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The two-state Stommel box model, commonly invoked as an ocean circulation analog, is
dynamically equivalent to a one-dimensional fluid loopscalled “loop-Stommel” modelsd. Although
it dominates the energy input to the ocean circulation, the wind stress is usually omitted from the
discussion. Here we briefly explore the behavior of loop-Stommel models in the presence of stress,
with both thermal and salinity sources. Although the unstablesRayleigh–Bénardd configuration is
considered, most interest lies with buoyancy sources at the same geopotentialstype 3 convectiond.
In addition to the nondimensional stress, the multiple solutions depend upon the Rayleigh and
Prandtl numbers with the latter primarily determining the stability of the possible steady states.
Salinity forcing in a double-diffusive configuration introduces another stable mode.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1927887g

I. INTRODUCTION

The two-box model of Stommel1 scalled S61d has often
been used to represent and analyze the ocean circulation and
its climate role. This model, with various modifications, dis-
plays multiple equilibria and other interesting behaviors.
Three-, four-, eight-, and even sixteen-box models2–4 were
subsequently formulated to increase both the horizontal and
vertical resolutions, but whether multiple box models more
closely represent the ocean is unknown.

A superficially different class of fluid models is that of
one-dimensional fluid loops. Such models have applications
in solar-heated water systems, nuclear reactors, and geother-
mal energy systems, and have been widely studiedsoften
called “thermosyphons”d. The heated loop system exhibits
several interesting features including instabilities and
chaos,5–9 and is easier to analyze than the S61 model.

Kinematically and dynamically, however, the original
Stommel model is isomorphic to the one-dimensional flow in
a fluid loop, as has been recognized by a number of authors,
including, e.g., Welander.6 In two recent papers,10,11 the be-
havior of the fluid loop was exploited to understand the be-
havior of what is meant to be the physical analog of the S61
model to the full ocean circulation. Temperature and salinity
forcing were used, and a stress component was introduced to
represent the wind field. Earlier, Stommel and Rooth12 had
briefly described the influence of stress on a purely thermally
driven version of the S61 model. The context of some of the
recent discussions of wind stress influence on mass and heat
transport properties of the ocean arises from the growing
realization13–16 that purely buoyancy-driven circulations in
an ocean configuration, where heating and cooling are at the
same geopotential, raises serious issues of energetics and

thermodynamics. Altogether, this literature concerns the ex-
tent to which the ocean can have a significant “thermohaline
circulation”17 in the absence of an energetically dominant
wind stress driving? An alternative energy source for the
observed circulation lies with tidal forcing.13 Wunsch11 dis-
cussed the shifts in ocean circulation that could occur given
a major change in tidally governed deep-ocean mixing, as
might have occurred during the last deglacial period. The
wind field, however, appears ultimately to be a much greater
source of energy18,19 and general circulation theories of the
ocean are dominated by the effects of wind.20

The purpose of this paper is thus to more fully, but
briefly, understand the behavior of “loop-Stommel” models
sthe term we use for the generalized one-dimensional system
representing both S61 type models and loop configurationsd
in the presence of buoyancy forcingstemperature and salin-
ityd and a stress field. We explore the role stress plays in the
loop-Stommel system, with a focus on type 1 and type 3
convectionsin the terminology of Wunsch and Ferrarri18d.
Some configurations, such as the loop heated in the
Rayleigh–Bénard configuration, lead to a Lorenz21 system;
more generally, we will discuss the existence of multiple
equilibria and their stability.

II. A SIMPLE MODEL

The same circular loop as discussed by Wunsch10,11 ssee
Fig. 1d is used.f is measured along the loop fromf=−p at
the lowest point around the loop anticlockwise withf=0 at
the highest point. Assume that the loop is sufficiently thin
such that the flow is everywhere the same, and denote it byw
to be suggestive of an oceanic overturning velocity. A heat
source is applied atf+ and a cooling one atf−.

