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ABSTRACT

We use the method of least squares with Lagrangemultipliers to fit an ocean general circulationmodel to the

Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) estimate of near sea

surface temperature (NSST) at the Last Glacial Maximum (LGM; circa 23–19 thousand years ago). Compared

to a modern simulation, the resulting global, last-glacial ocean state estimate, which fits the MARGO data

within uncertainties in a free-running coupled ocean–sea ice simulation, has global-mean NSSTs that are 28C
lower and greater sea ice extent in all seasons in both the Northern and SouthernHemispheres. Increased brine

rejection by sea ice formation in the Southern Ocean contributes to a stronger abyssal stratification set prin-

cipally by salinity, qualitatively consistent with pore fluid measurements. The upper cell of the glacial Atlantic

overturning circulation is deeper and stronger. Dye release experiments show similar distributions of Southern

Ocean source waters in the glacial and modern western Atlantic, suggesting that LGM NSST data do not

require a major reorganization of abyssal water masses. Outstanding challenges in reconstructing LGM ocean

conditions include reducing effects frommodel biases and finding computationally efficient ways to incorporate

abyssal tracers in global circulation inversions. Progress will be aided by the development of coupled ocean–

atmosphere–ice inversemodels, by improving high-latitudemodel processes that connect the upper and abyssal

oceans, and by the collection of additional paleoclimate observations.

1. Introduction

Disagreements among general circulation model

(GCM) representations of the Last Glacial Maximum

[LGM; circa 23–19 thousand years ago (ka); Mix et al.

(2001)] and between models and LGM paleoceano-

graphic data (Braconnot et al. 2007; Otto-Bliesner et al.

2009; Tao et al. 2013; Dail and Wunsch 2014, hereafter

DW14) illustrate a gap in our knowledge of Earth’s

climate during that time period. Here we present a

global ocean state estimate at the LGM, a dynamically

consistent fit of an ocean general circulation model

(OGCM) to surface ocean temperature proxies achieved
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by adjusting model initial conditions, boundary condi-

tions, and turbulent transport parameters. This work

builds on a growing body of literature combining dy-

namical models with proxy observations in order to in-

terpolate between LGM observations (e.g., Winguth

et al. 2013; Kurahashi-Nakamura et al. 2014; DW14;

Kurahashi-Nakamura et al. 2017, hereafter KN17).

Several factors motivate studying the climate of the

LGM. First, geologic evidence suggests that LGM con-

ditions were a persistent and dramatic excursion from

the present-day climate, with large ice sheets in the

Northern Hemisphere, lower sea levels, and a global-

mean surface air temperature reduction of several de-

grees Celsius (Clark et al. 2012). Second, radiocarbon

dating allows measurements to be reliably placed within

the LGM time frame. Finally, the LGM is a useful pe-

riod to study the ocean’s role in regulating atmospheric

carbon dioxide concentrations, with implications for

understanding modern climate change (Sarmiento and

Toggweiler 1984; Siegenthaler and Wenk 1984; Brovkin

et al. 2007; Shakun et al. 2012), including the sensitivity

of climate to atmospheric greenhouse gas concentra-

tions (Schmittner et al. 2011; Hargreaves et al. 2012).

The Multiproxy Approach for the Reconstruction of

the Glacial Ocean Surface (MARGO) compilation of

LGM surface ocean temperature estimates (Waelbroeck

et al. 2009) extends the previous work of Glacial Atlantic

Ocean Mapping (GLAMAP; Pflaumann et al. 2003) and

Climate: Long-range Investigation, Mapping, and Pre-

diction (CLIMAP; McIntyre et al. 1976) by including

more observations from a wider range of temperature

proxies.We refer to these data as representing ‘‘near’’ sea

surface temperature (NSST) in recognition of the various

depth ranges inhabited by organisms used for tempera-

ture reconstructions.

Numerous studies have used the MARGO database

as a basis for comparison with numerical models, often

showing qualitative disagreements on regional scales.

Simulations from the Paleoclimate Modelling Inter-

comparison Projects (PMIP1, PMIP2, and PMIP3) used

LGM boundary conditions, including global sea level,

orography, greenhouse gases, and Earth’s orbital pa-

rameters (Braconnot et al. 2007), in climate models of

varying complexity. Hargreaves et al. (2011) found that

the intermodel spread of simulated NSSTs in PMIP1

and PMIP2 did not disagree with MARGO data within

its uncertainty. However, DW14 found that, when

considered individually, five PMIP2 simulations fit

MARGO data poorly in the North Atlantic. In the

tropical oceans, Otto-Bliesner et al. (2009) found that

PMIP2models had a similar range of global-meanNSST

decrease to that estimated by MARGO and larger

cooling in the Atlantic than in the Pacific, also in

agreement with the observations, but that zonal gradi-

ents of LGM cooling in tropical Pacific near-surface

waters were less pronounced than in MARGO. Model

ensemble averages reported by Braconnot et al. (2007)

and individual model results from Tao et al. (2013) show

North Atlantic cooling patterns with a zonal gradient

opposite that seen in the data. Data errors contributing

to these disagreements could arise from chronological

errors, seasonal biases, and biological effects, to name a

few. Model errors include incorrectly specified initial

and boundary conditions, errors in numerical solution

methods, missing physics, and inaccurate parameteri-

zations of unresolved phenomena (e.g., ocean eddies

and clouds).

The Atlantic abyssal circulation may have played an

important role in maintaining a climate at the LGM that

was different from the modern through its role in

transporting and storing heat, biological nutrients, and

carbon. For instance, one interpretation of paleo-

ceanographic data from the Atlantic is that during the

LGM, deep water originating from the North Atlantic

shoaled and bottom water from the Southern Ocean

filled more of the abyss (e.g., Curry et al. 1988; Duplessy

et al. 1988; Marchitto et al. 2002; Curry and Oppo 2005;

Marchitto and Broecker 2006; Lynch-Stieglitz et al.

2007), possibly coincident with a weakening and shoal-

ing of the upper cell of the Atlantic meridional over-

turning circulation (AMOC). This scenario is simulated

in some climate models, but not all. While PMIP2

LGM experiments showed a broad range of strengths

and depths of the upper and lower cells of the AMOC

(Otto-Bliesner et al. 2007), nearly all PMIP3 simulations

show deeper and stronger upper-cell AMOC transport

at the LGM relative to modern simulations (Muglia and

Schmittner 2015). By contrast, simplified ocean models

considered by Ferrari et al. (2014) and Jansen and

Nadeau (2016) point to a shallower, weaker LGMupper

cell. Differences among models may arise from differ-

ent model architectures, spatial resolution, bathymetry,

physical parameterizations, or incomplete equilibration

with surface conditions (Zhang et al. 2013; Marzocchi

and Jansen 2017). Finally, estimates of LGM salinity

derived from the pore fluids of sediment cores suggest

that the deep ocean was not only saltier, because of the

storage of freshwater in ice sheets, but also more salt

stratified (Adkins et al. 2002; Insua et al. 2014). How-

ever, Miller et al. (2015) and Wunsch (2016) argue that

pore fluid measurements are too few to be uniquely

interpretable.

