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Note on some Reynolds stress effects of internal waves on slopes

Cart Wunscn®
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Abstract—When two-dimensional internal waves encounter a shoaling region, the second order mass
and momentum flux carried by the waves must be re-adjusted il no mixing occurs. The re-adjustment
occurs by a ‘set-up” and ‘set-down® of the mean isopycnals generating a second order mean
Eulerian flow to cancel the Stokes drift velocity. Since the effects of Coriolis forces in an infinite flat
bottomed channel are analogous to buovancy forces on & sloping bottom, rotation is easily taken
into account, however the problem is degenerate to an arbitrary long-shore geostrophic fow.

l. INTRODUCTION

THE erFecTs of second order momentum flux in surface waves are well known
{LonguerT-HicGins and Stewart, 1964) and account for non-negligible effects in,
for example, breaking waves. Similar effects should occur in internal waves, but these
do not appear to have been examined in any detail. Thorpe (1968), BRETHERTON
{1969), and others have treated some aspects of non-linear effects on internal waves.
This particular study was motivated by the observation that in the vicinity of Bermuda,
there appear to be systematic deviations of the mean isopycnals from open ocean
conditions as the island is approached (WunscH, 1971; Hoga, 1971), and it was
decided to investigate the possibility that these deviations could be accounted for by
‘radiation stress’ effects similar to the wave set-up and set-down effects of surface
waves (LonGueT-HiGGing and STEWART, 1964). OF course, any such effects, if non-
negligible, would have to compete with other processes, including the effects of the
island on the mean flow past it (HocG, 1971). HassELMANN (1970) has treated a
problem closely analogous to this one (see below).

In this note, we will confine ourselves to investigating the effects of 2-dimensional
internal waves encountering a shoaling beach. The extension to 3-dimensions as well
as more general conditions of stratification and topography have been treated by
Hoga (1971). Getting much beyond order of magnitude estimates necessarily involves
difficult questions of dissipation mechanisms for internal waves.

The basic physics is easily demonstrated. Consider an infinite channel of constant
depth o, constant Brunt frequency N, and rigid top and bottom. Then the linear
equation governing internal wave propagation in a Boussinesq fluid is:

1
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* Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, 11.5.A,
583



584 CarL WumscH

with solutions:

. hmz nn

W =sin — cos (-—- cx + m.t‘], (2)
d o

where i is the stream function such that u = —r_, w =), in the notation of WunscH

(1969), u the x component of ¥ and w the z component. w is the wave frequency.

Following PHILLIPS (1966) or LoncueT-Higins (1969), we can, for infinitesimal
waves (defined explicitly below), find the Lagrangian velocity

ina, 1) =ig(@, 1) + (| @, ¢)dr') - V. iigl@, 1), 3)
i

for small times ¢, where a is the Lagrangian initial position tag, and ug is the infinitesi-
mal Eulerian velocity given by the above stream function. The second term on the
right is the ‘Stokes velocity’. With LoNGueT-HiGGINs (1969), we write , =iy + iis.
If the wave amplitudes are small of 0(e) where ¢ is an ordering parameter, the Stokes
velocity is 0(g*). Hence, to evaluate the Lagrangian velocity to 0(¢*), we must, for
consistency, evaluate the Eulerian velocity to 0{g%) as well. If we time average (3), we
have:

Cugla, 1) ) = ugla, )Y + {iisla, 1) ) (4)

where the angle brackets denote a time average. It is easy to show that {1z ) =0
to 0(g?) for these internal waves in a channel, hence:

{uyy =g ).
Doing the indicated integrations and time averages in (4), we find:

3

- nmc 1 nrz
Gy ==(F) gam o= (ud =0 9
Note that the average over depth:
al} .
J udz=10,

—d

hence, channeled internal waves carry no nef momentum to this approximation. At
any given level (with the exception of the nodes) however, they do carry finite momen-
tum and mass. In Fig. 1 is shown the velocity distribution of the mean drifi for the
fundamental mode. This Stokes drift is, of course, generated for the reason that there
is a Stokes drift in a surface wave; the particle orbits are not of zero size. An individual
particle does not quite close its orbit owing to the spatial inhomogeneities in velocity:
the resulting drift carries the net wave momentum. Note however, that a current
meter, an essentially Eulerian device, would not measure a mean drift, but only the
purely harmonic Eulerian component (LONGUET-HIGGINS, 1969).
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Fig. 1. Mean Langrangian drift velocity for the fundamental channel mode # = 1. Units are arbi-
trary, The wave is propagating from right to left.