The governing equations for temperatureT and salinityS
areadElectronic mail: syuan@mit.edu
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where kT and kS are the thermal and salinity diffusivities.
dsfd is the Dirac delta function;T0 and S0 are dimensional
constants.hstd is the Heaviside function, making it possible
to study the evolution of the system when heat and salt
source/sinks turn on att=0.

The momentum equation, in the Boussinesq approxima-
tion, is
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wheree is a Rayleigh friction coefficient. In this limit, the
stresst is an externally prescribed body force used to mimic
the effects wind stress plays in the ocean.

For maximum simplicity, density is calculated using a
linear equation of state

rsf,td = r0f1 − DTTsf,td + DSSsf,tdg.

Integrating Eq.s3d around the loop yields
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where the primes have been dropped from the nondimen-
sional variables.Ra and Pr are the Rayleigh number and
Prandtl number for the loop model,10 and l is the Lewis
number, the ratio of the salinity diffusivitykS to the thermal
diffusivity kT. The nondimensionalization differs from that
used previously, but proves slightly more convenient for
present purposes. Equationss5d–s7d form the basic nondi-
mensional equation set that will be used in the following
discussion.

III. THERMAL FORCING WITH STRESS

Fluid loops srectangular or circulard driven by purely
thermal flux have been investigated in great detail. To study
most simply the interaction between stress and thermal forc-
ing, salinity is temporarily suppressed. Wunsch10 discussed
steady solutions of this type, but the transient behavior and
the stability properties of the steady solutions need further
investigation. SinceT is necessarily periodic inf along the
loop,7,10 the solution can be written as

Tsf,td = o
n=−`

`

anstdeinf. s8d

Substituting into Eq.s5d, one readily finds that fora±1

da1std
dt

= s− iw − 1da1 + e−if+ − e−if−, s9d

da−1std
dt

= siw − 1da−1 + eif+ − eif−, s10d

and the integrated form ofs7d becomes

FIG. 1. Model schematicffrom the work of WunschsRefs. 10 and 11dg. The
system consists of a loop with heating and cooling sources atf=f±. The
azimuthal anglef is measured relative to the loop top and the gravity force
is downward. The loop radius isa.
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If a1 is written asa1=a1+ ib1, following Malkus,7 we obtain
the resulting equations describing the time-dependent sys-
tem:

1

Pr

dw

dt
= Rab1 − w + t, s12d

da1

dt
= − a1 + b1w + cosf+ − cosf−, s13d

db1

dt
= − b1 − a1w − sinf+ + sinf−. s14d

Setting the time derivative terms in Eqs.s12d–s14d to zero
yields the steady solutions for the system, as the rootsw of
the cubic equation

− wRa
cosf+ − cosf−

1 + w2 − Ra
sinf+ − sinf−

1 + w2 = w − t. s15d

A. A chaotic system

Let a=Pr , r =Rascosf−−cosf+d. r is a measure of the
thermal forcing strength. The linear transformation,x=w, y
=b1Ra, z=a1Ra+r, leads to

dx

dt
= asy − x + td,

dy

dt
= rx − y − xz+ ssinf− − sinf+dRa,

dz

dt
= xy− z, s16d

and the steady solutions forx are given by

x3 − tx2 + s1 − rdx + Rassinf+ − sinf−d − t = 0. s17d

1. Free Lorenz system

If the stress is removed,t=0, and f+ and f− satisfy
f+=p−f−, 0øf−,p /2, that is, heating below cooling—
the Rayleigh–Bénard configuration, the equations can be re-
duced to the Lorenz21 equations

dx

dt
= asy − xd,

dy

dt
= rx − y − xz,

dz

dt
= xy− bz, s18d

with b=1. With appropriate parameters, chaotic behavior is

expected. Putting the heat source atf+=p and the cooling
source atf−=0 recovers the case discussed by Tritton.22 We
will not dwell on this much-studied system.