Fitting models to paleoceanographic data can im-

prove our knowledge of model and data shortcomings.

Ultimately, this approach can improve our knowledge of

the ocean circulation and climate at time intervals like
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the LGM. Previous efforts include Dail (2012) and

DW14, who obtained a state estimate of the LGM At-

lantic Ocean by fitting an OGCM to Atlantic MARGO

data, and KN17, who fit an OGCM to the global annual-

mean MARGO data as well as oxygen and carbon

isotope data in the Atlantic Ocean. Other efforts to

constrain the abyssal circulation during the LGM by

combining models and proxy data include LeGrand

and Wunsch (1995), Gebbie and Huybers (2006),

Marchal and Curry (2008), Burke et al. (2011), Gebbie

(2014), and Gebbie et al. (2016). A common conclu-

sion of these studies is the difficulty in determining

past circulations uniquely because of the sparsity and

noisiness of paleoceanographic measurements.

Here we present a new fit of an OGCM to the

MARGO dataset of global, seasonal gridded NSST

observations. This work expands upon DW14 by using

(i) a global domain, (ii) a longer model integration, and

(iii) atmospheric forcing derived in part from a coupled

ocean–atmosphere model LGM simulation. Differences

from KN17 include (i) the use of higher spatial resolu-

tion both horizontally and vertically (28 vs 38 and 50 vs 15
vertical levels, respectively) and (ii) the inclusion of

seasonal MARGO data. Our state estimate is a primi-

tive equation ocean model simulation that agrees with

seasonal MARGO data within their estimated errors

and allows us to analyze approximately equilibrated

properties of the ocean circulation, including in the

abyss. Unlike KN17, we do not use oxygen and carbon

isotope data in the deep ocean to constrain the state

estimate, as simulation durations required to equilibrate

abyssal tracer distributions (thousands of model years)

proved too computationally expensive for our state es-

timation framework, and fitting incompletely equili-

brated model tracers to observations can lead to biased

solutions (Dail 2012; Amrhein 2016). A disadvantage of

this approach is that our inferences of abyssal circulation

and structure are not informed by in situ measurements.

A comparison of LGM state estimates in the discussion

(section 4) provides insights into their uncertainties and

sensitivities to different state estimation approaches.

2. Materials and methods

a. LGM NSST data

NSST data and uncertainties used in this study

are from the 58 3 58 MARGO gridded products

(Waelbroeck et al. 2009) constructed from microfossil

and chemical measurements in ocean sediment cores

representing the time interval 23–19 ka BP. TheMARGO

compilation includes transfer function approaches—which

match past abundances of planktonic foraminifera, di-

atoms, dinoflagellate cysts, or radiolarians to modern

analogs—and chemical thermometers based on alkenone

indices and planktonic foraminiferal Mg/Ca. Gridded

values are weighted means of proxy values, with weights

based on data type, numbers of observations available

during the time period, and calibration and instrumental

errors. Three separate gridded MARGO products repre-

sent annual, January–March (JFM), and July–September

(JAS) mean conditions. The spatial density of the gridded

data is highest in tropical regions and at high northern

latitudes, especially in the northern North Atlantic and

Arctic Oceans. Data from the Southern Ocean are re-

stricted to austral summer because of the limited seasonal

representativeness of diatom assemblages, which make up

most available observations in that region.

b. The MITgcm

The OGCM we fit to the MARGO data is the

MITgcm, an evolved form of that described by Marshall

et al. (1997) and Adcroft et al. (2004) that simulates the

ocean circulation under hydrostatic and Boussinesq

approximations. The model is a lower-resolution con-

figuration of the ECCO, version 4, release 2, modern

state estimation setup (ECCO; Forget et al. 2015a), with

28 horizontal resolution telescoping to higher resolution

at the equator and the poles and 50 vertical levels with

thicknesses ranging from a minimum of 10m at the

surface to a maximum of 456m at depth. TheMITgcm is

coupled to a viscous plastic dynamic–thermodynamic

sea ice model (Losch et al. 2010). Air–sea fluxes of heat,

freshwater, andmomentum are computed using the bulk

formulae of Large and Yeager (2004). Global-mean

freshwater fluxes through the sea surface are compen-

sated at every time step by adding or subtracting a uni-

form freshwater flux correction that prevents drifts in

global mean ocean salinity. Ocean vertical mixing is

parameterized using the turbulent closure scheme of

Gaspar et al. (1990). Isopycnal diffusivity is treated us-

ing the Redi (1982) scheme, and unresolved eddy ad-

vection is parameterized using the method of Gent and

McWilliams (1990). Following Bugnion and Hill (2006)

andDail (2012) we use accelerated time stepping (Bryan

1984), with a tracer time step of 12 hours and a mo-

mentum time step of 20min.

Model bathymetry for the LGM was constructed by

smoothing and subsampling modern water depth esti-

mates (Smith and Sandwell 1997) and adding the LGM

minus modern bathymetry anomaly reconstructed by

Peltier (2004), which has a median LGM sea level of

approximately 130m below present. A seasonal cycle of

runoff is derived from Fekete et al. (2002), with runoff

on the European continent between 508 and 728N re-

routed to the latitude of the English Channel, reflecting

the reconstruction of Alkama et al. (2006). Sea ice and
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snow albedos were reduced by roughly 30% from

ECCO values to prevent unrealistic sea ice growth in the

LGM state estimate.

c. State estimation procedure

Procedures for obtaining data-constrained ocean state

estimates used in this paper are illustrated in Fig. 1.We use

the method of least squares with Lagrange multipliers

(also known as the adjoint method; e.g., Wunsch 2006) to

fit the MITgcm to seasonal- and annual-mean MARGO

NSST data. In modern oceanography, the relative wealth

of observations permits estimating the time-varying ocean

state (Stammer et al. 2002; Wunsch and Heimbach 2007;

Forget et al. 2015a). At the LGM, the sparsity of data

motivates treating them as samples of a ‘‘seasonally

steady’’ state—a single seasonal cycle that repeats over the

interval 23–19ka. Our goal is to generate an MITgcm

simulation under annually repeating atmospheric bound-

ary conditions that both fits the data within their un-

certainties and is consistent with a quasi-steady circulation,

as defined below. We will denote vectors and matrices by

lower- and uppercase bold letters, respectively.

The ocean state vector at a time t, x(t), is a complete

list of the variables required to take one model time

step—temperature, salinity, velocity, etc.—at all loca-

tions of the model grid. An underbar denotes a vector

containing a seasonal cycle of values; for example, x is a

list of model variable values concatenated in time over a

year. The evolution of the MITgcm under seasonally

steady forcing can be written as

x(t1Dt)5L[x(t), q(t), u], 0# t# t
f
5MDt , (1)

where L is a nonlinear operator, Dt is the model time

step, M is a positive integer, q(t) is a vector of model

parameters that are not changed in the optimization

(e.g., model bathymetry), and u is a vector of adjustable

‘‘control’’ variables (or ‘‘controls’’) including fields of

initial temperature and salinity, turbulent transport pa-

rameters, and monthly average atmospheric forcing

(Table 1).