Consider now what happens if a “beach’ is placed at one end of the channel.
Every isopyvcnal intersects the slope and hence the particles drifting along the ise-
pvenals also would eventually intersect the slope. If there is no mixing, the particles
cannot leave their original isopycnals and hence, the Stokes drift cannot oceur any-
where in the channel if there 15 a beach at one end. The fluid must re-adjust itself
throughout the length of the channel in such a way as to make the average Lagrangian
velocity zero everywhere. The way in which this adjustment is brought about is by
generation of a non-zero mean Eulerian velocity that is equal and opposite to the
Stokes velocity: this Eulerian velocity is driven by a pressure gradient formed by a
re-adjustment of the mean buovancy field by the gradients of the wave Reynolds
stresses. The purpose of the remaining sections of this note is to work out the details
of this process and to estimate its possible importance in the ocean.

Mote that in an internal wave channel with a flat bottom, there is a similar process
il Coriolis forces are taken into account. In a rotating frame, there is no force in the
y-direction to balance Coriolis forces acting on the Stokes drift velocity (5). The only
method by which the fluid can maintain a y-force balance is through the Reynolds
stresses. These stresses generate an Eulerian mean velocity equal and opposite to (3),
This is the mechanism analyzed by HasseLmanw (1970) for the transients created by a
wave train. In what follows, the equations will be set up to make the analogies between
the two situations clear.

2. WAVES ON A SLOPE

WunscH (1969) showed that the linearized exact wave solutions on a uniformly
sloping beach were asymptotically equal to the channel modes (2) if the beach slope
were sufficiently small and the wave field evaluated sufficiently far from the corner
formed by the beach intersecting the surface. Thus, by using these solutions, we can
explore the effects of a beach at the far end of a long channel in the absence of mixing.

The coordinate system is shown in Fig. 2. The velocity field notation is conven-
tional, with +* along the beach. a* is the buoyancy such that
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Fig. 2. Coordinate system for the wedge geometry, The mean displacement of the isopycnals for
mode 1 (upper) is shown as well as the mean Eulerian horizontal velocity for the case ¢ = 1, 3 = 1-1
Units are arbitrary, The wave is propagating from right to left and F = 0. Light lines are horizontal.

'[{J* e P*]
oFf = £ _.__;_u._, :
Pa
where * denotes a dimensional gquantity, and p? is a constant reference density. We
non-dimensionalize as follows:

aiN a
*=g ,a':=—5,1':=—1',
¥ ¥ T 7

with the notation &¢=a/NL?, F=fjN where N is the Brunt frequency and f, the
Coriolis parameter. We have the following non-dimensional equations in the Bous-
sinesq approximation with no y-dependence and where we are linearizing about a
basic stratification do,/dz = — N*?

— 330V ) + & (E"—I'- ajox — @afaz) Vi gy, e 6)
oz dx ix Ox
b (owov dpov, L op
a“(a—xa aza-) Far =0 @
da 0y do _ ﬂﬁ_f’) ¥
a +"(ax % e bl T =l ®)

The length scale L is to be thought of as a local depth in the wedge-shaped region
formed by the beach. g is thus a measure of the wave displacement relative to the local
depth and will be a perturbation parameter.
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The effects of rotation on the solution are comparatively uninteresting, so for
clarity, we will put F as well as v equal to zero for the moment, restoring them below.,
Expanding the dependent variables in &,

W= U;.[D] + & i,ﬂf(i} +
r:r=|:.rw’+£|:.r'-”'+...,
and assuming '™ » = 0, we generate a series of problems. To Order |

8 '

