time-scales exceeding 𝑇𝐷 . Similarly the371

general values greater than 1/2 in the Southern Hemisphere imply non-stationarity and long physi-372

cal memory. The equatorial Pacific is notable for its negative values (blue and white noise) implying373

statistical equilibrium—perhaps best interpreted as owing to dominance there of the apparently374

stationary high frequency motions characteristic of that region. A simple, robust, inference is that375

the ocean circulation has a statistically very inhomogeneous behavior—an inference with direct376

consequences for the calculation of any global average properties, including means and trends,377

and a substantial area whose characteristics appear dependent upon conditions preceding the start378

of interval 𝑇𝐷 . More generally, the spatial inhomogeneity of sea level change is well-known (e.g.,379

Pugh and Woodworth, 2014), although much that has been documented lies in shallow and coastal380

waters—not well represented here.381
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Fig. 8. Estimated 𝑑 (r) for 𝜂 (r,𝑡) (dimensionless). Blue-green boundary corresponds to 𝑑 = 0, white noise

behavior near 𝑠 = 0. For 0 ≤ 𝑑 ≤ 1/2, the local process has long-autocovariance memory. For 𝑑 < 1/2 it is

stationary and for 𝑑 > 1/2 not stationary. White circles indicate positions of time series in Fig. 2 along 180◦W.

382

383

384

The east-west structure in the North Atlantic Ocean remains.

When the linear in time trend at each point (Fig. 7) is removed first, the result, 𝑑𝑁𝑆, is shown385

in Fig. 9 and which, as expected, differs from 𝑑. Rapid changes in sign occur across the386

equator in the Pacific, with the North Atlantic still showing an east-west shift between stationary387

and non-stationary areas. Apart from the Agulhas region, the Southern Ocean presents a very388

noisy set of values, at least qualitatively consistent with the intense structure there in all of the389

physical state elements (Wunsch, 2024, 2025). Whether 𝑑 or 𝑑𝑁𝑆 is employed, it is apparent that390

averages taken over the global ocean involve extended regions where the underlying statistics are391

either not stationary, or have a long-autocovariance memory. Averages in such regions are thus392

anticipated to produce values whose uncertainties are potentially much greater than those derived393

from conventional variance and confidence limit analyses.394

Standard Errors in 𝜂 (r𝑖, 𝑡)395

The spatial variations in the statistical behavior embedded in 𝜂 (r𝑖,𝑡), do not include the variations396

which would appear additionally if the full ARIMA and its uncertainties were determined at each397
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Fig. 9. Estimated 𝑑𝑁𝑆 for 𝜂 (r,𝑡) after a linear time trend is removed first.

position r𝑖 . Precisely how to best determine, in practice, the uncertainty in the average value of398

Δ𝜂/Δ𝑡 ≈ 𝜕𝜂 (r𝑖,𝑡) /𝜕𝑡 quoted above is not so clear.399

As a preliminary, plausible, approach, a bootstrap (Efron and Tibshirani, 1993) is applied to the400

vectors composed of values of Δ𝜂 (r𝑖,𝑡) /Δ𝑡 and the implied underlying probability density in Fig.401

3b, with the annual frequency energy first removed, replacing it with an interpolation from the two402

periodogram values immediately adjoining. In the restricted latitude band being analyzed here,403

estimated values of Δ𝜂 (r𝑖,𝑡) /Δ𝑡 for 16706 grid points are used with Δ𝑡 = 1month. An estimate is404

made for the average value of Δ𝜂 (r𝑖,𝑡) /Δ𝑡 for an ensemble of 5000 members randomly selected405

with replacement from the 1 ≤ 𝑖 ≤ 16706 grid points whose overall distribution can be seen in406

Fig. 3b. One finds a mean of 1.5mm/y with a bootstrap standard error (one standard deviation) of407

0.013mm/y, about 1/2 the Cazenave and Moreira (2022) direct estimate of the mean quoted above.408

Reconciling these conflicting estimates emphasizes again the need for a full understanding of409

the statistics of observations and of models. And recall the omission in the present calculation of410

the high latitude sea ice regions. The emphasis in this present paper is on the spatial patterns of411

change rather than the global averages and so no attempt is made here to parse the numerous physics412
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𝑑 Area Fraction (%) Δ𝜂 (r𝑖 ,𝑡 ) /Δ𝑡 𝜎̃

0 ≤ 𝑑 ≤ 1/2 43 1.7mm/y 0.02mm/y

𝑑 < 0 6 0.78mm/y 0.047mm/y

𝑑 > 1/2 50 0.78mm/y 0.017mm/y

All 100 1.5mm/y 0.013mm/y

Table 2. Estimated sea level rate of change and its standard error for selected ranges of 𝑑
.

