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The two-state Stommel box model, commonly invoked as an ocean circulation analog, is
dynamically equivalent to a one-dimensional fluid Ideplled “loop-Stommel” modejsAlthough

it dominates the energy input to the ocean circulation, the wind stress is usually omitted from the
discussion. Here we briefly explore the behavior of loop-Stommel models in the presence of stress,
with both thermal and salinity sources. Although the unstéBlayleigh—Bénardconfiguration is
considered, most interest lies with buoyancy sources at the same geopdtgpéed convection

In addition to the nondimensional stress, the multiple solutions depend upon the Rayleigh and
Prandtl numbers with the latter primarily determining the stability of the possible steady states.
Salinity forcing in a double-diffusive configuration introduces another stable mode.

© 2005 American Institute of PhysidDOI: 10.1063/1.1927887

I. INTRODUCTION thermodynamics. Altogether, this literature concerns the ex-
tent to which the ocean can have a significant “thermohaline
The two-box model of Stommelcalled S61 has often  circulation™’ in the absence of an energetically dominant
been used to represent and analyze the ocean circulation andhd stress driving? An alternative energy source for the
its climate role. This model, with various modifications, dis- observed circulation lies with tidal forcirg.Wunsch?* dis-
plays multiple equilibria and other interesting behaviors.cussed the shifts in ocean circulation that could occur given
Three-, four-, eight-, and even sixteen-box motiélsvere  a major change in tidally governed deep-ocean mixing, as
subsequently formulated to increase both the horizontal anchight have occurred during the last deglacial period. The
vertical resolutions, but whether multiple box models morewind field, however, appears ultimately to be a much greater
closely represent the ocean is unknown. source of enerd}?’lg and general circulation theories of the
A superficially different class of fluid models is that of ocean are dominated by the effects of wifld.
one-dimensional fluid loops. Such models have applications The purpose of this paper is thus to more fully, but
in solar-heated water systems, nuclear reactors, and geothéiefly, understand the behavior of “loop-Stommel” models
mal energy systems, and have been widely studaften  (the term we use for the generalized one-dimensional system
called “thermosyphong’ The heated loop system exhibits representing both S61 type models and loop configurations
several interesting features including instabiliies andin the presence of buoyancy forcirigmperature and salin-
chaos™® and is easier to analyze than the S61 model. ity) and a stress field. We explore the role stress plays in the
Kinematically and dynamically, however, the original loop-Stommel system, with a focus on type 1 and type 3
Stommel model is isomorphic to the one-dimensional flow inconvection(in the terminology of Wunsch and Ferrafji
a fluid loop, as has been recognized by a number of author§ome configurations, such as the loop heated in the
including, e.g., Welandérin two recent paper¥ ™ the be-  Rayleigh-Bénard configuration, lead to a Loréngystem;
havior of the fluid loop was exploited to understand the bemore generally, we will discuss the existence of multiple
havior of what is meant to be the physical analog of the S62quilibria and their stability.
model to the full ocean circulation. Temperature and salinity
forcing were used, and a stress component was introduced f
represent the wind field. Earlier, Stommel and Rdbtrad
briefly described the influence of stress on a purely thermally  The same circular loop as discussed by Wuﬁ%a*(see
driven version of the S61 model. The context of some of theFig. 1) is used.¢ is measured along the loop frogh=—7 at
recent discussions of wind stress influence on mass and hee lowest point around the loop anticlockwise wibl 0 at
transport properties of the ocean arises from the growinghe highest point. Assume that the loop is sufficiently thin
realizatior®'® that purely buoyancy-driven circulations in such that the flow is everywhere the same, and denoteiit by
an ocean configuration, where heating and cooling are at th@ be suggestive of an oceanic overturning velocity. A heat
same geopotential, raises serious issues of energetics agdurce is applied ab, and a cooling one ap_.
The governing equations for temperatidirand salinityS
dE|ectronic mail: syuan@mit.edu are
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FIG. 1. Model schematifrom the work of WunsctiRefs. 10 and 1j. The
system consists of a loop with heating and cooling sources=ap.. The
azimuthal anglep is measured relative to the loop top and the gravity force
is downward. The loop radius &
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where «1 and kg are the thermal and salinity diffusivities.
&(¢) is the Dirac delta functionT, and §, are dimensional
constantsh(t) is the Heaviside function, making it possible
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where the primes have been dropped from the nondimen-
sional variablesR, and P, are the Rayleigh number and
Prandtl number for the loop mod&,and \ is the Lewis
number, the ratio of the salinity diffusivitys to the thermal
diffusivity «7. The nondimensionalization differs from that
used previously, but proves slightly more convenient for
present purposes. Equatiof—(7) form the basic nondi-
mensional equation set that will be used in the following
discussion.

to study the evolution of the system when heat and salf; THERMAL FORCING WITH STRESS

source/sinks turn on at0.