We fit theMITgcm to theMARGOdata by iteratively

adjusting control variables to minimize a cost function

with three terms. The first term penalizes misfits be-

tween the model and data, the second penalizes large

changes to the controls, and the last imposes the dy-

namical constraints of the model using the Lagrange

multipliers. At each iteration, the model is run forward

FIG. 1. Flowchart describing the construction of simulated ocean states (MODERN and PRIOR) and data-constrained glacial state

estimates (GLACIAL and GLACIAL_s) described in this study. We use 5000-yr-long simulations to equilibrate theMITgcm to different

sets of model control variables (or ‘‘controls’’: atmospheric conditions, turbulent transport parameters, and initial conditions).MODERN

(section 3a) gives amodel representation ofmodern oceanographic conditions; PRIOR is a first-guess glacial state that is the starting point

for LGM state estimation (section 2d); GLACIAL is the LGM state estimate that is themain result of this paper; andGLACIAL_s is used

to diagnose sensitivity of the state estimate to a uniform adjustment in surface air temperature (see discussion in section 4). Modern initial

conditions used for MODERN and PRIOR are taken from the ECCO state estimate (Forget et al. 2015a) from the year 2007; an

additional 1.1 salinity is added to every grid box in PRIOR based on the global-mean salinity change estimated at the LGM by Adkins

et al. (2002). The DCCSM4 refers to differences between LGM and preindustrial coupled CCSM4 simulations.
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for 100 years, cost terms are computed, and the model

adjoint is run backward in time to estimate the linear

sensitivity of the cost function to the controls (see the

appendix). Then control adjustments are made, the

model is run again, costs are recomputed, and the cycle

is repeated until an acceptable fit is found. The model–

data misfit cost function term is computed over the last

20 years of the 100-yr-long forward simulations to per-

mit the model to adjust to control changes. A period of

100 years is long enough to bring much of the surface

ocean into near equilibriumwith changes in atmospheric

conditions but too short to equilibrate the deep ocean

(Wunsch and Heimbach 2008). Thus, our results are

biased against dynamical mechanisms that could reduce

model–data misfits on time scales longer than a century.

After deriving controls using 100-yr-long adjoint

simulations, we integrate themodel for 5000 years under

derived control adjustments and take the last year of the

integration to be our state estimate. We perform this

additional integration in order to (i) allow the abyssal

ocean approximately to equilibrate to changes derived

to fit NSST data and (ii) evaluate the consistency of our

solution with a quasi-steady circulation. The simulation

is said to be adequately steady if it fits theMARGOdata

within uncertainty near the beginning and end of the

simulation at model years 80–100 and 4980–5000, that is,

if it satisfies the sets of equations

y5Ex
5000

1 n
5000

, and (2)

y5Ex
100

1 n
100

. (3)

Here x100 and x5000 are the simulated seasonal cycles

averaged over model years 80–100 and 4980–5000, re-

spectively; E is a matrix relating MARGO NSSTs y to

x100 and x5000; and n100 and n5000 are residuals to the

model fit that must be consistent with magnitudes of

observational errors.

d. Control variables, error covariances, and a
first-guess solution

State estimation requires specifying first-guess control

values that are subsequently adjusted to fit data. First

guesses of atmospheric controls (Table 1) are the sums

of modern ECCO fields (Forget et al. 2015a) and LGM

minus preindustrial anomalies computed in the Com-

munity Climate SystemModel, version 4 (CCSM4; these

anomalies are referred to below as DCCSM4). We

choose to add DCCSM4 to modern ECCO fields rather

than simply using CCSM4 LGM fields in an effort to

mitigate potential biases from CCSM4. The CCSM4

consists of coupled ocean, atmosphere, land, and sea ice

models with nominal 18 horizontal resolution. The pre-

industrial (PI) CCSM4 simulation (Gent et al. 2011)

follows protocols for phase 5 of the Climate Model

Intercomparison Project (CMIP5), while the LGM

CCSM4 simulation (Brady et al. 2013) follows PMIP3

protocols, using LGM orbital parameters, greenhouse

gas concentrations estimated from ice cores, modified

orography due to Northern Hemisphere ice sheets, and

reduced global sea level.

The DCCSM4 wind stress anomalies reflect oro-

graphic changes due to the presence of Northern

Hemisphere ice sheets (Brady et al. 2013; Figs. 2a,b).

Surface air temperatures are everywhere reduced in the

CCSM4 LGM simulation relative to the preindustrial,

with especially pronounced cooling in the subpolar

North Atlantic, Southern, and North Pacific Oceans

(Fig. 2e). Downwelling longwave radiation (Fig. 2k)

and humidity (Fig. 2i) are also lower everywhere at

the LGM, likely reflecting changes in atmospheric

TABLE 1. Control variables, control uncertainty standard deviations s, sources of first-guess control values, and time periods for control

variables used to derive the GLACIAL and GLACIAL_s state estimates. ECCO refers to the ECCOmodern ocean state estimate in the

year 2007. The DCCSM4 refers to differences between LGM and preindustrial coupled CCSM4 simulations (Fig. 2). The variables ks, kd,

and kGM refer to coefficients of isopycnal diffusivity (Redi 1982), diapycnal diffusivity, and eddy diffusivity associated with the bolus

velocity (Gent andMcWilliams 1990). PRIOR refers to the forward simulation under ECCO1DCCSM4 forcing described in section 2d.

Control variable s Units Source of first guess Time period

SW radiation 20 W m22 ECCO 1 DCCSM4 Monthly mean

LW radiation 20 W m22 ECCO 1 DCCSM4 Monthly mean

Specific humidity 23 1023 — ECCO 1 DCCSM4 Monthly mean

Precipitation 43 1028 m s21 ECCO 1 DCCSM4 Monthly mean

2-m air temperature 4 K ECCO 1 DCCSM4 Monthly mean

Zonal wind stress 0.1 Pa ECCO 1 DCCSM4 Monthly mean

Meridional wind stress 0.1 Pa ECCO 1 DCCSM4 Monthly mean

kd 1024 m2 s21 ECCO Constant

ks 500 m2 s21 ECCO Constant

kGM 500 m2 s21 ECCO Constant

Initial temperature 3 K PRIOR Initial condition

Initial salinity 1 — PRIOR Initial condition

1 OCTOBER 2018 AMRHE IN ET AL . 8063



FIG. 2. (left) Last Glacial Maximum minus preindustrial annual-mean anomalies (DCCSM4) of atmospheric

variables in CCSM4 (Brady et al. 2013). (right) Annual-mean adjustments to atmospheric control variables derived

to fit the MITgcm to MARGO data. Panel (f) includes a uniform change in global mean surface air temperature

made to fit the data.
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heat content and the reduced capacity of colder air to

hold moisture. Anomalies of precipitation (Fig. 2g) and

shortwave downwelling radiation (Fig. 2m) show more

complex patterns, possibly reflecting differences in

simulated atmospheric circulation and cloud distribu-

tions as well as changes in Earth’s orbital configuration.

In many regions these anomalies have the same order of

magnitude as modern time-mean values.