elements and corresponding errors making up global spatial integrals computed from varying data413

sets and models.414

In the context of understanding the 26-year state estimate, an interesting question is whether the415

regions of differing ranges of 𝑑 produce different rates of change? Partial results can be seen in416

Table 2 and which suggests variations with 𝑑 of about a factor of 2.417

At each r𝑖, the time series of trends Δ𝜂 (r𝑖,𝑡) /Δ𝑡 are themselves inferred from the local time418

variability and thus their trends have their own uncertainty computable from an ARIMA regression419

against t. An analytic estimate of that uncertainty is apparently available only for regression in 𝑡420

for the special case 0 < 𝑑 < 1/2 (Yajima, 1988; Beran, 1994, P. 176). A bootstrap estimate could421

be applied to each of them with the resulting uncertainty being employed in a correspondingly422

weighted spatial average. In practice, application of a bootstrap to a time series necessitates use of423

a block method (e.g., Mudelsee, 2010) and involves a more intricate set of calculations, including424

the determination of appropriate block sizes, and is not dealt with here. One might thus interpret425

the standard errors here, 𝜎̃, as being lower bounds.426

Because the values of Δ𝜂 (r𝑖, 𝑡) /Δ𝑡 in Fig. 7 are comparatively uniform, an alternative to the427

above analysis treats the spatial average of Δ𝜂 (r𝑖, 𝑡) /Δ𝑡 as an externally imposed deterministic428

forcing and using 𝑑𝑁𝑆 . Despite the comparative uniformity of Δ𝜂 (r𝑖, 𝑡) /Δ𝑡, making the case that429

its value is determined by a spatially uniform forcing is not so easy—given the collection of430

external influences on sea level, including atmospheric heating and load, wind forcing, glacial and431

landwater inputs, gravity changes, etc. and the ability of the ocean to transport properties over long432

distances. The issue is left at this point.433
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4. Abyssal Heat Uptake434

Along with sea level change, wide interest lies in determining the rate at which heat is being435

absorbed by the ocean—as part of the physics of global warming. Liang et al. (2017) described436

the patterns and physical mechanisms of oceanic heat transport in an earlier ECCO release (v4r1),437

with many useful references, particularly as they relate to regional changes and they emphasized438

the need for global analyses. The physics of changes in the distribution of oceanic heat content are,439

as compared to the surface elevation in a quasi-geostrophic balance, far more diverse and complex.440

Assumptions such as a quasi-linear physics are more difficult to support.441

Here, the goal is restricted to making an illustrative estimate of the patterns and rates of the442

global change in oceanic heat content, along with an illustrative estimate of its accuracy. Initially443

the calculation is restricted to the abyssal ocean, defined as that lying below 2000m (approximately444

1/2 the ocean volume) and with estimated heat content in J m3 most simply defined as,445

𝑄𝑎 (r, 𝑡) = 𝜌0𝑐𝑝Δ𝐴 (r)
∫ −2000

−ℎ(r)
𝜃 (r, 𝑧, 𝑡) 𝑑𝑧 (15)

where 𝜃 is potential temperature, Δ𝐴 is the area represented by any particular grid point,446

𝜌0 = 1038kg/m3, 𝑐𝑝 = 3994J/ kg/◦C. An estimate from a previous state estimate can be found447

in Wunsch and Heimbach (2014) and which includes discussion of the substantial observational448

issues. (Some published estimates of heat content are computed for the amount lying below an449

isopycnal. That compounds the uncertainty calculation problem by introducing another computed,450

partially stochastic, field—the isopycnal depth—into the upper integration limit in Eq. (15).)451

The analysis generally follows that laid out above for 𝜂 (r,𝑡) . A histogram of all abyssal heat452

content values at all times is in Fig. 10, and is evidently non-Gaussian. The time average of453

𝑄𝑎 (r, 𝑡) can be seen in Fig. 11 with the relative warmth of the North Atlantic Ocean corresponding454

to its excess salinity. Time series of values in the Pacific and Atlantic along two fixed longitudes455

are displayed in Fig. 12. Changes relative to the time means are evidently very subtle, and their456

determination is part of the observational challenge in the presence of topography. A surprising457

amount of annual cycle energy persists at these depths almost everywhere, but is particularly458

pronounced in the equatorial Pacific and Indian Oceans (not shown). Any quasi-barotropic or459
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Fig. 10. (a) Abyssal heat content value distribution, all positions and all times. A unimodal description is

evidently very approximate. (b) Estimated value 𝑑 for abyssal heat content; not area weighted. (c) Distribution

of values of Δ𝑄𝑎 (r𝑖 , 𝑡) /Δ𝑡 and which is unimodal but skewed toward positive values. Used for the bootstrap

sampling.