2. Lorenz system with stress

As shown in Eq.s16d, the forcing terms in the governing
equations can be attributed either to the stress term or to the
asymmetry of the heat forcing. For the casef+=p and f−

=0 stype 1 convectiond with stress, Eq.s17d reduces to

x3 − tx2 + s1 − rdx − t = 0. s19d

Whenr =0, there is no thermal forcing, and the basic balance
is between stress and friction, so that the steady solution is
necessarilyw=t. The steady solutions and their stability
properties corresponding tor =10 andr =20 are displayed in
Fig. 2. Lines marked by circles indicate the solutions are
stable to small perturbationssstability properties are deter-
mined by a regular stability analysis, see Appendix Ad. Mul-
tiple steady statessFig. 2d are found between the two vertical
dotted lines; whenr =20, there are no stable steady solutions
between the two dashed lines. The nonexistence of steady
stable states enriches the behavior of the system.

For greater clarity, the bifurcation diagram correspond-
ing to t=0 andt=1 is shown in Fig. 3. Ift=0 sthin lined,
there is a supercritical pitchfork bifurcation23 at r =1. But
when r .17.5, all three solutions become unstable. When
stress is applied, the pitchfork disconnects into two pieces.
With thermal forcing increasing from zero, the lower branch
is not accessible without large disturbances. Similarly, when
r .21.3, there are again no stable steady solutions. Further
investigation shows that for moderatet, a parameter range of
multiple equilibria and chaos can be found. As an example,
the time evolution ofx andy for a specific parameter sets
=10, r =20, andt=1 is shown in Fig. 4, which is evidently
chaotic.

FIG. 2. Roots of Eq.s19d for wstd for varying r with Pr =10. Lines marked
by circles suggest the solutions are stable and thereafter. Whenr =10 sthin
lined, two of the three solutions are stable between the two vertical dotted
lines; whenr =20 sthick lined, none of the three solutions is stable between
the two vertical dashed lines.
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Without stress, chaotic behavior can also exist with
asymmetric heating. For simplicity, settingf+=p leads to

x3 + s1 − rdx − Rasinf− = 0. s20d

By analyzing this equation and the corresponding solution
properties, we can find chaotic behavior and multiple equi-
libria in some parameter ranges. Further investigation shows
that with both stress and asymmetric heat forcing, the result-
ing equations are similar to those analyzed by Palmer,24 and
the behavior he discussed is expected here in the appropriate
parameter ranges.

Type 1 convection is of interest in its own right. Its ap-
plicability to the ocean would be through the effects of geo-
thermal heating, but the oceanic response is of second
order.25

B. Oceanic analog

A more direct ocean analog puts the heating and the
cooling points at the same level,f+=−f−=p /4 stype 3 con-
vectiond, with stress. The effects of the stress on the system
and the model sensitivity to other parameters are of interest.
In this case,r =0, and Eq.s17d reduces

w3 − tw2 + w − t + Î2Ra = 0. s21d

The two parameterst andRa determine the steady flow
rates, whose stability properties are affected by the Prandtl
numberPr. Figure 5 showswstd corresponding to different
Rayleigh numbers withPr =10. WhenRa=0, the circulation
is driven only by stress. WhenRa=5, the thermal contribu-
tion becomes significant. Witht,0, both thermal forcing
and stress act together to drive the flow clockwise, making
the upper level fluid flow from warm to cold. Although the
curve of wstd shifts quantitatively from the no-stress case
ssee Wunsch10 for a more specific discussiond, no new be-
havior appears. However, in natural convective systems,
such as estuaries and ocean gyres, the applied wind stress
tends at least in part to oppose the buoyancy forces, which
suggestst.0. Figure 5 displays withRa=5 sthick lined that
multiple states are possible in the range 3.4,t,7.1. t has
to be strong enough to compete with the thermally forced
flow, but not so strong that the thermally forced motion will
be totally suppressed.

To see the behavior more clearly, stability diagrams in
parameter space are shown in Fig. 6: in the dotted region,
two of the three solutions are stable, indicating multiple
equilibria; in the dark triangular region, one of the three so-
lutions is stable; elsewhere, only one, stable, solution exists.
The dashed line corresponds to the example given in Fig. 5.