First guesses of glacial distributions of ocean tem-

perature and salinity are taken from a 5000-yr-long

simulation of the MITgcm (PRIOR) forced by first-

guess atmospheric conditions (Table 1). PRIOR is ini-

tialized with temperatures and salinities from the ECCO

modern ocean state in the year 2007 plus an additional

1.1 salinity at every model grid box, based on the global-

mean salinity change estimated at the LGM from

changes in global-mean sea level (Fairbanks 1989;

Adkins et al. 2002). The year 2007 was chosen based on

the availability of modern observations; the fact that

2007 was an El Niño yearmay contribute to zonal Pacific

temperature gradients observed in patterns of model

drift. More generally, though we do not attempt to

estimate it here, sensitivity to choices of first-guess

conditions is an important contributor to solution un-

certainty and should be prioritized in future uncertainty

quantification studies.

Finally, we must assume values for the standard de-

viations s of uncertainties in our choices of first-guess

control variables. Following DW14, s for shortwave

and longwave downwelling radiation, humidity, and

precipitation are twice those used in ECCO, and

s for surface atmospheric temperature is 4 times that in

FIG. 2. (Continued)

1 OCTOBER 2018 AMRHE IN ET AL . 8065



ECCO. Wind stress s is set to 0.1 Pa, reflecting the

amplitudes of CCSM4 LGM-PI wind stress changes. For

initial salinity, s is 1 on the practical salinity scale,

comparable to the estimated change in ocean mean sa-

linity over the last deglaciation. Errors for turbulent

transport parameters are taken fromECCO.We assume

that control variable uncertainties do not covary in

space or between variables.

3. Results

This section reports results from fitting theMITgcm to

MARGO LGM NSST estimates and describes proper-

ties of our best-estimate LGMocean state (GLACIAL).

We also describe the modern simulation (MODERN)

used to compare to GLACIAL. Importantly, we do

not claim that our state estimate is a unique fit to the

data; other ocean states may exist that are qualita-

tively different but fit the data equally well. In particular,

the abyssal ocean appears at best to be weakly con-

strained by the MARGO data (Kurahashi-Nakamura

et al. 2014).

a. Construction of the MODERN simulation and
comparison to the modern ocean

The MODERN simulation is a 5000-yr integration of

theMITgcm using modern bathymetry and atmospheric

conditions (Fig. 1). This simulation is used to compute

LGM-modern anomalies and to identify model biases.

In particular, after 5000 years of integration, annual-

mean surface values (centered on 5-m water depth) of

temperature and salinity in MODERN show regional

deviations from modern ECCO values, which are con-

strained by modern observations, of over 48C and 2,

respectively (Figs. 3a,b). We attribute these differences,

which accumulate on time scales of centuries to mil-

lennia (see Fig. S7 in the online supplemental material),

primarily to model errors, including model ‘‘drift,’’

which is a common phenomenon in ocean-only models

lacking atmosphere–ocean feedbacks (e.g., Griffies

et al. 2009). The absence of these patterns in PRIOR–

MODERN anomalies (Figs. 3c,d) indicates that simi-

lar biases are also present in PRIOR and as such will

appear in the GLACIAL state estimate unless they are

eliminated by fitting the model to MARGO NSST data.

In addition to differences in surface water properties,

the MODERN AMOC has a weaker and shallower

upper cell than in modern observationally based re-

constructions (Lumpkin and Speer 2007). In this study,

we use MODERN as the basis for comparison with

GLACIAL—rather than a modern state estimate or

modern observations—because taking the difference

between the two time intervals is likely to reduce the

impacts of systematic model errors on our conclusions.

A caveat is that wherever fitting the data adjusts

GLACIAL closer to the true LGM state, common bia-

ses in GLACIAL and MODERN may no longer cancel

when their anomaly is computed, leading to errors in

inferred anomalies that may be as large as the

model bias.

b. Fitting the model to data

A state estimate is considered to fit data adequately

when model–data misfits normalized by observational

errors have an approximatelyGaussian distribution with

mean 0 and standard deviation 1. By this criterion, the

first-guess PRIOR simulation does not fit the MARGO

data: in the annual, JAS, and JFM means, standard

deviations of normalized misfits are greater than 1

(Fig. 4a). Moreover, the average value of normalized

misfits is less than 0, indicating amodel cold bias relative

to the data. Misfits exceeding observational un-

certainties are found in several regions. In both JAS and

JFM, the model is warm relative to the data in the

equatorial Atlantic, the northeast Atlantic, and the

western Pacific, while it is too cold in the Indian, Arctic,

and east Pacific Oceans (Figs. 4d,f). In JFM, the model

Southern Ocean is cold relative to the data. Similarities

between spatial patterns of model–data misfit and

MODERN 2 ECCO temperature anomalies suggest

that model bias is a major contributor to model–

data misfit.

To reduce model–data misfits, we adjust glacial at-

mospheric conditions and other control variables using

the method of Lagrange multipliers (see the appendix).

We found that while this approach reduced misfits of

both signs, it was less effective at reducing the model

cold bias. To reduce remaining biases after 10 iterations,

we added a globally uniform increase of 28C in all

months to the first guess of surface air temperatures.1

After including these changes we ran 19 additional it-

erations for a total of 29. An additional temperature

increase of 18C was added to the control adjustments

derived in January, February, and March to offset a

further cold bias in that season. As a reference, a sepa-

rate state estimate was produced without uniform tem-

perature adjustments; the two solutions are compared in

section 4.

Changes to atmospheric control variables are typically

strongest at locations coinciding with MARGO gridded

data, although large-scale changes show the ability of the

1 The method reduces a cost function by search methods. At any

stage of the search, estimates of the optimized state can and should

be introduced to speed convergence.

8066 JOURNAL OF CL IMATE VOLUME 31



data to influence the model state in regions remote from

data locations (Fig. 2, right panels). Global temperature

increases used to reduce the model cold bias are visible in

Fig. 2f. Inferred changes to isopycnal diffusivities ks, dia-

pycnal diffusivities kd, and eddy bolus velocity coefficients

kGM are small relative to their uncertainties s, with

changes on the order of s at few locations (see Figs. S1–

S3). Several authors have suggested that decreased sea

level at the LGM may have led to increased diapycnal

mixing rates in the ocean interior, as the area of shallow

continental shelves where the bulk of tidal dissipation

occurs in the modern ocean was reduced (Wunsch 2003;

Schmittner et al. 2015). While we cannot rule out this

possibility, we note that a distribution of mixing parame-

ters similar to a modern estimate suffices to fit the

MARGO data, as also pointed out by KN17. Changes to

initial temperature and salinity (Figs. S4 and S5) are on the

order of 0:01s, as we might expect for a quasi-steady so-

lution in which adjustments to initial conditions are not

important to fit the data. In contrast, changes to air–sea

fluxes of heat and freshwater play a dominant role in fitting

the observations, consistent with the primary role of sur-

face fluxes in the seasonal variability of heat and salt

budgets in the upper ocean (Gill and Niller 1973). We do

not claim that derived control variable changes are nec-

essary to fit the data, only that they are sufficient and

reasonable within their specified uncertainties.