471

472

473

474

low vertical mode annual variability induced in the flow field will, in the presence of topography,460

generate an annual thermal signal at depth along with other abyssal noise processes.461

The ordinary least-squares temporal trends of 𝑄𝑎 (r, 𝑡) are mapped in Fig. 13 and which462

correspond coarsely to previous published descriptions—with the Southern Ocean abyss showing463

distinct warming, the bulk of the Pacific Ocean as cooling, and the Atlantic has a small region of464

decline embedded in a small overall increase. More structure exists as compared to the Δ𝜂 (r𝑖,𝑡) /Δ𝑡465

discussed above—consistent with the greater variety of physical processes controlling oceanic466

temperatures.467

𝑑 is mapped in Fig. 14. With no trend in time removed from 𝑄𝑎, the abyssal heat content change468

is an amalgam of primarily non-stationary processes, with a very small area of long and short469

memory processes. Correspondence to the trends in Fig. 13 is not obvious.470

Fig. 15 show the corresponding estimated values of 𝑑𝑁𝑆. Again the intense small scale structures492

are the dominant feature and they have a striking resemblance to 𝑑 in the Atlantic Ocean, consistently493

between approximate latitudes 42◦N and 15◦S in being non-stationary, becoming stationary west494

and south of Cape Agulhas. Nonetheless, in contrast, the tropical Pacific Ocean shifts from being495

non-stationary, to having negative values of 𝑑𝑁𝑆 . One interpretation is that the apparent cooling in496

that region is the result of external forcing (e.g., the Little Ice Age; See Gebbie and Huybers, 2019),497
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Fig. 11. Estimated time average heat content below 2000m. 𝑄𝑎 (𝑥, 𝑦)/1010 J/m2 . Shallower regions necessarily

have less resident heat content than do deep ones. The Atlantic Ocean is strikingly warmer than the rest of the

world ocean.

475

476

477

Fig. 12. (left) Time series of abyssal heat content along 180◦W in the Pacific Ocean. A very small cooling—

relative to the time-mean values—is visible in some places. Values are Joules/m2. (right) 𝑄𝑎 (r𝑖 ,𝑡) at positions

along 30◦W in the Atlantic Ocean.
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479

480

with the underlying variability being dominated by high frequencies, consistent with 𝑑𝑁𝑆 < 0. A498

similar change is apparent in the eastern Indian Ocean.499
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Fig. 13. Linear rate of change of the estimated abyssal heat content, Δ𝑄𝑎/Δ𝑡 (J/m2yr). Most notable is the

cooling in the North Pacific and Indian Oceans, with net heating in the Southern Ocean and South Atlantic. The

cooling is consistent with e.g., Gebbie and Huybers (2019) inferences concerning the ongoing role of the Little

Ice Age cooling and the very long adjustment time-scales found by Wunsch and Heimbach (2008). Compare to

Fig. 2 of Zanna et al. (2019) or Fig. 2 of Johnson and Purkey (2024). 107J/m2/y=0.32J/m2/s=0.32W/m2.
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The high latitude North Atlantic Ocean has very similar properties of 𝑑, 𝑑𝑁𝑆, with much of500

the sub-polar gyre being consistent with long-autocovariance memory. A similar range of values501

appears in the southern regions of the South Pacific Ocean.502

A priori removal of a time trend from 𝑄𝑎 is much less compelling that it is for 𝜂 (r, 𝑡) because the503

the abyss is not in direct contact with the external atmospheric and radiation forcing: the physics504

processes leading to a change in heat content at depth are varied and only very indirectly depend505

upon surface boundary values.506

Nonetheless, in contrast, when the linear trend of Fig. 13 is removed from the heat content time507

series, one perceives a distinct difference between the bulk of the Pacific Ocean and the Atlantic508

Ocean, with the former being dominated by stable and long-autocovariance memory processes.509

Much of the Atlantic Ocean remains non-stationary, with regions of intense energy growth with510

diminishing frequency.511
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Fig. 14. Estimated exponent 𝑑 (r) for behavior of the 𝑄𝑎 (r,𝑡) periodogram 𝑃 → 𝑠−2𝑑 as 𝑠 → 0. Small areas

of 0 ≤ 𝑑 ≤ 1/2 are indicators of long-autocovariance memory and larger values are non-stationary.