50— A2 9
dt R dx ©)
i il a
ey B0 e A 10
5 ¢ ) = (10)
To Order 2:
(1) (0) 34100 ALl0) g0 ()
il +(55Ir o™ o' dg )_Igzﬂ'{" ) (11)
ot dx &z dz  dx dx
a ] (&@,[D: 8 5!‘,}(“: 3 \ D1}
= e oz | VI = ——, 12
A s e e z_) il (12)
Combining equations (9) and (10), we have:
)] ﬁl_ 2 aZ (]
i ( 2“’) ot ol % (13)
dz* i ik
subject to boundary conditions =0 on z =10, and on z = —yx, x > 0 whose solu-
tion in the present non-dimensional form was given by Wunsca (1969) and is:
¢ =cos [g In (ex — z) + o] —cos [ In {ex + 2) + wt] (14)
2nx 2 w* T
= ——— "= zm——— ., n=1In ¢
q e +T) : ﬁ;fz —&}2, £
In [
e =¥

and for which y < ¢ where y is the beach slope and ¢, the internal wave characteristic
slope. We also find:

N? ¢
o® = ———{ 2 e lg In{ex — 2) 4 wi] = Lokl [g In(ex + 2) + fu.r]} . [15)
(i) -z €x 4+ 2
At the next order, only time averages are needed. Averaging (11), (12), we have:
(o) A (0 P o
dx &z dz ox /

0z dx dx oz

Ex {G'“]} =3 < {Jlfm: 0 ?J.l*ra.{ﬂ] al&[u vz¢{n}> (17
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We need to evaluate quantities such as:

; f L

: i cx—2
{sin(g Inlex — z) + ) cos (g In(ex = z) + o)y = 5 sin [qu In (M 7y z]) (18)

and

1 -z
{sinlg lnlex — z) 4 widsin(g In{cx + z) + wi)) = 5 Cos (q In (:f % ,]) : (19
From (16), we find:
2“'2{_2

wlc?x? =z )2

_qh‘l (E:;;)J — cxsin Ifj‘ In (z;;i”} (209
}. (21)

MNote that (20) is the second order Eunlerian mean vertical velocity—a quantity that
vanishes over a flat bottom. We will temporarily postpone the determination of the
second order Eulerian mean horizontal velocity, the caleulation of which appears to
involve integration of (20).

The appearance of the mean change in buoyaney at 0 (g) is a direct consequence of
the need for a pressure gradient in the fluid to balance the Lagrangian drift velocity.
Mote that the effect diminishes as 1/x* away from the corner. In Fig. 2 is shown the
mean isopycnal displacement as generated by the first mode (n=1). To retain the
validity of the scaling, the expression (21) must not exceed ((1), or roughly, gfc<x.

If the rationalization given in the introduction is correct, the mean Stokes velocity
computed from (4) should be equal and opposite to (20). Doing the required algebra,

i
= () =

lE}'ZGDS
and from (17):

g’ + 1) fex —2 . fex—z\]
(a"11) = =) { o8 [qln ( )] + gexsin [qun [ J

{e?x? cx+z \CX 42

: i o
we do find indeed that {w,»> = — = {1 | In addition, we can find w,;

2% cx—2 . cx —2
w(c*x? —z%)? {—qcxcus[ g (fx + z)] R [qln (ﬁ'x + Z) ]} x =)

and by somewhat laborious algebra, it may be confirmed that in fact this is the
required integral and re-derivation in z to obtain &/dz {y*'"). Thus, we have confirmed
that the mean Lagrangian velocities are zero, Note that the second order velocity
field satisfies both the upper and lower boundary conditions.

Assume now that Fis the order of, but less than, one, to preserve an internal wave
range. The sequence of problems is now:

{ux> -

o(1): ¢ o Ny (23)
dt  dx
300 — (o)
vt = F gy 24)

ot dz
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= (0 Jgt™
= (V) - {": -— (25)

ox

)

gt & (ij a|5.{ﬂl_{::_|) Lo - ﬁ‘}.(l}
dx

- A= 2
ﬂf , dx Oz dz  dx (26)

apil) WAL e A Ot

Tt (- S a) o= @n

ot . ox “dz dz dx fz

i ayt g ait?® g {Jv“} dgtt!
~ Y ergtn o OO waaey "

T 4’”(& 2 ox azJ”' 3

Mote that il we formally put ¢ and ¥ =0 in these equations, they are identical to
those of (9) to (12) when the substitutions listed by VEroNis (1967) are made, reflecting
Lhe symmetry between rotating and stratified systems.