Our best estimate of the glacial ocean state (GLACIAL)

is the seasonal cycle of ocean variables in the MITgcm

when it is run under control changes derived to fit the

MARGOdata, at the end of a 5000-yr-longmodel spinup

period. Properties plotted and discussed are decadal

means of the seasonal cycle in the last 10 years of the

spinup period; because of the slow evolution of the

FIG. 3. Comparison of annual-mean surface temperature and salinity at the end of the 5000-yr-long simulations

MODERNand PRIOR, in the data-constrained state estimateGLACIAL, and computed as the 20-yr time average

of the modern state estimate ECCO (Forget et al. 2015a). ‘‘Surface’’ is here taken to mean the uppermost model

grid box, which is centered on 5-m water depth. (a),(b) MODERN surface temperature and salinity show basin-

scale deviations fromECCO attributed to model bias due to coarse resolution and a long integration period (model

drift). Because similar model biases are also present in PRIOR, the patterns evident in (a) and (b) largely cancel in

(c),(d) PRIOR 2 MODERN. PRIOR 2 MODERN anomalies on the practical salinity scale in (d) have been

corrected by subtracting 1.1 to account for the mean salinity increase imposed in PRIOR. (e),(f) GLACIAL 2
PRIOR differences show changes that result from fitting the model to the MARGO data.
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model after the long integration, results are not sen-

sitive to the choice of averaging interval. Spatial pat-

terns of MARGO minus GLACIAL model–data

misfits are similar to those for MARGO2 PRIOR but

with reduced amplitudes in most regions (Fig. 4,

right). Average misfits in years 80–100 (not shown)

and 4980–5000 (Fig. 4a) are reduced relative to

PRIOR, and their normalized distribution lies close to

the expected Gaussian. The ability to fit observations

near the beginning and end of a 5000-yr-long in-

tegration reflects small model drifts (Fig. S7) relative

to observational uncertainties. The result satisfies the

data-based criteria of Eqs. (2) and (3) and supports the

conclusions of DW14 and KN17 that it is possible to

fit a primitive equation ocean model to the MARGO

data. The fact that even our data-constrained model

solution does not exactly fit the data reflects a com-

bination of model and data errors; misfits to the state

estimate are deemed acceptable in light of observa-

tional uncertainties. Subsequent adjoint iterations

could further reduce model–data misfit, but at the risk

of overfitting the data.

FIG. 4. Model–data misfits of NSSTs are improved by the state estimation procedure. (a) Histograms of model–data misfits for annual-,

JFM-, and JAS-mean values in PRIOR and GLACIAL normalized by data uncertainties. GLACIAL misfits are similar to a standard

normal Gaussian distribution (gray), indicating an acceptable fit to the data.Model–datamisfits normalized by data uncertainties for (left)

PRIOR and (right) GLACIAL (b),(c) annual-, (d),(e) JFM-, and (f),(g) JAS-mean data. Blue (red) values indicate that the model is cold

(warm) relative to the data. GLACIAL shows similar patterns of misfits as PRIOR, but with reduced amplitudes of both signs.
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c. Analysis of the state estimate

Wenow describe properties of our best estimate of the

LGM ocean state. When describing abyssal properties

we focus on the Atlantic Ocean, where the number of

paleoceanographic data is greatest.

1) THE UPPER OCEAN

Differences in annual- and seasonal-mean NSSTs

between GLACIAL and MODERN indicate global

cooling at the LGMexcept for small-amplitude warming

in parts of the Arctic and Southern Oceans and the

equatorial Pacific (Fig. 5). The global-mean NSST dif-

ference is 28C, similar to preceding estimates of 1.9 6
1.88C (MARGO), 2.28C (KN17), and 2.48C (in CCSM4;

Brady et al. 2013). The strongest negative anomalies

are found in the subpolar regions, particularly in the

Northern Hemisphere. In addition to their data compi-

lation, Waelbroeck et al. (2009) report a map of LGM

minus modern surface temperature anomalies based

on a nearest-neighbor interpolation algorithm. By

comparison with their map, GLACIAL 2 MODERN

anomalies resulting from our dynamical interpolation

do not show pronounced zonal gradients in the equa-

torial Pacific and Atlantic Oceans, while in the northern

North Atlantic we find that the sign of zonal gradients is

reversed relative toWaelbroeck et al. (2009). Moreover,

we find surface cooling, rather than warming, in both the

North Pacific and the central Arctic. These disagree-

ments arise because in addition to fitting the data, our

anomaly estimates are constrained by model physics.

GLACIAL 2 MODERN anomalies arise from (i)

control variable changes made to fit the MARGO data

and (ii) the choice of a first-guess solution. Changes in

ocean surface temperature resulting from fitting the

MARGO data, which are illustrated by GLACIAL 2
PRIOR anomalies (Fig. 3e), have shorter length scales

than changes arising from our choice of first guess, which

are illustrated by PRIOR 2 MODERN anomalies

(Figs. 3c,d). These differences are commensurate with

mostly small-scale changesmade to the control variables

to fit the data compared to the larger-scale patterns of

first-guess glacial atmospheric conditions arising from

coupled atmosphere–ocean–ice dynamics in CCSM4

(Fig. 2). Changes in surface temperature are distinct

from patterns of model bias (Figs. 3a,b), suggesting that,

as used, the MARGO data are insufficient to eliminate

model biases completely.

Sea ice extent in GLACIAL is greater than in

MODERN (Fig. 6) in all seasons in both the Northern

and Southern Hemispheres. The Arctic Ocean is filled

with sea ice year-round, and winter sea ice covers much

of the Nordic seas and the northwest Pacific. Winter ice

thicknesses in the central Arctic are 3–5m, with lower

values in regions where ice coverage is seasonal.

GLACIAL sea ice is seasonal in the northern North At-

lantic, including in the Nordic seas, similar to results re-

ported by de Vernal et al. (2006) and Waelbroeck et al.

(2009). In the Southern Hemisphere, the 15% winter sea

ice concentration isopleth, where concentration refers to

the fractional area occupied by sea ice, is consistent with

themaximumnorthward extent of sea ice reconstructed by

Gersonde et al. (2005), whose Southern Ocean data are

included in MARGO. It also falls within the range of

northernmost sea ice extents simulated in PMIP3 models

(Sime et al. 2016). In GLACIAL, regions where brine

rejection occurs because of sea ice formation coincide

with winter sea ice extent in the Southern Hemisphere

(Fig. S6), and annual-mean salt fluxes due to brine re-

jection are increased (2:13 107 kg s21) relative to

MODERN (1:33 107 kg s21).