486

487

𝑑 Area Fraction (%) Δ𝑄𝑎 (r𝑖 ,𝑡 ) /Δ𝑡 𝜎̃

0 ≤ 𝑑 ≤ 1/2 5 9.2×105 2.7×105

𝑑 < 0 0.4 1.3×106 5.6×105

𝑑 > 1/2 96 5.4×106 1.6×104

All 100 5.2×106J/m2y 1.5×105J/m22 y

Table 3. Estimated heat content rate of change and its standard error for selected ranges of 𝑑

The histogram of values of 𝑑𝑁𝑆 can be seen in Fig. 10. The great bulk of the values of 𝑑𝑁𝑆 lie512

between 0 and 2. About 4% of the ocean area corresponds to regions with 𝑑𝑁𝑆 < 0, where energy513

decreases with frequency at the low end. The spatial average time series, weighted by area, is514

shown in Fig. 16. Most of the heat content lies in the non-stationary areas (𝑑𝑁𝑆 ≥ 1/2).515

Reference to Table 4 shows that the estimated heat uptake over the full water column is approxi-516

mately twice that for the abyss alone, with approximately twice the uncertainty. Almost all of it lies517

in the non-stationary regions. Fig.16 displays the spatial time average of 𝑄𝑎 (𝑡) in three different518

regions of 𝑑𝑁𝑆.519

Topographic Issues524
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Fig. 15. 𝑑𝑁𝑆 with a linear trend attributed to external causes and removed before calculation. North Atlantic,

its tropical regions, and much of the Southern Ocean are non-stationary and visibly different in character than than

elsewhere. The tropical Pacific and Indian Oceans are here dominated by stationary short-memory processes,

presumably including the comparatively short-lived ENSO responses.
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Fig. 16. (a) Areal average time series of heat content change 𝑄𝑎 when 𝑑𝑁𝑆 ≤ 0 corresponding to “blue

noise” and visually unremarkable. (b) Space-average of area weighted region of 0 < 𝑑𝑁𝑆 ≤ 1/2 corresponding to

long-autocovariance memory. (c) Spatial average of heat content where 1/2 < 𝑑𝑁𝑆 . An annual cycle component

of varying magnitude is visible in all three regions. Vertical dashed lines indicate years of El Nino occurrence.
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The spatial complexity of 𝑑, 𝑑𝑁𝑆 that emerges is at least in part a consequence of the very525

complicated bottom topography of the global ocean. A claim that the model adequately resolves526
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the true bottom topography is difficult to sustain (deep layers in the ECCO(v4r4) version of the527

MITgcm have thicknesses of 400m, and a spatial resolution of order 1◦ does not adequately528

represent the details (GEBCO Compilation Group, 2024) of the known topography). Questions529

have even been raised about the accuracy with which the average ocean depth has been determined530

(Charette and Smith, 2010) although progress has been made since then using more recent satellite531

data. Related questions remain about the adequacy existing sampling of temperature in the deep532

ocean.533

Totals and Bootstrap Uncertainties534

The bootstrap is now applied to the abyssal heat content trends, using the different regimes of 𝑑535

(see Table 3). 𝑑𝑁𝑆 is not used because the relationship between the external surface exchanges536

and the heat content at any abyssal point is extremely indirect. The table shows a net average537

heating rate of 5.2×106J/m2y or (5.2×106)/3.15× 107 = 0.17W/m2 with a one standard error of538

0.005W/m2. Zanna et al. (2019) estimated the heat uptake in the early 2000s below 2000m539

as 0.06±0.04W/m2. In terms of area-integrated heat uptake the present estimate corresponds540

to about 20± 0.7TW compared to values estimated by Johnson and Purkey (2024) from Argo541

float and ship-based measurements, for a total of 36± 19TW (with the same issues concerning542

uncertainty estimates). Wunsch and Ferrari (2004) used an estimated total energy in the ocean543

circulation of 20YJ (2×1025J) and so the rates of change are numerically minuscule—as would be544

deduced from Fig. 12 —an issue for both observation and modeling. The different values and545

uncertainties in these (and other) estimates rely on different sources of information and statistical546

assumptions. Present values are not claimed to be “correct”, but merely a best estimate from the547

present information and assumptions.548

5. Total Water Column Heat549

Turning now to the total water column heat content, which includes the abyssal values as a550

subset, numerical values of 𝑄 𝑓 (r𝑖, 𝑡) are dominated by the upper ocean. The observational base551

in approximately the upper 1000m is, although still spatially sparse compared to the highly active552

eddy and internal wave fields, nonetheless far improved over that available for the deep ocean. The553

procedures being the same as already used above, only an abbreviated discussion is provided.554
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Fig. 17. Distribution of elements of heat content, 𝑄 𝑓 in the full water column. Heat content in many locations

is small, but none actually vanishes (noting again that negative temperatures in 𝑜C produce apparent negative

heat content.