1. Dependence of final state on stress t

As shown in Fig. 5 withRa=5 sthick lined, if the stress is
gradually increased from zero, the clockwise flow rate de-
creases gradually until a criticalt=Î2Ra is reached, where
the circulation stalls, as discussed by Stommel and Rooth.12

FIG. 3. Bifurcation diagram ofwsrd with Pr =10. Whent=0, a supercritical
pitchfork bifurcation atr =1 is found sthin linesd, and if r .17.5, all the
solutions are unstable; whent=1, the pitchfork disconnects into two pieces
sthick linesd, and if r .21.3, all the solutions are unstable.

FIG. 4. The evolution ofx andy in phase space with zero initial conditions.
HerePr =10, r =20, andt=1.

FIG. 5. Roots of Eq.s21d for wstd for varying Ra with Pr =10. Thin line
indicatesRa=0; thick line suggestsRa=5.
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If the stress is increased further, the circulation will jump
from the lower to the higher branch and its direction is re-
versed. If the stress is decreased from a high value, a similar
jump occurs.

As an example, let the applied stress bet=5 initially,
with zero initial conditions andPr =10, Ra=5. When the sys-
tem becomes steady, the stress is decreased tot=4 and then
to t=3. The flow transitions from a stress-driven mode to a
thermally driven onesFig. 7d, which implies that small
changes in stress can lead to radically different behaviors.
However, if the applied stress ist=3 initially, and increased
to t=4 and thent=5, the steady states change littlesthe
system remains in a stress-driven moded, showing the depen-
dence of the final states on the initial conditions.

Figure 5 shows that when the circulation is in a stress-
driven mode,w is only slightly smaller than that withRa

=0, implying that the buoyancy contribution is very small.
The temperature distribution in the loops corresponding to
the two different modes is shown in Fig. 8. If, as in the work
of Wunsch,10 the present loop is mapped onto a pseudo-
oceanographic form with the two regions,p /4øføp and
−pøfø−p /4, as though they were a tropical and polar
oceanic box, then it is evident that in the stress-driven mode
both boxes are weakly stratified, consistent with what Fig. 5
implies sbuoyancy effects are weakd. In contrast, in the ther-
mally driven mode, there is a strong stratification in the
tropical box, but a weak stratification in the polar box, so the
resulting buoyancy effect becomes the dominant driving
force in the system.

It is of interest to investigate the heat transportsFsfd
=wT−]T/]f corresponding to the different modes. In this
model, heat flux is externally applied, with heat transported
from f=p /4 to f=−p /4. Although the model exhibits mul-
tiple states in the sense of the circulation, the heat transports,
however, must remain unchanged in different modes in a

FIG. 6. Stability diagrams in parameter spaceRa andt with Pr =10. In the
dotted region, two of the three solutions are stable; in the dark triangular
region, one of the three solutions are stable; in other regions, only one,
stable, solution exists.

FIG. 7. Time evolution ofwstd with zero initial conditions. In the first case
sad, stress is decreased fromt=5 to 4 and 3; in the second casesbd, stress is
increased fromt=3 to 4 and 5. Within each step, a steady state is reached.
Ra=5, Pr =10 for both cases.

FIG. 8. Temperature distribution and heat flux in the steady states corre-
sponding to different modes.sad Stress-driven mode;sbd thermally driven
mode. Here,Ra=5, Pr =10, andt=4.
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steady statesFig. 8d. Further explorationsAppendix Bd
shows that Fsfd=p /2 in the upper branch, andFsfd
=−3p /2 in the lower branch, whose ratio does not shift no
matter how the controlling parameters change. In a steady
state, advection and diffusion always compensate to produce
the correct total.