The barotropic (vertically integrated) circulation in

GLACIAL is intensified relative to MODERN (Fig. 7),

FIG. 5. GLACIAL minus MODERN temperature anomalies in

the uppermost grid box centered on 5-m water depth: (a) the an-

nual mean, (b) JFM mean, and (c) JAS mean.
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especially in the Antarctic Circumpolar Current (ACC)

and subpolar gyres. Annual-mean volume transport

through the Drake Passage is 174 Sv (1 Sv [ 106m3 s21)

in GLACIAL compared to 117Sv in MODERN,

presumably associated with differences in winds and

increased production of Antarctic Bottom Water

(AABW) in GLACIAL, which can steepen isopycnal

slopes in the ACC (Gent et al. 2001; Hogg 2010). Like

FIG. 7. (a) Barotropic (vertically integrated) streamfunction in GLACIAL. (b) GLACIAL 2 MODERN baro-

tropic streamfunction anomaly. Barotropic transport in theACC inGLACIAL exceeds that inMODERNbymore

than 100 Sv in some places.

FIG. 6. Sea ice thickness in GLACIAL (colors) and 15% concentration isopleth in (a),(c) September and

(b),(d) March for MODERN (gray contour) and GLACIAL (black contour).
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DW14, we find an increased southward return flow in

the eastern interior of the North Atlantic subtropical

gyre in GLACIAL relative to MODERN, though the

eastward shift of the Atlantic subpolar gyre that DW14

describe is not evident. Increases in barotropic gyre

circulation in GLACIAL are consistent with increased

wind stress and wind stress curl.

Locations of large winter mixed layer depths (MLDs)

are thought to be important for setting distributions of

abyssal tracers because they determine where surface

water properties are communicated to the abyssal in-

terior (Gebbie and Huybers 2011; Amrhein et al. 2015)

with possible implications for AMOC strength (Oka

et al. 2012). Comparison of maximum winter MLDs in

GLACIAL and MODERN reveals differences in re-

gions of both subduction (e.g., in the model North At-

lantic Current) and high-latitude convection (Fig. 8). In

GLACIAL, reduced convection in the northeast North

Atlantic and Arctic Oceans is due in part to (i) reduced

areas of marginal seas from lower sea levels and (ii)

fresher surface waters in those regions (Figs. 3d,f).

Deeper winter mixed layers in the Labrador Sea are

consistent with surface buoyancy losses from ocean

cooling downwind of the Laurentide Ice Sheet (Fig. 2c).

While MLDs are likely affected by the model drifts dis-

cussed in section 3a, differences betweenMODERN and

GLACIAL, which are affected by similar drifts, motivate

speculation that a shift of winter maximum MLDs from

the eastern to western North Atlantic may contribute to

differences observed in distributions of abyssal ocean

tracers between the LGM and today (e.g., Keigwin 2004;

Curry and Oppo 2005; Marchitto and Broecker 2006)

because of a change in deep water source regions.

2) THE ABYSSAL ATLANTIC OCEAN

Abyssal waters in GLACIAL are everywhere colder

than in MODERN in the Atlantic, where zonal mean

potential temperatures are reduced by roughly between

0.58 and 1.08C (Figs. 9a,c). Increased salinity stratifi-

cation (Figs. 9b,d) is primarily responsible for greater

density stratification (Fig. 10, contours). Higher verti-

cal salinity stratification in the GLACIAL Atlantic is

consistent with larger rates of Southern Ocean brine

rejection (Fig. S6), though decreased high-latitude pre-

cipitation (Figs. 2g,h)may also play a role. GLACIAL2
MODERN abyssal salinity anomalies lie within the 2s

uncertainty ranges of LGM minus modern anomalies

estimated from pore fluids recovered in the Pacific

Ocean (Table 2; Insua et al. 2014), and are qualitatively

consistent with the inference of a more salinity-stratified

LGM abyssal ocean. However, we reproduce neither

the relatively low pore fluid salinity anomaly estimated

at Bermuda Rise (33.78N, 57.68W), nor the large anom-

aly at Shona Rise in the Southern Ocean (50.08S, 5.98E)
that was a focus of Adkins et al. (2002). Misfits be-

tween the state estimate and pore fluid reconstructions

could be due to model biases—for example, inaccurate

parameterization of brine rejection—and/or to misin-

terpretation of the observations (Miller et al. 2015;

Wunsch 2016).

The upper cell of the AMOC (Figs. 10a,c) is deeper

and stronger in GLACIAL than MODERN, qualita-

tively similar to results from most PMIP3 models

(Muglia and Schmittner 2015). Comparing these results

to those from other studies is complicated by biases to-

ward shoaled and weakened upper cells present in both

FIG. 8. Mixed layer depths computed using the MLD criterion of Kara et al. (2000) for (top) MODERN and

(bottom) GLACIAL in (a),(c) March and (b),(d) September.
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MODERN and GLACIAL. Thus while our result of a

relatively stronger, deeper GLACIAL cell contrasts

with that of KN17, who found a stronger, shallower

upper LGM AMOC cell, in absolute terms the LGM

AMOC circulations in the two studies are similar, de-

spite differences in state estimation procedures. Our

comparison of GLACIAL and MODERN also con-

trasts with the idealized model of Ferrari et al. (2014),

FIG. 9. Atlantic zonal mean (a),(c) potential temperature and (b),(d) salinity (on the practical salinity scale) in (top) MODERN and

(bottom) GLACIAL.

FIG. 10. (a),(c) Atlantic and (b),(d) global zonal mean meridional overturning streamfunctions in (top) MODERN and (bottom)

GLACIAL. Contours denote potential density (kgm23) minus a reference value of 1000 kgm23. Note differences in color bars between

global and Atlantic overturning and nonconstant potential density contour intervals. Potential density differences between LGM and

GLACIAL reflect in part a global-mean salinity increase of 1.1 in GLACIAL.
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who suggested that greater sea ice extent at the LGM

would shift outcropping isopycnals in the ACC equa-

torward and shoal the isopycnal surface separating

upper and lower AMOC cells. In MODERN and

GLACIAL, the upper and lower cells (separated by the

zero contour in Figs. 10a,c) are separated by the 28 and

29kgm23 potential density anomaly isopleths, re-

spectively. The deeper position of the dividing isopycnal

in GLACIAL relative to MODERN is accompanied by

steeper ACC isopycnal slopes (Figs. 10b,d), suggesting

that the deeper, stronger GLACIAL upper AMOC cell

is associated with stronger ACC baroclinicity. Because

low-resolution models may poorly represent the role of

eddies in modulating wind-driven changes to the ACC

(Abernathey et al. 2011), future work should investigate

LGM ACC isopycnal steepening in an eddy-resolving

ocean model.

To test whether the GLACIAL circulation supports

inference of a greater volume of southern-source water

in the Atlantic Ocean, we perform a dye release ex-

periment by fixing passive tracer boundary conditions in

surface grid boxes to a concentration of 1 south of 608S

and to 0 elsewhere in the 5000-yr-long simulations of

GLACIAL and MODERN (Fig. 11). After 5000 years,

the distribution of this tracer in the Atlantic is very

similar in the two simulations. From this result, we

conclude that fitting the MITgcm as configured to the

MARGO data does not require southern-source waters

to shoal in the abyssal Atlantic, as has been suggested by

interpretations of LGM abyssal tracers (e.g., Curry and

Oppo 2005). This result further demonstrates the im-

portance of including abyssal tracer data to constrain the

glacial abyssal state.