555

556

557

Fig. 18. Total heat content at various latitudes through time along 30◦W in the Atlantic. Note the annual cycle

and its reversal in sign across the equator.

558

559

𝑑 Area Fraction (%) Δ𝑄 𝑓 (r𝑖 ,𝑡 ) /Δ𝑡 𝜎̃

0 ≤ 𝑑 ≤ 1/2 36 1.1×107 3.1×105

𝑑 < 0 8 4.1×106 4.5×105

𝑑 > 1/2 59 3.5×107 4.1×105

All 100 2.6×107J/m2y 2.9×105J/m2y

Table 4. Estimated rate of change of full column heat content and its standard error for selected ranges of 𝑑

The distribution of heat content values can be seen in Fig. 17, and representative time series in560

Fig. 18. As expected, a strong annual cycle is visible, one reversing in sign across the equator.561

Calculations were done after suppressing the annual spectral energy. Fig. 19 maps the values of562

the linear time trend and showing the complexity in the northern North Atlantic and the general563

cooling over much of the Pacific Ocean.564

Figs. 20, 21 show 𝑑, 𝑑𝑁𝑆 for 𝑄 𝑓 . As compared to the abyssal results, the two charts are quite573

similar, with the tropical Pacific Ocean being a region of blue noise. The gross similarity is574
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Fig. 19. Estimated linear in time trend, Δ𝑄 𝑓 /Δ𝑡, for the entire water column. Complex structures in the high

latitude North Atlantic Ocean are notable.

565

566

consistent with the hypothesis that the external forced, disequilibrium heating is a weak element of575

the fluctuations present in 𝑄 𝑓 .576

Table 4 shows the calculated global average heating for the total and by value of 𝑑. The global577

average total 0.83±0.01𝑊/𝑚2, the uncertainty from the bootstrap. Because of the many elements578

involved in computing air-sea heat transfers, including initial conditions, and with the focus here579

on spatial patterns, direct comparison to other estimates is left to von Schukmann et al. (2023) and580

the numerous references there.581

6. Discussion582

From a 26-year ocean general circulation state estimate, monthly variability of surface elevation583

𝜂 (r,𝑡) , abyssal (below 2000m) heat content, 𝑄𝑎 (r,𝑡) and total water column heat content, 𝑄 𝑓 (r, 𝑡)584

are seen to have a statistical structure which has a strong regional dependence. Forming simple585

spatial averages of e.g., estimated 𝑑𝑄/𝑑𝑡, to determine trends, may produce values which are586

strongly biassed or far more uncertain than inferred from conventional estimates.587

This paper attempts to confront the spatial inhomogeneity of the time-evolving oceanic struc-588

tures and to make some estimates of heat uptake and sea level rise and their uncertainties. The589
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Fig. 20. 𝑑 for the total water column heat content. The South Atlantic and South Pacific Oceans differ

significantly with the former having non-stationary behavior (long-physical memory) with the latter having

regions of short autocovariance behavior and blue noise.

567

568

569

statistical structures are embedded in the formalism of autoregressive integrated moving average590

(ARIMA(𝑝, 𝑑, 𝑞)) structures, with a focus on the temporal differencing parameter 𝑑. That depen-591

dence is determined from analyses of the lowest available frequencies. These differing regions592

are inferred to be dependent upon varying contributions from both internal adjustment time-scales593

(e.g., large-scale baroclinic disturbance propagation) and externally imposed forces (e.g., forced594

global warming elements). A definitive separation between these two sources cannot be made,595

and thus two different renderings of the long time-scale behaviors are made, one assuming that all596

the variability is internal to the system, and second assuming a linear dependence upon externally597

imposed global warming forcing. The most robust conclusion for the heat content is that while the598

global warming signature is visible over much of the ocean, many other parts are responding with599

long-physical memory to disturbances in the distant past, or to propagation from distant regions.600

For sea level change in particular, where the observations are most direct and dense, the inference601
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Fig. 21. 𝑑𝑁𝑆 for the full water column heat content. Now the South Atlantic and South Pacific Oceans have

more similar values as long autocovariance memory regions, as well as significant areas of ordinary ARMA

processes (𝑑 ≤ 0).