The momentum equation, in the Boussinesq approxima-

tion, is
oW 1%
—:——p+g£sin¢—sw+r, (3
ot apodd  po

where € is a Rayleigh friction coefficient. In this limit, the

Fluid loops (rectangular or circulardriven by purely
thermal flux have been investigated in great detail. To study
most simply the interaction between stress and thermal forc-
ing, salinity is temporarily suppressed. Wun¥ctiscussed
steady solutions of this type, but the transient behavior and
the stability properties of the steady solutions need further
investigation. Sincd is necessarily periodic i along the

: . . 0 : .
stressr is an externally prescribed body force used to mimicloop,”*° the solution can be written as

the effects wind stress plays in the ocean.
For maximum simplicity, density is calculated using a
linear equation of state

p(¢vt) = pO[l _ATT(¢vt) + Ass(¢at)]
Integrating Eq(3) around the loop yields

w_g ("

p" 2—j [~ ArT(¢) + AS(¢)]sinp dp— ew + 7.
™ -

4)

The system is now nondimensionalized,
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T(p) = X ay()e. (8)
n=-—o
Substituting into Eq(5), one readily finds that foe.,

day(t : _

a—l():(— W= 1)a; +e'% -, 9

dt
da_q(t . .
ad—i():(iw— Doy +eb—e?- (10)

and the integrated form df7) becomes
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27 dw m - L
5 oo Raf [y (€ + a_y()e"Isin ¢ dep
P, dt .

- 27W + 2777, (11)

If a is written asa;=a;+ib,, following Malkus, we obtain

the resulting equations describing the time-dependent sys

tem:
1 dw
P dt LW 2
dy
g - At b+ cosg, —cosg, (13)
db
d—tlz—bl—alw—sin¢++sin¢_. (14)

Setting the time derivative terms in Eq4.2—(14) to zero
yields the steady solutions for the system, as the raots$
the cubic equation

COS¢, — COS¢h_

1+w? a

Sing, —sin¢_

1+w?

=w-r7. (15

A. A chaotic system

Let a=P,, r=R,(cos¢_—cosg,). r is a measure of the
thermal forcing strength. The linear transformatigsw, y
=bR,, z=a1R,+r, leads to

dx

a=a(y-x+ 7,

d
d—)t/: rx —y—xz+(sin ¢_ - sin ¢,)R,,

dz

—“=xy-z, 16

itk (16
and the steady solutions farare given by

X= 72+ (1-r)x+Ry(sin¢, —sin¢_) - 7=0. (17)

1. Free Lorenz system

If the stress is removed;=0, and ¢, and ¢_ satisfy
d.=m—¢_, 0< Pp_< /2, that is, heating below cooling—

the Rayleigh—Bénard configuration, the equations can be r

duced to the Lorerf2 equations

dx

a:a(y—x),

dy _
dt—rx y — Xz,

d
—Z:xy— bz,

at (19

e_
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FIG. 2. Roots of Eq(19) for w(7) for varyingr with P,=10. Lines marked

by circles suggest the solutions are stable and thereafter. Wh&d (thin

line), two of the three solutions are stable between the two vertical dotted
lines; whenr =20 (thick line), none of the three solutions is stable between
the two vertical dashed lines.

expected. Putting the heat sourcedat=7 and the cooling
source aip_=0 recovers the case discussed by TriftoWwe
will not dwell on this much-studied system.

2. Lorenz system with stress

As shown in Eq(16), the forcing terms in the governing
equations can be attributed either to the stress term or to the
asymmetry of the heat forcing. For the cage== and ¢_
=0 (type 1 convectionwith stress, Eq(17) reduces to

=+ (1-r)x—7=0. (19)

Whenr =0, there is no thermal forcing, and the basic balance
is between stress and friction, so that the steady solution is
necessarilyw=7. The steady solutions and their stability
properties corresponding te=10 andr =20 are displayed in
Fig. 2. Lines marked by circles indicate the solutions are
stable to small perturbationstability properties are deter-
mined by a regular stability analysis, see Appendix Mul-

tiple steady state@~ig. 2) are found between the two vertical
dotted lines; whem=20, there are no stable steady solutions
between the two dashed lines. The nonexistence of steady
stable states enriches the behavior of the system.