4. Discussion

This paper presents a dynamical interpolation of

LGM NSST observations to a seasonal cycle of gridded

ocean temperature, salinity, velocities, and sea ice var-

iables that is fully consistent with the physics of the

MITgcm. While we do not claim that our glacial state

estimate is a unique fit of ocean and climate variables to

the data, it is a dynamically plausible hypothesis for

LGM conditions. In agreement with simulations from

TABLE 2. Comparison of LGM–Holocene bottom-water salinity anomalies from pore fluid measurements and this study. Pore fluid

measurements were not included in the cost function and thus provide an independent assessment of the LGM state estimate. Salinity

differences SGLACIAL 2SMODERN are from the deepest grid box at the model grid location nearest core sites. All values are on the practical

salinity scale.

Latitude Longitude Depth (m) SGLACIAL 2 SMODERN Pore fluid DS Reference

33.78N 57.68W 4584 1.40 0.95 6 0.03 Adkins et al. (2002)

55.58N 14.78W 2184 1.07 1.16 6 0.11 Adkins et al. (2002)

41.88S 171.58W 3290 1.31 1.46 6 0.08 Adkins et al. (2002)

50.08S 5.98E 3626 1.32 2.40 6 0.17 Adkins et al. (2002)

30.48N 157.98W 5813 1.31 1.37 6 0.18 Insua et al. (2014)

20.78N 143.48W 5412 1.31 1.51 6 0.18 Insua et al. (2014)

2.88N 110.68W 3760 1.26 1.38 6 0.09 Insua et al. (2014)

23.98S 165.68W 5695 1.33 1.55 6 0.09 Insua et al. (2014)

41.98S 153.18W 5074 1.32 1.20 6 0.09 Insua et al. (2014)

FIG. 11. Passive tracer concentrations at sections in the western Atlantic in (a) MODERN and (b) GLACIAL after 5000 years of

integration. Tracer surface values are held at 1 south of 608 and 0 elsewhere.
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climate models subject to glacial climate boundary

conditions and with previous glacial ocean state esti-

mates, the upper ocean at the LGM is inferred to be

colder than today by 28C in the global mean. The bar-

otropic ocean circulation is inferred to be stronger,

consistent with greater wind stress and wind stress curl.

Gyre circulations, while stronger, are structurally similar

to the modern circulation. Both perennial and seasonal

sea ice extents are larger, and the central Arctic is filled

with sea ice year-round. Regions of deep winter mixed

layers differ from themodern. The abyssal ocean is more

strongly salinity stratified, with an upper AMOC cell

that is stronger and deeper.

Our state estimate has both similarities and differ-

ences with the state estimates of DW14 and KN17. For

example, NSST fields reconstructed in KN17 are

smoother than ours, which presumably reflects in part

the isotropic, roughly 98 smoothing that those authors

imposed on control variable adjustments. In contrast,

DW14 report strong small-scale gradients in re-

constructed surface ocean temperature between loca-

tions with and without LGM data. This is likely because

DW14 used modern oceanographic conditions as a first

guess; in contrast, our PRIOR simulation introduces

large-scale patterns of cooling set by atmospheric con-

ditions derived from coupled ocean–atmosphere–ice

CCSM4 simulations. Similar to KN17, we find the larg-

est GLACIAL minus MODERN negative anomalies in

the subtropics, but our estimated surface cooling is more

uniform. Like KN17, we observe a stronger salinity

stratification at the LGM, which we attribute in part to

greater sea ice extent; however, while KN17 find a

stronger, shallower AMOC, ours is stronger and deeper.

These differences may stem from a variety of factors,

including the use of abyssal tracer observations in the

KN17 solution, the use of seasonal NSST observations in

our solution, differences in model equilibration and

spatial resolution, and differences in turbulent transport

parameters.

Because none of the solutions in DW14, KN17, and

this work include error estimates, it is difficult to de-

termine whether the solutions are truly in disagreement.

There is currently no straightforward means to de-

termine comprehensive uncertainties in ocean state

estimates derived using the method of Lagrange

multipliers. Developing tools for uncertainty quantifi-

cation is an important and ongoing effort in ocean state

estimation (Kalmikov andHeimbach 2014). Contrasting

results in DW14, KN17, and this study suggest a sensi-

tivity to prior choices of model controls and covariances

and point to difficulties in constraining the deep ocean

circulation at the LGM from available observations

(e.g., LeGrand and Wunsch 1995; Huybers et al. 2007;

Marchal and Curry 2008; Burke et al. 2011; Kurahashi-

Nakamura et al. 2014; Gebbie et al. 2016).

We find that global-mean temperature changes are

necessary to reduce an overall model cold bias. KN17

did not find such an adjustment necessary, possibly

because of different choices of the first-guess ocean

state and atmospheric forcing. To assess the sensi-

tivity of our inferences to global-mean temperature

changes, a separate state estimate (GLACIAL_s) was

computed over six iterations without imposing such

changes. Relative to our reference solution (GLACIAL),

GLACIAL_s shows greater summer sea ice extent and

thickness in both hemispheres (Fig. S9), a stronger re-

duction in NSSTs (Fig. S12), colder and saltier Atlantic

bottom waters (Fig. S10), greater salinity and density

stratification (Figs. S10, S11), and amarginally stronger

and shallower AMOC upper cell (Fig. S11). These

differences are not so large as to change our overall

conclusions. To evaluate whether the mean model–

data misfit arises from the first guess constructed by

adding CCSM4 LGM-PI anomalies to modern ECCO

atmospheric conditions, we ran an additional state es-

timate (not shown) using CCSM4 LGM conditions as a

first guess. We find a similar model–data bias, sug-

gesting that the first-guess choice was not a major

factor. A similar result (not shown) was obtained for a

first guess derived from a different coupled model

LGM simulation (MIROC; Sueyoshi et al. 2013). Ul-

timately, the mean model–data misfit may be due to

biases in the data, the MITgcm, our choice of first-

guess boundary conditions, the coupled models used to

generate first guesses, and/or the choice of boundary

conditions used to force coupled models. Resolving the

origin of this bias is important given the use of LGM

climate to infer climate sensitivity (Schmittner et al.

2011; Hargreaves et al. 2012) and the use of large-scale

atmospheric cooling to simulate LGM conditions in

idealized models (Jansen 2017).

The GLACIAL solution is consistent with a sea-

sonally steady state (i.e., a single repeating annual

cycle) insofar as it is taken from a 5000-yr-long model

integration that fits LGM observations near its be-

ginning and end. The fact that control adjustments

derived over a relatively short period (100 years) can

still fit observations after a longer integration (5000

years) is not surprising given that the data are fit

largely by local changes in surface heat fluxes, to which

the upper ocean adjusts on time scales shorter than 100

years; Forget et al. (2015b) found a similar result for

the ECCO state estimate. Adjoint integration times

longer than afforded here could reveal other, longer-

time-scale mechanisms that also permit the model to

fit the data.
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5. Perspectives

This work points to several ways forward to improve

paleoceanographic state estimation. First, there is the

issue of how changes are made to atmospheric con-

ditions in order to fit paleoceanographic observa-

tions. In ECCO, first-guess atmospheric conditions

come from reanalysis products, which are constrained

both by satellite observations and by coupled models.