570

571

572

here is consistent with the earlier results of Xu and Fu (2012), Dangendorf et al. (2014) and many602

others—showing strong global variations in time-integral measures of frequency content.603

For some ranges of values 𝑑, statistical theory suggests that the formal uncertainty (or confidence604

limits) of a mean or trend can be considerably greater than values computed by conventional605

means. Here, some estimates appear to be better determined than previously published values.606

That behavior can be explained as owing to the confinement of the estimates to the period post-1992607

of quasi-global data; the use simultaneously of a wide variety of data (e.g., Argo and elephant seal608

profiles, altimetric measurements, gravity disturbances, moored instrument velocities, etc.); and609

the information content of the Navier-Stokes equations in their model approximation, but these610

values are offered only as interim estimates pending improved understanding of the structure of the611

data and model.612

That the ocean contains, even after multi-decadal averaging, a spatially complicated variation in613

local physics is no surprise. The extent to which those regions have shifted over very long periods614

is unknown, and in general, the relationship between a modern temporal average of duration 𝑇𝐷615

and one from a hypothetical much longer duration also remains unknown. What is clear is that616
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the spatially varying physics (see for example,Hughes and Williams (2010), Xu and Fu, 2012, or617

Sonnewald et al., 2019) introduces a serious inhomogeneity into calculations of global averages.618

That difficulty exists, in addition, to questions about adequate observational sampling, particularly619

in the presence of the complex shape of the sea floor and land-ocean boundaries. An accurate620

estimate of the uncertainty of global mean sea level or heat or their trends evidently requires621

a complex weighting of the values at each grid point and including careful consideration of the622

non-Gaussian distributions. Discussions of global climate change must, apparently, consider major623

regional differences in the physics and chemistry of ocean-atmospheric interactions (among others).624

The results strongly support the implication that ocean/atmosphere climate understanding requires625

both (A) global coverage; (B) strong regional distinctions.626

Among the many further applications of the statistical machinery in this paper that have not been627

pursued, are the ability to do predictions with skill, depending upon the ARIMA structure. For628

sea level, 𝜂 (r,𝑡) , predictions in specific areas are of intense practical interest—albeit the skill will629

depend upon the particular parameters 𝑑, 𝑝, 𝑞 and is also an application where the multivariable630

forms of the ARIMA could prove highly useful in particular regions. That the ocean retains a631

strong regionality in physical properties, likely with arbitrarily extended durations, implies that632

the physics of climate via air-sea interactions is unlikely in many cases to have dominant global633

average properties, and must be analyzed dynamical/kinematic region by region.634

Values of 𝑑 or of the Hurst parameter, 𝐻, determine the behavior of various statistical estimates635

that can be applied to state estimate output, most notably means and trends. Results here are best636

regarded as a set of maps of the behavior of the frequency spectra as the frequency, 𝑠, approaches637

zero. Various regions are those of apparently stationary and non-stationary, of long-autocovariance638

memory, and of short-memory behavior. Regional prediction has to account for these qualitative639

changes in statistical structure.640
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APPENDIX648

Statistical Framework: ARMA, ARIMA, Wavenumbers649

As described in a number of textbooks (e.g.,Priestley, 1982; Brockwell and Davis,1991; Box650

et al., 2008) the general machinery of ARMA (autoregressive moving average) and ARIMA651

(autoregressive integrated moving average) processes provides a useful framework for discussion652

of many linear time series. Consider the ARMA representation and its AR (autoregressive) and653

moving average (MA) subsets. Let a time series, 𝜉 (r, 𝑡), be measured or inferred at discrete time654

intervals Δ𝑡 = 1, at position r and let 𝐵 denote a backwards in time operator:655

𝐵𝜉 (r, 𝑡) = 𝜉 (r, 𝑡 −1) (A1)

Then if 𝜉 (r, 𝑡) is a stationary linear process, it can be described accurately in the ARMA(𝑝, 𝑞)656

form of Eq. (4), which when written out is,657

𝜉 (r, 𝑡) −𝜙1𝜉 (r, 𝑡 −1) −𝜙2𝜉 (r, 𝑡 −2) −𝜙3𝜉 (r, 𝑡 −3) ...−𝜙𝑝𝜉 (r, 𝑡 − 𝑝) = (A2)

𝜀 (r, 𝑡) −𝜓1𝜀 (r, 𝑡 −1) −𝜓2𝜀 (r, 𝑡 −2) − ...−𝜓𝑞𝜀 (r, 𝑡 − 𝑞) , Δ𝑡 = 1 (A3)