For greater clarity, the bifurcation diagram correspond-
ing to 7=0 and7=1 is shown in Fig. 3. If7=0 (thin line),
there is a supercritical pitchfork bifurcatithat r=1. But
when r>17.5, all three solutions become unstable. When
stress is applied, the pitchfork disconnects into two pieces.
With thermal forcing increasing from zero, the lower branch
is not accessible without large disturbances. Similarly, when
r>21.3, there are again no stable steady solutions. Further
investigation shows that for moderatea parameter range of
multiple equilibria and chaos can be found. As an example,
the time evolution ofk andy for a specific parameter set
=10,r=20, andr=1 is shown in Fig. 4, which is evidently

with b=1. With appropriate parameters, chaotic behavior ishaotic.
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FIG. 3. Bifurcation diagram ofv(r) with P,=10. Whenr=0, a supercritical ~ FIG. 5. Roots of Eq(21) for w(7) for varying R, with P,=10. Thin line
pitchfork bifurcation atr=1 is found (thin lineg, and if r>17.5, all the indicatesR,=0; thick line suggest®,=5.

solutions are unstable; wheix 1, the pitchfork disconnects into two pieces

(thick lines, and ifr>21.3, all the solutions are unstable.

B. Oceanic analog

A more direct ocean analog puts the heating and the
Without stress, chaotic behavior can also exist withcooling points at the same leveb,=—¢_=m/4 (type 3 con-
asymmetric heating. For simplicity, settirty =7 leads to vection, with stress. The effects of the stress on the system
5 . and the model sensitivity to other parameters are of interest.
x*+(1-r)x-Rsin¢_=0. (200 In this caser=0, and Eq(17) reduces

By analyzing this equation and the corresponding solution W3- 7w?+w— 7+ \s‘ERa: 0. (21
pro_pe_rtles, we can find chaotic behawor_and multl_ple equi- 1 two parameters andR, determine the steady flow
libria in some parameter ranges. Further investigation shows

that with both stress and asymmetric heat forcing, the resultr—ates’ whose stability properties are affected by the Prandt

) . - numberP,. Figure 5 showsv(7) corresponding to different
Ing equations are similar to those analyzed by Pafthand Rayleigh numbers witti?,=10. WhenR,=0, the circulation

the behavior he discussed is expected here in the approprlalg;\_'edriven only by stress. WheR,=5, the thermal contribu-
parameter ranges.

Type 1 convection is of interest in its own right. Its ap- tion becomes significant. Witkr<<0, both thermal forcing

L and stress act together to drive the flow clockwise, making
plicability to the ocean would be through the effects of geo- .
. . . the upper level fluid flow from warm to cold. Although the
thermal heating, but the oceanic response is of second : o
25 curve of w(7) shifts quantitatively from the no-stress case
order: ol .
(see wunsclf for a more specific discussignno new be-
havior appears. However, in natural convective systems,
such as estuaries and ocean gyres, the applied wind stress
20 . . . . — tends at least in part to oppose the buoyancy forces, which
R suggests>0. Figure 5 displays witlR,=5 (thick line) that
15¢ o . 1 multiple states are possible in the range<8A<7.1. 7 has
) : to be strong enough to compete with the thermally forced
. flow, but not so strong that the thermally forced motion will
be totally suppressed.
. To see the behavior more clearly, stability diagrams in
parameter space are shown in Fig. 6: in the dotted region,
. two of the three solutions are stable, indicating multiple
equilibria; in the dark triangular region, one of the three so-
. lutions is stable; elsewhere, only one, stable, solution exists.
The dashed line corresponds to the example given in Fig. 5.

-5

1. Dependence of final state on stress

-15 ' ' P s 10 15 20 As shown in Fig. 5 wittR,=5 (thick line), if the stress is

x gradually increased from zero, the clockwise flow rate de-
FIG. 4. The evolution ok andy in phase space with zero initial conditions. Cr€as€s gr?dua”y until a _cr|t|caI= V2R, is reached, where
HereP,=10,r=20, andr=1. the circulation stalls, as discussed by Stommel and Rboth.
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FIG. 6. Stability diagrams in parameter spagand = with P,=10. In the ar S g;;’:;gﬁn;d?:a-v;/g 7]
dotted region, two of the three solutions are stable; in the dark triangular N — Heat Flux ¢
region, one of the three solutions are stable; in other regions, only one, ! ' !
stable, solution exists. 5
Y
If the stress is increased further, the circulation will jump £ o
from the lower to the higher branch and its direction is re- 2
versed. If the stress is decreased from a high value, a simila
jump occurs. -2
As an example, let the applied stress be5 initially,
with zero initial conditions an®, =10, R,=5. When the sys-
tem becomes steady, the stress is decreased4cand then -4
to 7=3. The flow transitions from a stress-driven mode to a ) , , ) ) )
thermally driven one(Fig. 7), which implies that small 3 2 1