If the loop model is considered an analog of multistate
ocean circulationswithout salinity in this cased, it implies
that a slight change of the wind stress can lead to totally
different modes. Once the system is forced across a thresh-
old, it tends to stay in the new mode, even when the wind
stress is restored to its original value.

2. Dependence of final state on Rayleigh number R a

Wunsch10 gave a detailed discussion of the thermally
driven circulation. Here the case witht=0 sFig. 9d is shown
only for completeness. WhenRa=0, there is no circulation.
As Ra grows, the circulation rate also increases.

When positive stress is appliedsFig. 9, t=4d, multiple
steady states are found as expected in the parameter range
2.8,Ra,7.7. Numerical integration shows that a slight
change inRa can also lead to a transition from a thermally
driven mode to a stress-driven mode and vice versa.

3. Dependence of final state on Prandtl number P r

As already noted,t and Ra determine the steady solu-
tions of the system, andPr affects the stability properties of
these solutions. Figure 10 is similar to Fig. 6 but now with
infinitely largePr. One infers that with smaller inertiaslarger
Prd, the circulation tends to become more unstable. As an
example, consider the transient behavior of the systemsRa

=6,t=4,Pr =20d with initial conditions w=3.278,a1

=−0.395,b1=−0.12 shown in Fig. 11. The initial conditions
are one of the stable steady states corresponding toPr =10.
WhenPr =20, this mode is no longer stable, and the circula-
tion undergoes a transition to become a thermally driven
mode.

An important inference from the analysis above is that
the initial conditions will determine the final states of the
system if all the controlling parameters are fixed. Figure 12
shows the time evolution ofa1 and b1 with different initial
conditions in phase space. The parameters aret=4, Ra=3,
and Pr = +`, which implies thatw is a diagnostic variable
now, w=t+Rab1, obtained from Eq.s12d. According to the
eigenvalues of the stability matrix,A andC are stable spirals
while B is an unstable saddle point.

Box models are widely used to mimic the multiple states
of the ocean.1–3 In these papers, a frictional balance was used
to determine the meridional transport, based on the idea that
the adjustment time scale of the temperature and salinity
fields is much longer than that of the velocity fields. The
resulting steady states correspond to having an infinitely

FIG. 9. Roots of Eq.s21d for wsRad for varyingt with Pr =10 corresponding
to t=0 sthin lined andt=4 sthick lined.

FIG. 10. Stability diagrams in parameter spaceRa andt with infinitely large
Prandtl number. In the dotted region, two of the three solutions are stable; in
the dark triangular region, one of the three solutions is stable; in other
regions, only one, stable, solution exists.

FIG. 11. Time evolution ofwstd with initial conditions w=3.277,a1

=−0.395,b1=−0.120. The parameters arePr =20, t=4, and Ra=6. The
given initial conditions are the stable steady solutions corresponding toPr

=10.
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large Prandtl number in the loop model, as shown in Figs. 10
and 12. In Fig. 12, onlyA is a thermally driven mode.

Even without salinity forcing, an imposed stress can
cause very complex behavior in the circulation and tempera-
ture distributions. The final states are sensitive to all the pa-
rameters, includingPr ,Ra,t, and the initial conditions.

We now turn to the problem with added salinity forcing.

IV. SALINITY, TEMPERATURE, AND STRESS

Bryan26 and many others have used mixed boundary
conditions in ocean circulation and climate models. This ter-
minology implies the use of the flux condition for salinity
and a restoring one for temperature. Restoring to a climatol-
ogy is used to either mimic a simple atmospheric feedback or
to force the system to be more realistic when it drifts under
pure thermal flux boundary conditions. For the one-
dimensional loop, the introduction of the restoring term pro-
duces a virtual energy source,10 and the physical reality of
the resulting solutions is difficult to assess. We will therefore
omit the use of restoring in the present system.