𝜀 (𝑡) is commonly a white noise (uncorrelated) random process. The coefficient polynomials are658

generally expected to be well-behaved (in particular, to be of finite length). As the textbooks659

explain, for stationary time series the polynomials are “invertible” (stable), so that e.g., one can660

convert between AR, MA, and ARMA forms, e.g.,661

𝜉 (r, 𝑡) = 𝜙 (𝐵)−1𝜓 (𝐵) 𝜀 (r, 𝑡) , (A4)

the MA, requiring that in the complex 𝑧 plane, 𝜙 (𝐵 = 𝑧) polynomial should have no zeros on662

the unit circle |𝑧 | = 1, for 𝑧 = exp (−2𝜋𝑖𝑠) where 𝑠 is the angular frequency. If the polynomials663

are suitably behaved, 𝜉 (r, 𝑡) are also then stationary (in the statistical sense). The polynomials664

can extend to infinite order, but generally diminish so rapidly they can be truncated with little665
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Fig. A1. Semi-log plots of the spectral dependence upon parameter 𝑑 and used to determine the behavior of

the various time series as frequency 𝑠 → 0. These curves are all straight lines on a log-log plot and 𝑑 is derived

from the best-fitting straight line.

670

671

672

Fig. A2. Time series for 𝑎1 = 0.9 and its multitaper spectra using both 1024 and 256 points (panels (a),(c)).

(a) might lead one to assert the presence of a trend, but the variability is purely that of a random accumulation of

the AR(1). (b), (d) show the periodograms 𝑂, as well as the spectra (solid line). Dashed line are 𝑠−2 reference

curves.

673

674

675

676

loss in accuracy (or prediction skill). Depending upon the particular situation, 𝜉 (r, 𝑡) may be666

thought of as extending backwards in time to 𝑡 = −∞, or having started at 𝑡 = 0 with known values667

𝜉 (r,0) , 𝜉 (r,−1) ,..., sufficient to compute 𝜉 (r, 𝑡) , 𝑡 > 0. Strict stationarity is then lost for 𝑡 > 0,668

until such time as memory of the starting values is (possibly) lost.669

Let Eq. (5) be the Fourier transform of 𝜉 (r, 𝑡) , starting at 𝑡 = 0 and extending to 𝑁 observations677

(and is a polynomial in 𝑧, the 𝑧-transform). Then the periodogram is defined in Eq. (6). The678
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power density, Φ (r,𝑠𝑛) is then a smoothed version of 𝑃 (r,𝑠𝑛) , computed so as to reduce the679

variance of the elements of 𝑃 (𝑠𝑛) . The periodogram of the ARMA(𝑝, 𝑞) becomes (Eq. (7) for680

fixed r Brockwell and Davis (1991, P. 377). For present purposes, the important point is the681

assumption that 𝑃 (r,𝑠𝑛) is a well-behaved, smooth, finite function as 𝑠𝑛 → 0. Generally speaking,682

frequency domain analyses are more readily physically interpretable than equivalent ones based on683

autocovariances. 𝑑 is then estimated from the slope in log frequency of the log periodogram as the684

period approaches the record length (See Fig. A1). Fig. A2 displays the time series of a simple685

AR(1), 𝑎1 = 0.9 and the behavior of both the periodograms and power density spectra at the lowest686

frequencies for two different durations. The short duration time series in panel (c) might give the687

impression of a temporal trend, but it is merely the random fluctuation near the start of the longer688

series.689

The number of terms in the polynomials, 𝑝, 𝑞 determine how far back into the past 𝜉 (r, 𝑡) will690

depend upon its own previous values (determined by the autocorrelation or autocovariance) and/or691

earlier disturbances 𝜀 (r, 𝑡) . For stable polynomials, it can be confirmed that the corresponding692

autocovariance, 𝜑𝜉𝜉 (r, 𝑡) , goes to zero at finite lags. Statistical stationarity requires that at 𝑠 = 0,693

the periodogram of 𝜉 (r, 𝑡) , as derived from Eq. (4) or equivalent, is finite.694

The literature cited shows that for a non-stationary 𝜉 (r, 𝑡), a stationary representation can695

often be obtained by taking temporal differences: for example, sometimes for non-stationary696

𝜉 (r, 𝑡) , 𝑤(r,𝑡) = (1−𝐵)𝑑 𝜉 (r, 𝑡) is a process of “stationary increments.” See the main text for697

discussion. Once 𝑑, and hence 𝑤 (r,𝑡) , are found, an ARMA is fit to the resulting stationary time698

series and which becomes an ARIMA(𝑝, 𝑑, 𝑞) as,699

𝜙 (𝐵) ∇𝑑𝜉 (r, 𝑡) = 𝜓 (𝐵) 𝜀 (r, 𝑡) , (A5)

or its various rearrangements (that is, the stationary difference series is an ARMA). In much use of700

this form, 𝑑 is a small positive integer, and the series in Eq. (9) has only a finite number of terms.701

But it is also useful to permit it to have an arbitrary, non-integer, value (Granger, 1980, Brockwell702

and Davis (1991, P. 520+, Beran 1994).703
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The inverse polynomial, for finding 𝜉 from the stationary ∇𝑑𝜉 (r, 𝑡) is, for any finite 𝑑,704

∇−1
𝑑 = (1−𝐵)−𝑑 (A6)

= 1− 𝑑𝐵+ 𝑑 (𝑑 −1)𝐵2/2!− 𝑑 (𝑑 −1) (𝑑 −2) 𝐵3/3!+ ....