0
changes in stress can lead to radically different behaviors. ’
However, if the applied stress is=3 initially, and increased FIG. 8. Temperature distribution and heat flux in the steady states corre-
to 7=4 and thenr=5, the steady states change littkhe sponding to different modega) Stress-driven mode(j) thermally driven
system remains in a stress-driven mpa#owing the depen- Mede: HereRa=5, P =10, andr=4.

dence of the final states on the initial conditions.

Figure 5 shows that when the circulation is in a stress-
6 ' ' — 50 driven mode,w is only slightly smaller than that withR,
— =40 =0, implying that the buoyancy contribution is very small.
-= =30

The temperature distribution in the loops corresponding to
i the two different modes is shown in Fig. 8. If, as in the work
of Wunsch®® the present loop is mapped onto a pseudo-
' oceanographic form with the two regions/4< ¢<m and

! -r<¢=<-m/4, as though they were a tropical and polar
! oceanic box, then it is evident that in the stress-driven mode
' both boxes are weakly stratified, consistent with what Fig. 5
i

i

'

pear

implies (buoyancy effects are wepKn contrast, in the ther-
mally driven mode, there is a strong stratification in the
tropical box, but a weak stratification in the polar box, so the

o
—
-

; s resulting buoyancy effect becomes the dominant driving
\ i force in the system.
-2 - = v 5 It is of interest to investigate the heat transpdf{g))

=wT-dT/d¢ corresponding to the different modes. In this
model, heat flux is externally applied, with heat transported
FIG. 7. Time evolution ofn(t) with zero initial conditions. In the first case from ¢=7T/4 to ¢=_7T/4 Althouah the model exhibits mul-

(a), stress is decreased from5 to 4 and 3; in the second cad®, stress is . . ’ g .

increased fronr=3 to 4 and 5. Within each step, a steady state is reachedtiPl€ states in the sense of the circulation, the heat transports,

R,=5, P,=10 for both cases. however, must remain unchanged in different modes in a
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onl

4
a Ra
FIG. 9. Roots of Eq(21) for w(R,) for varying 7 with P,=10 corresponding

FIG. 10. Stability diagrams in parameter sp&geand 7 with infinitely large
to 7=0 (thin line) and 7=4 (thick line). y diag P P&ty v arg

Prandtl number. In the dotted region, two of the three solutions are stable; in
the dark triangular region, one of the three solutions is stable; in other
regions, only one, stable, solution exists.

steady state(Fig. 8). Further exploration(Appendix B
shows thatF(¢)==/2 in the upper branch, and(¢)
=-3r/2 in the lower branch, whose ratio does not shift no ~ An important inference from the analysis above is that
matter how the controlling parameters change. In a stead{?® initial conditions will determine the final states of the
state, advection and diffusion always compensate to produc®y/Stem if all the controlling parameters are fixed. Figure 12
the correct total. shows the time evolution oy and b, with different initial

If the loop model is considered an analog of multistateconditions in phase space. The parametersraé, R,=3,
ocean circulationwithout salinity in this case it implies ~ and Pr=+o, which mplles thatw is a d'aQ”OSt_'C variable
that a slight change of the wind stress can lead to totalyloW, W=7+Rgb;, obtained from Eq(12). According to the
different modes. Once the system is forced across a thresgigenvalues of the stability matrid andC are stable spirals

old, it tends to stay in the new mode, even when the wingVhile B is an unstable saddle point. .
stress is restored to its original value. Box models are widely used to mimic the multiple states

of the oceart~®In these papers, a frictional balance was used
to determine the meridional transport, based on the idea that
the adjustment time scale of the temperature and salinity

Wunsch® gave a detailed discussion of the thermallyfields is much longer than that of the velocity fields. The
driven circulation. Here the case witt¥0 (Fig. 9) is shown  resulting steady states correspond to having an infinitely
only for completeness. WheR,=0, there is no circulation.
As R, grows, the circulation rate also increases.