As with temperature, a Fourier series is defined for sa-
linity,

Ssf,td = o
−`

`

bnstdeinf. s22d

The evolution equations can be obtained by substituting Eqs.
s8d and s22d into Eqs.s5d–s7d, with a1=a1+ ib1 and b1=c1

+ id1:

1

Pr

dw

dt
= Rab1 − Ra

D

l
d1 − w + t, s23ad

da1

dt
= − a1 + b1w, s23bd

db1

dt
= − b1 − a1w − Î2, s23cd

dc1

dt
= − lc1 + d1w, s23dd

dd1

dt
= − ld1 − c1w − Î2. s23ed

Two more parameters,D and l as defined above, now ap-
pear. From the above equations, the steady solutions forw is

Î2RaS−
1

1 + w2 +
D

l2 + w2D = w − t. s24d

Here we confine ourselves to exploring only a limited param-
eter range.

A. Identical thermal/salinity diffusivities

With equal thermal and salinity diffusivities, Eq.s24d
reduces to

Î2RasD − 1d = sw − tds1 + w2d. s25d

Clearly, the salinity forcing appears only as a direct counter-
effect of the thermal forcing, the extent to which depends on
the value of the parameterD, a conclusion dependent upon
the linear equation of state.

This configuration is interesting only when temperature
and salt diffusivities differsdouble diffusiond, or when re-
storing is applied to at least one of temperature and salinity
sas in S61d thus producing an effective “double diffusion.”

B. Different thermal/salinity diffusivities

Diffusivity is infinite in the S61 model and in most of its
successors, so that restoring boundary conditions are neces-
sary there for the presence of multiple states. However, mul-
tiple equilibria can also be found because of double-diffusive
process. As an example, fixl=0.1, D=0.005, andPr =10.
The steady solutionswstd and their stability properties are
displayed in Fig. 13. WhenRa=0, the system is stress driven

FIG. 12. Time evolution ofa1 andb1 with different initial conditions. The
parameters aret=4, Ra=3, andPr = +`. PointsA andC are stable spirals;B
is an unstable saddle point.

FIG. 13. Roots of Eq.s24d for wstd with Pr =10 corresponding toRa=0
sthin lined andRa=4 sthick lined. The parameters areD=0.005,l=0.1, and
Pr =4.
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again, but if the Rayleigh number is increased toRa=4, mul-
tiple states are found. Now in the parameter range 3.5,t
,5.9, five solutions appear, with three stable ones. Com-
pared with Fig. 5, the upper branch in Fig. 13, to some ex-
tent, can be regarded as stress dominant; the middle stable
branch, salinity dominant; the lower stable branch, thermally
dominant. In contrast to box models, this model has one
more stress-driven mode. Again, when the circulation is in
the stress dominant branch, the circulation rate is only
slightly smaller than that without thermal and salinity forc-
ings.

Due to the difference in diffusivities, the introduction of
salinity forcing yields one more stable mode. Using the same
methods as above, we can find a similar behavior as dis-
cussed in last section, but no qualitatively different result is
expected.

V. ENERGY CONSIDERATIONS

Much of the recent literature relevant to the loop-
Stommel models concerns the issue of the energy sources
driving the ocean circulation.13–16,27As already noted, restor-
ing boundary conditions introduce the possibility of unphysi-
cal energy sources. More generally,18 although the ocean cir-
culation involves truly massive energy reservoirs, it is only
the comparatively modest inputs of energy from the surface
sand the tides of the abyssd that appear to sustain the circu-
lation.

With molecular mixing, as in the experiments of
Rossby28 and Wang and Huang,16 the internal energy of the
fluid is the source of the mixing motions. In the ocean, the
turbulence induced mechanically by wind and tides is re-
quired. Whether type 3 convection can generate an intense
enough large scale flow to produce a turbulent, mixed, inte-
rior with finite stratification remains a point of serious con-
tention in the literature.15,16,27Even the definition of “turbu-
lence” is in dispute, and as the loop-Stommel model cannot
develop three-dimensional motions, this interesting subject is
not pursued here.