The assumption in ECCO is that the reanalysis

products are sufficiently accurate that changes to

accommodate ocean observations will have small

amplitudes that are uncorrelated over large spa-

tial scales. In contrast, first guesses of atmospheric

conditions for preinstrumental periods are poorly

constrained—here, for instance, we use the quasi

equilibrium of a coupled climate model (CCSM4)—

and we should expect that they differ from true at-

mospheric states on all spatial scales, reflecting the

full range of coupled ocean–atmosphere–ice dynam-

ics. Instead, in our state estimate, we infer ‘‘patchy’’

adjustments to atmospheric controls (Fig. 2, right)

whose length scales reflect data availability and ocean

dynamics and are not informed by atmospheric or

coupled dynamics. While KN17 mitigated this patchi-

ness by smoothing control variables in space, it is not

obvious that this approach yields more accurate at-

mospheric fields. A separate issue is that different

choices of atmospheric controls can have similar effects

on the ocean state, leading to degeneracies; for in-

stance, similarities between changes in shortwave and

longwave radiation inferred to fit the data (Figs. 2l,n)

reflect the inability of the data and model to differen-

tiate between different sources of ocean heating. Fi-

nally, the absence of feedbacks between the ocean

and atmosphere in the presence of large changes to

atmospheric forcing can lead to unphysical patterns

of heating and cooling that contribute to model drift.

These caveats urge caution in attempting to rationalize

inferred atmospheric conditions physically. They point

to a need for more accurate estimates of how uncer-

tainties in control variables covary in space and time

and, ultimately, to a need for coupled ocean–atmosphere–

ice state estimation.

Second, assuming a steady or seasonally steady LGM

ocean circulation at once provides a strong constraint on

the state estimate and poses technical challenges for

reaching model equilibrium. In this work, we found that

long simulations intended to equilibrate the deep ocean

to reconstructed surface conditions led to model biases,

due in part to model drifts. While drifts can be reduced

by relaxing ocean surface values of temperature and

salinity to fixed climatological values (Danabasoglu

et al. 2014), relaxation generates undesirable sources

and sinks of temperature and salinity in the state esti-

mate. One approach to mitigate this problem could be

to adjust patterns and time scales of relaxation in the

control vector to fit the data. More broadly, the extent

to which the ocean circulation is ever in equilibrium

(including at the LGM) is unclear. Paleoceanographic

data provide an important arena for challenging as-

sumptions about climate stationarity, and steadiness

should only be assumed when absolutely necessary.

Satisfying a version of Eqs. (2) and (3) yields a solution

that is only as steady as the data require and provides a

less restrictive modeling criterion for the steadiness of

the LGM and other geologic intervals.

Third, this work raises the question of how well

suited the current generation of ocean models is to

paleoceanographic state estimation, particularly for

abyssal properties. Unlike in the modern state esti-

mation problem, there are no direct measurements of

ocean hydrography at the LGM. While the MARGO

data can constrain some features in the surface ocean,

the impact of surface temperature data on inferences

of abyssal properties is mediated by deep-water for-

mation processes that are typically parameterized and

that occur in poorly sampled regions such as Antarctic

shelves and the Labrador Sea. Locations and rates of

high-latitude deep water formation are important for

setting abyssal values of temperature, salinity, and

passive tracers (Amrhein et al. 2015). We expect that

improving model representations of high-latitude

processes will be effective at increasing the accu-

racy of reconstructed abyssal ocean conditions at

the LGM.

Finally, LGM state estimation will benefit from an

increased number, spatial coverage, and diversity of

proxy observations, as well as greater understanding

of how to represent those observations in numerical

models. Of particular utility is the inclusion of abyssal

tracer measurements, which have inspired many hy-

potheses about LGM watermass reorganizations (e.g.,

Curry andOppo 2005). While KN17 take the important

step of including carbon and oxygen stable isotope

measurements in their state estimation, realizing the

full potential of these measurements is challenging

because of the long time scales of tracer equilibration

(Wunsch and Heimbach 2008), which necessitates

running long and computationally expensive adjoint

simulations. Dail (2012), Amrhein (2016), and KN17

describe technical improvements on this front that

should be explored in future work. Ultimately, the goal

is to derive a state estimate using all possible obser-

vations from the LGM and to include new observations

as they become available.
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APPENDIX

Seasonal State Estimation by the Method of Least
Squares with Lagrange Multipliers

Seasonal state estimation seeks a set of annually re-

peating control variables u that minimizes a scalar cost

function J(u) with three contributions. The first contri-

bution, Jdata, is the squared, weighted model–data misfit,

which has three terms,

J
data

5
1

LAnn �
LAnn

i51

(yAnn
i 2EAnnx)

T
(RAnn)

21
(yAnn

i 2EAnnx)

1
1

3LJFM �
LJFM

i51

(yJFMi 2EJFMx)
T
(RJFM)

21
(yJFMi 2EJFMx)

1
1

3LJAS �
LJAS

i51

(yJAS
i 2EJASx)

T
(RJAS)

21
(yJAS

i 2EJASx) ,

(A1)

where the L are numbers of observations available in

each time period (annual, JFM, and JAS); yAnn
i , yJFMi ,

and yJAS
i are observations; the matrices RAnn, RJAS, and

RJFM have the form of R5h nnTi, where angle brackets

denote the expected value, and are observational noise

covariances constructed from MARGO uncertainty es-

timates; and the matrices EAnn, EJAS, and EJFM relate

model variables across space and time to the data.

Multiplication by 1/3 for JFM and JAS divides by the

number of model monthly means included in the cost

function; for annual observations, this factor is 1. The

second contribution is

J
model

522 �
M21

m50

m(t)Tfx(t)2L[x(t2Dt), q(t2Dt), u]g,

t5mDt , (A2)

wherem(t) is a vector of Lagrangemultipliers that serves

to impose the MITgcm model equations upon the so-

lution. The vector u can more generally represent model

errors as well. The last contribution,

J
ctrl

5 uTQ21u , (A3)

penalizes control adjustments, where Q is the error co-

variance of the control variables. Here Q is assumed to be

zero except for diagonal values that are equal to the squared

standard deviations s assumed for control variable un-

certainties (Table 1).

Minimization of the total cost function, J5 Jdata 1
Jctrl 1 Jmodel, is a problem of constrained nonlinear op-

timization. The dimension of the state vector and the

complexity ofL preclude an analytical solution. Instead,

automatic differentiation of the MITgcm code (Giering

and Kaminski 1998) is used to adjust the control vari-

ables iteratively in the direction of locally steepest de-

scent using a quasi-Newton algorithm (Gilbert and

Lemaréchal 1989). After each iteration, the cost func-

tion and local sensitivities are recomputed and the pro-

cedure is repeated until the distribution of model–data

misfits, normalized by observational uncertainty, ap-

proximates a normal (Gaussian) distribution with zero

mean and unity variance. At this point, the state estimate

is considered acceptable, so long as the control adjust-

ments are also acceptable. For a more detailed discussion

see Wunsch and Heimbach (2007).
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