The order one problem leads to the same solution as (14) and (15), except now
¢ =(w® = F?)/(N? — @*) and we have:

—aF F
oy i | cos[gin(cx —z) + ] L

(cx —z)w (cx +2)m cos[gln{cx +z) + wi]

The time averages of (26) to (28) lead to:

l,.’al'ﬁ,t!] al#m!l fgl™ ﬁ¢fﬂl D@ '\II
2 Lo .
X dx >_< dx dz dz dx =)
a@.{l} f.'llfl'"m Al EL&{M Syl
F = - 30
< iz dx dz dz ax [/’ @

f'ﬂ#{,-(ﬂ} 20 _ 9 o 2. @2,10) et do'"!
\ g Vet - EII! i dz Vi =F = + = /" (30

It may be easily confirmed that (29) and (30) are consistent and lead back to (20) and
(22) as before, with the new definition of ¢. Now both the Coriolis forces and buoyancy
forces outlined in the introduction act to bring the mean Lagrangian velocity down to
zero. Equation (31) expresses the combined change in buoyancy due to the Reynolds
stresses, plus a buoyancy change due to the thermal wind. Note that to this order, we
can add an arbitrary steady v and &, such that

L pli. 8
e

without changing the Reynolds stress anywhere, Thus, the problem is degenerate; one
cannot tell how much of the isopycnal slope is due to the Reynolds stresses, and how
much to a long-shore, geostrophic flow.
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3., MAGNITUDE OF EFFECTS

The dimensional magnitude of (21) is N*Le*. Taking an oceanic value of N~
1073, a depth of water of L = 1km = 10° cm, and choosing e ~ 107!, equivalent to an
internal wave amplitude of 100 m, then with the relation:

Ac*

Az* = NI

we find a displacement Az of the isopycnals of 0(10%) cm, an observable amount in
principle. By letting £ —+ 1 of course, the effects become extremely large, but the
perturbation method fails then. This result does indicate, though, the potentially very
large effects of shoaling internal waves.

The dimensional Eulerian mean velocities are of order (a/L) & = NL &%, or about
| cmfsec a small but measureable amount in the absence of other mean currents.
Again, by pushing ¢ toward 1, the effects are potentially very large.

The most serious objection to the theory outlined here is the complete neglect of
dissipation. The linearized solutions (14) formally represent propagation of the waves
into the corner, where the energy density becomes infinite. On the other hand, the
criterion of linearity, that £ be small locally, is violated when x <g/c. Observations in
the laboratory by CaccHione (1970) and inference at Bermuda by WuwnscH (1971),
indicate that the solutions break down by releasing energy to mixing either in the
boundary layer at the bottom, or overturning of the waves themselves in a breaking
mechanism. Once this breakdown occurs of course, the constraint generating the
‘set” effect is also broken, at least partially. If the mixing occurs high up on the
slope, as it seems to in the laboratory, then the set-up effects occur below the isopycnal
that demarcates the lower edge of the mixing zone. Above this isopycnal there
would be a Lagrange drift and, depending upon the degree of mixing, this drift could
be less than or greater than that predicted by the linear solutions (20, 22), Note that
the solutions (20) and (22) indicate now that a current meter would indeed measure
a mean Eulerian current while a Lagrangian device would show no net displace-
ment, in distinct contrast to the case in a flat bottom channel in the absence of
rotation.

It may appear to be paradoxical that the mass and wave fields at an infinite distance
are affected by the presence of the beach. But, this is just a result of the ellipticity of
the full-non-linear system : the boundary values determine the mean interior fields. The
linear wave equation is hyperbolic, but this character is an approximation.

An attempt is made in HoGa (1971) to compare these and more extensive calcula-
tions to observations near Bermuda. The difficulties, besides those of observing small
average effects in the presence of large fluctuations, are that the solutions should
depend partially upon the essentially unknown degree of mixing, and perhaps just as
basically upon the fact that the observed internal wave field has a continuous spectrum
and is not an infinitely long wave train at a single frequency. The calculations for a
spectrum are considerably more difficult and are not attempted here. The calculation
here has been greatly simplified, moreover, by restricting attention to the mean inter-
actions; ultimately one would like to examine the possible slow modulations generated
by non-harmonic interactions.
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