VI. CONCLUSIONS

Although initially appearing to be a simple system, the
one-dimensional circular loop exhibits remarkably intricate
behavior, including the chaotic regime of the Lorenz21 sys-
tem. Stress forcing changes the behavior both qualitatively
and quantitatively. Given the dominance of the wind field in
determining the oceanic circulation, and the use of loop-
Stommel models as a circulation analog, an awareness of the
influence of stress becomes very important. The stability and
evolution of various regimes depends not only upon the ther-
mal and salinity Rayleigh numbers, but also on the Prandtl
number, the stress sign and magnitude, and the time history
of the introduction of the various forcing functions. Stress
effects, here appearing as a body force, in particular, can
greatly change the solutions derived from buoyancy forcing
alone.

An interesting complication arises from the likelihood
that the mixing coefficients, and hence the Rayleigh and
Prandtl numbers, are controlled by the magnitude oft. If an

appropriate simple parametrization were known, one could
explore the behavior of a system even more directly depen-
dent upon the windstress. Such exploration, without a known
parametrization, is beyond our intended scope.

Application of the loop-Stommel models to an analysis
of the behavior of three-dimensional global circulation mod-
els sGCMsd and to the real ocean must be done very cau-
tiously. The extent to which a three-dimensional circulation
resulting from buoyancy and stress forcing can be reduced to
the behavior of a one-dimensional loop model remains un-
clear. If it is a valid reduction, one has achieved a notable
simplification of the ocean modeling problem, but demon-
strating such validity is again beyond our present scope.
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APPENDIX A: STABILITY ANALYSIS

Regular stability analysis is used to determine the stabil-
ity of the steady solution. We consider small deviations from

the steady state, writingw=w̄+w8, a1= ā1+a18, and b1= b̄1

+b18, wherew̄, ā1, andb̄1 are the corresponding steady solu-
tions, and can be calculated from Eq.s16d,

ȳ − x̄ + t = 0,

rx̄ − ȳ − x̄z̄= 0,

x̄ȳ − z̄= 0.

It is obvious that they are equal to the values obtained from
Eq. s19d. At the same time, the linearized equations describ-
ing w8, a18, andb18 are obtained:

dx8

dt
= asy8 − x8d,

dy

dt
= rx8 − y8 − x̄z8 − z̄x8,

dz8

dt
= x̄y8 + ȳx8 − z8.

Introduce a time factor by letting

x8 = x̂est, y8 = ŷest, z8 = ẑest.

Substituting into the equations above, we obtain

1 − a a 0

r − z̄ − 1 − x̄

ȳ x̄ − 1
21x̂

ŷ

ẑ
2 = s1x̂

ŷ

ẑ
2 .

Solving the eigenvalue problem of the perturbation matrix
determines the stability of the steady solutions to tiny pertur-
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bationsfsee the works of Welander6 or Strogatz23 spp. 129–
138d for more examplesg.

APPENDIX B: HEAT TRANSPORT IN A STEADY
STATE

In a steady state, Eq.s5d can be solved directly in real
exponentials,

Tsfd = HC1 + C2e
wf/w, − p/4 , f , p/4

C3 + C4e
wf/w, p/4 , f , 7p/4,

J
whereCj s j =1, 2, 3, 4d are arbitrary constants. The matching
conditions for temperature atf=−p /4 andf=p /4 are

sC2 − C4dewp/4 = wsC3 − C1d,

C2e
−wp/4 − C4e

7wp/4 = wsC3 − C1d.

Integrating Eq.s5d from f=p /4−e to f=p /4+e yields the
flux condition

wsC3 − C1d = 2p.

The final mean temperature is the same as that initially
srTdf=0 in this cased, so

C1 + 3C3 = 0,

where the matching conditions have been used. Using the
two conditions above, we can calculate the heat transport

Fsfd = HwC1 = − 3p/2, −p/4 , f , p/4

wC3 = p/2, p/4 , f , 7p/4,
J

whose ratio remains unchanged under different controlling
parameters. The distribution of temperature can be obtained
by finding C1, C2, C3, andC4.
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