=

∞∑︁
𝑘=0

Γ (𝑘 − 𝑑)
Γ (𝑘 +1) Γ (−𝑑) 𝐵

𝑘 .

and which by using 𝜙 (𝐵)−1∇−1
𝑑

permits statistical reconstruction of the original time series 𝜉 (r, 𝑡)705

(not done in this paper). For integer 𝑑 > 0, the series in Eq. (A6) extends to infinity—implying706

that the infinite past of 𝜉 (r,𝑡) is remembered at any time 𝑡, unless a given start time value, at 𝑡 = 0707

is known, with 𝜉 (r,𝑡) = 0, 𝑡 < 0, producing a non-stationary starting transient. The possibility of708

non-integer 𝑑, leading to “fractionally integrated processes,” proves useful. For integer 𝑑 ≥ 1, Box709

et al. (2008) provide an extensive discussion of representations dependent upon 𝑝, 𝑞 as well as710

𝑑—that is including non-stationary processes.711

Simple Autoregression.712

To have some further context, consider the simplest autoregressive (AR) process of order 1,713

𝜉 (𝑡) = 𝑎1𝜉 (𝑡 −Δ𝑡) + 𝜀 (𝑡) , 𝑡 = 1,2, ...,Δ𝑡 = 1, (A7)

where 𝜀 (𝑡) is zero-mean Gaussian white noise. Numerous textbooks (e.g., Box et al., 2008)714

discuss the properties of such series at great length, including methods for best-estimating 𝑎1,𝜀 (𝑡) .715

(If 𝑎1 = 1, 𝜉 (𝑡) is a random walk; values greater than 1 change the behavior qualitatively leading716

to “explosive” time series.) Then taking the discrete Fourier transform,717

𝜉 (𝑠𝑛) = 𝑎1𝜉 (𝑠𝑛) exp (−2𝜋𝑖𝑠𝑛) + 𝜀 (𝑠𝑛) , 𝑠𝑛 ≤
1
2

(A8)

or718

𝜉 (𝑠𝑛)
(
1− 𝑎1𝑒

−2𝜋𝑖𝑠𝑛
)
= 𝜀 (𝑠𝑛) (A9)
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or719 ��𝜉 (𝑠𝑛)��2 = |𝜀 (𝑠𝑛) |2��1− 𝑎1𝑒−2𝜋𝑖𝑠𝑛
��2 =

|𝜀 (𝑠𝑛) |2

1+ 𝑎2
1 −2𝑎1 cos (2𝜋𝑠𝑛)

(A10)

is the periodogram and 𝑠𝑛 the Fourier series frequencies. Taking the expected value on both sides,720

the power spectrum is,721

Φ (𝑠𝑛) =
𝜎2
𝜀

1+ 𝑎2
1 −2𝑎1 cos (2𝜋𝑠𝑛)

. (A11)

Fig. A2 shows realizations of 1024 and 256 points (a), (c) for one choice of 𝜀 (𝑡) and the722

periodograms and the spectral density for 𝑎1 = 0.9, and two durations (again, Δ𝑡 = 1), the peri-723

odograms (b), (d) and spectra show a steep decline as, roughly 𝑠−2, for high frequencies (dashed724

line), becoming near white noise as 𝑠→ 0.725

As 𝑎1− > 1, it is easily seen from Eq. (A11) that Φ (𝑠𝑛) becomes very large and deducing726

that the time series is that of an AR(1), rather than an ARIMA with 𝑑 = 1, is an example of the727

modelling ambiguity that underlies this entire subject. Textbooks emphasize the importance of728

visual inspection of records and the importance of physical insight, where available, in resolving729

the corresponding ambiguity.730

Wavenumber Statistics731

Existence of continental margins and the limitations to a sphere means that the wavenumber732

spectrum of spatial samples is necessarily non-stationary; but is also not dependent upon any733

wavelength greater than the longest space scale present in the oceans, probably one of order734

10,000km Thus it is not a long memory process in either sense in the purely spatial domain735

and more conventional statistical estimates apply, albeit the underlying process is not stationary.736

Structures on a sphere require special handling. Goff and Jordan (1988) and others have produced737

regionally useful wavenumber spectra, and see Radko (2023) for discussion of the physical effects738

of topography in the spatial domain.739
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