When positive stress is applidfig. 9, 7=4), multiple
steady states are found as expected in the parameter ran¢ |
2.8<R,<7.7. Numerical integration shows that a slight
change inR, can also lead to a transition from a thermally
driven mode to a stress-driven mode and vice versa.

2. Dependence of final state on Rayleigh number R

ANV
\J

3. Dependence of final state on Prandtl number P,

As already notedy and R, determine the steady solu-
tions of the system, anB, affects the stability properties of or 7
these solutions. Figure 10 is similar to Fig. 6 but now with
infinitely largeP,. One infers that with smaller inertigarger
P,), the circulation tends to become more unstable. As an |
example, consider the transient behavior of the sysiem
=6,7=4,P,=20) with initial conditions w=3.278,a; . ' ) :
=-0.395,b;=-0.12 shown in Fig. 11. The initial conditions 0 %0 t 100 150
are one of the stable steady states correspondirigy£d 0.

— ; ; ; FIG. 11. Time evolution ofw(t) with initial conditions w=3.277 &,
WhenP, =20, this mode is no longer stable, and the circula =-0.395.b,=-0.120. The parameters af =20, 7=4, and R.~6. The

tion undergoes a transition to become a thermally drivenyien initial conditions are the stable steady solutions correspondiiRy to
mode. =10.
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FIG. 12. Time evolution of; andb; with different initial conditions. The  FIG. 13. Roots of Eq(24) for w(7) with P,=10 corresponding td&R,=0
parameters are=4, R,=3, andP, = +%. PointsA andC are stable spiral8 (thin line) andR,=4 (thick line). The parameters a®=0.005,A=0.1, and
is an unstable saddle point. P,=4.

large Prandtl number in the loop model, as shown in Figs. 10
and 12. In Fig. 12, onhA is a thermally driven mode. dc,
Even without salinity forcing, an imposed stress can ¢
cause very complex behavior in the circulation and tempera-
ture distributions. The final states are sensitive to all the pa- dd, =
rameters, includind®, ,R,, 7, and the initial conditions. T Ay —CW— V2. (23¢
We now turn to the problem with added salinity forcing.
Two more parameterd) and A as defined above, now ap-
IV. SALINITY, TEMPERATURE, AND STRESS pear. From the above equations, the steady solutions fer

= )\Cl + d]_W, (23d)

Bryan26 and many others have used mixed boundary = 1 D
conditions in ocean circulation and climate models. This ter- V2Ry( - 1+w2 * A2+ w2 weT (24)
minology implies the use of the flux condition for salinity ] . o
and a restoring one for temperature. Restoring to a climatoltiére we confine ourselves to exploring only a limited param-
ogy is used to either mimic a simple atmospheric feedback ofter range.
to force the system to be more realistic when it drifts under ) S
pure thermal flux boundary conditions. For the one-A- !dentical thermal/salinity diffusivities
dimensional loop, the introduction of the restoring term pro-  With equal thermal and salinity diffusivities, E§24)
duces a virtual energy sourt®and the physical reality of reduces to
the resulting solutions is difficult to assess. We will therefore

omit the use of restoring in the present system. V2R (D = 1) = (W= )(1+w). (29
~As with temperature, a Fourier series is defined for saclearly, the salinity forcing appears only as a direct counter-
linity, effect of the thermal forcing, the extent to which depends on
o the value of the paramet®, a conclusion dependent upon
S(,t) = >, By(HE?. (22)  the linear equation of state.

This configuration is interesting only when temperature

The evolution equations can be obtained by substituting Eqénd_ salfc diffus_ivities differ(double diffusion, or when re-
(8) and (22) into Egs. (5)—(7), with ay=a, +ib; and B,=c storing is applied to at least one of temperature and salinity
' ’ asin thus producing an effective “double diffusion.”
e 77 (asin S61th d ff double diff

+id4:
ldw_ Rb. R Dd Wt (233 B. Different thermal/salinity diffusivities
—Rab1 ™ Rg UL ™ ’
P, dt A Diffusivity is infinite in the S61 model and in most of its
q successors, so that restoring boundary conditions are neces-
da _ _ + sary there for the presence of multiple states. However, mul-
a; + byw, (23b)
dt tiple equilibria can also be found because of double-diffusive
db process. As an example, fix=0.1, D=0.005, andP,=10.
o _ by — aw— \E, (230 T_he stead_y sc_)lut|onw(r) and their stability _propertles are
dt displayed in Fig. 13. WheR,=0, the system is stress driven
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again, but if the Rayleigh number is increasedte4, mul-  appropriate simple parametrization were known, one could
tiple states are found. Now in the parameter range<3:5 explore the behavior of a system even more directly depen-
<5.9, five solutions appear, with three stable ones. Comeent upon the windstress. Such exploration, without a known
pared with Fig. 5, the upper branch in Fig. 13, to some ex{parametrization, is beyond our intended scope.
tent, can be regarded as stress dominant; the middle stable Application of the loop-Stommel models to an analysis
branch, salinity dominant; the lower stable branch, thermallyof the behavior of three-dimensional global circulation mod-
dominant. In contrast to box models, this model has onels (GCMs) and to the real ocean must be done very cau-
more stress-driven mode. Again, when the circulation is irtiously. The extent to which a three-dimensional circulation
the stress dominant branch, the circulation rate is onlyesulting from buoyancy and stress forcing can be reduced to
slightly smaller than that without thermal and salinity forc- the behavior of a one-dimensional loop model remains un-
ings. clear. If it is a valid reduction, one has achieved a notable
Due to the difference in diffusivities, the introduction of simplification of the ocean modeling problem, but demon-
salinity forcing yields one more stable mode. Using the samstrating such validity is again beyond our present scope.
methods as above, we can find a similar behavior as dis-
cussed in last section, but no qualitatively different result IS\ CKNOWLEDGMENTS
expected.
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Much of the recent literature relevant to the loop-
Stommel models concerns the issue of the energy sourc
driving the ocean circulatiot? *®%’As already noted, restor-
ing boundary conditions introduce the possibility of unphysi-
cal energy sources. More genera}ﬁ)although the ocean cir- APPENDIX A: STABILITY ANALYSIS
culation involves truly massive energy reservoirs, it is only . o ) .
the comparatively modest inputs of energy from the surface  Regular stability analysis is used to determine the stabil-
(and the tides of the abysthat appear to sustain the circu- ity of the steady solution. We consider small deviations from
lation. the steady state, writingr=w+w’, a;=a;+a;, and b;=b;

With molecular mixing, as in the experiments of +h! wherew, a;, andb, are the corresponding steady solu-
Rossby® and Wang and Huang, the internal energy of the tions, and can be calculated from HG6),
fluid is the source of the mixing motions. In the ocean, the _ _
turbulence induced mechanically by wind and tides is re- y-x+7=0,
quired. Whether type 3 convection can generate an intense
enough large scale flow to produce a turbulent, mixed, inte-
rior with finite stratification remains a point of serious con-  __ __
tention in the literaturé®>*®?’Even the definition of “turbu- xy -z=0.

lence” is in dispute, and as the loop-Stommel model cannof js obvious that they are equal to the values obtained from
develop three-dimensional motions, this interesting subject igq_ (19). At the same time, the linearized equations describ-

X -y-Xz=0,

not pursued here. ing w', a;, andb} are obtained:
VI. CONCLUSIONS A
dt ’
Although initially appearing to be a simple system, the
one-dimensional circular loop exhibits remarkably intricate dy -
behavior, including the chaotic regime of the Loréhgys- at X' -y -xz - zx',

tem. Stress forcing changes the behavior both qualitatively
and quantitatively. Given the dominance of the wind field in ,

determining the oceanic circulation, and the use of loop- —Z:Yy’ +yx' -7

Stommel models as a circulation analog, an awareness of the

influence of stress becomes very important. The stability anghtroduce a time factor by letting

evolution of various regimes depends not only upon the ther-

mal and salinity Rayleigh numbers, but also on the Prandtl X' =%, y'=9ye”, 2/ =2z".

number, the stress sign and magnitude, and the time hism@ubstituting into the equations above, we obtain
of the introduction of the various forcing functions. Stress

effects, here appearing as a body force, in particular, can -« a 0 X X
greatly change the solutions derived from buoyancy forcing r-z -1 -X||y|=0l¥
alone. v X “_1/\s 5

An interesting complication arises from the likelihood
that the mixing coefficients, and hence the Rayleigh andolving the eigenvalue problem of the perturbation matrix
Prandtl numbers, are controlled by the magnitude.df an  determines the stability of the steady solutions to tiny pertur-
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bations[see the works of Welandeor Strogat%3 (pp. 129-
138 for more examplels

APPENDIX B: HEAT TRANSPORT IN A STEADY
STATE

In a steady state, Eq45) can be solved directly in real
exponentials,

C, + Ce"%lw,
Cy+ C.e"%w,

-mld < < mld

T(¢)= 7ld < p<Tml4,
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