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Multi-year ocean thermal variability

By CARL WUNSCH�, Department of Earth and Planetary Sciences, Harvard University, Cambridge,
MA, 02138

(Manuscript Received 25 February 2020; in final form 10 September 2020)

ABSTRACT
Numerous indicators show that multi-annual and longer oceanic baroclinic variability retains a complicated
spatial structure out to decades and longer. With time-averaging, the sub-basin scales connected to abyssal
topography and meteorological structures emerge in the fields. Here, using 26-years of an oceanic state
estimate (ECCO), an attempt is made to extract simpler patterns from the vertical average (whole water
column) annual mean temperature anomalies and, separately, the vertical structures at each horizontal
position. Singular vectors (SVs)/empirical orthogonal functions (EOFs) successfully simplify vertical and
horizontal fields, but principal observation patterns (POPs) do not do so. About 3 horizontal spatial patterns
account for more than 95% of the interannual and longer variances. A breakdown of the purely vertical
structure at each grid point leads in contrast to an intricate variability with depth. Results have implications
both for future sampling strategies, and for estimates, e.g. of the accuracy of any mean oceanic scalar.

Keywords: ocean variability, ocean temperature

1. Introduction

The nature of low frequency (periods longer than a year
or two) global ocean physical variability remains some-
what obscure with much of the difficulty lying with the
observational data sets. Quasi-global coverage by altim-
etry is now almost 30 years long, but it depicts the surface
elevation field – and whose interpretation reflecting
motions at depth, including some troubling aliases, can
be complex (Wang et al., 2013; LaCasce, 2017). The Argo
float upper ocean (1–2 km) profile temperature field
becomes nearly global about 15 years ago. Theoretical
estimates of oceanic adjustment and variability time-
scales (e.g. Wunsch, 2015, p. 338) cover a continuum at
least out to 10,000 years and interpretations of the paleo-
climate record support an hypothesis of change out to
the entire age of the ocean (Cronin, 2010). The 20–30 year
quasi-global record that does exist already raises some
interesting questions about how to interpret it, and its
implications for such common assumptions as the quanti-
tative existence of a meaningful ‘climatological ocean’.

Common physical experience suggests that as the time
scales of numerous natural phenomena increase, the spa-
tial scale also increases. Implicit in many oceanographic
studies is an assumption that as the high frequency ‘noise’
is averaged out over savg, that the physics will simplify

into the large-scale elements of the steady-state theories,
perhaps being slowly time-dependent.

One difficulty is the implicit ambiguity in much oceano-
graphic dynamical theory. Almost all useful and interesting
theoretical circulation constructs (ranging from the thermal
wind, through Sverdrup balance, Stommel-Arons flow, and
the various thermocline theories) are written for a steady-
state ocean in a laminar-like state (textbooks by Pedlosky
(1996), Huang (2010), Vallis (2017), Klinger and Haine
(2019), and others). The observed ocean is known to be
filled with an intense, comparatively short-time-scale, turbu-
lence-like motion having very strong spatial dependences in
structure and time-scale. Apart from an extensive literature
on the role of geostrophically balanced eddies (McWilliams,
2008), particularly as elements in parameterizations for mix-
ing-like processes, little seems simple about the relationship
between the physics of a hypothetical steady-state ocean,
and one whose physical elements (velocity, temperature,
pressure, etc.) have been averaged over a time-interval
savg>1 yr. No spatial spectral-gap has ever been identified
and no long-period cutoff is known, e.g. for time scales of
the balanced (mesoscale) eddy field. All spatial and temporal
scale interactions probably affect thermal variability patterns
out to the longest accessible time intervals.

As global oceanic data sets and global general circula-
tion models with quantifiable skill have emerged over the
past few decades, the conclusion that the ocean has a�Corresponding author. e-mail: cwunsch@fas.harvard.edu

Tellus A: 2020. # 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/
by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Tellus A: 2020, 72, 1824485, https://doi.org/10.1080/16000870.2020.1824485

1

Tellus
SERIES A
DYANAMIC
METEOROLOGY
AND OCEANOGRAPHY

PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM

https://doi.org/10.1080/16000870.2020.1824485


very strong regional and temporal complexity has become
inescapable. For example, Sonnewald et al. (2019), using
a vertically integrated vorticity balance, divided the ocean
laterally into 6þ distinct dynamical-type regions, of
greatly varying area. Similarly, the altimetric wave num-
ber power-law results of Xu and Fu, 2012) seem to imply
a minimum of about 14 dynamical regimes; cf. Hughes
and Williams (2010). Sverdrup et al. (1942) identified 45
distinct topographic districts based upon the bathymetry
known at that time.

An increasing complexity with averaging time, savg, is
readily rationalized: as savg grows, the high-frequency,
high-wavenumber variability that dominates the flow
fields is further suppressed, permitting the zero-frequency
structures of continental boundaries, bottom topography,
and large-scale long-lived spatial inhomogeneities in air-
sea exchanges, to emerge. Disturbances such as those
owing to the mid-ocean ridges do not diminish with time,
but can be manifested as strong spatial structures in both
the mean and low-frequency variability over savg.

Upper ocean variability over decades is comparatively
well-observed, including the ENSO cycle, and sea surface
temperatures, although problems persist (e.g. Chan et al.,
2019). For the heat uptake estimation context, see the
reviews by Abraham et al. (2013) or Meyssignac et al.
(2019). In contrast, the goal here is to discuss the nature
of full water-column low-frequency variability and its
seemingly intricate spatial structure. Fields known to sat-
isfy basic conservation equations as well as a very wide-
variety of data, both meteorological and oceanographic
are used (see Zanna et al., 2019) for discussion of the
full-water column over a much longer time interval, and
Wunsch, 2016). Much of what follows is descriptive, and
is intended as an experiment in the depiction of decadal
global variability using much-reduced volumes of values –

and such that the result is comprehensible. The focus here
is on the apparent spatial structures consistent with
dynamics known from a self-consistent general circulation
model and the diverse data, avoiding the issues forcefully
raised by Bengtsson et al. (2004).

2. The estimated state

As a provisional estimate of oceanic variability and its
average, we use the ECCO version 4 release 4 (v4r4)
‘state-estimate’ as documented by Fukumori et al. (2017,
2018, 2019) in the 26-year period 1992–2017. This depic-
tion comes from a nonlinear weighted least-squares fit of
the MITgcm (Marshall et al., 1997) and its evolutionary
ECCO successors, to the diverse near-global data sets
and meteorological forcing estimates that became avail-
able during and after the World Ocean Circulation
Experiment. The single most important feature of this

representation is that the model is free-running, but with
its numerous control parameters having been previously
adjusted so that the model trajectory takes it through all
of the data points within (mostly) estimates of their
uncertainties. The state estimate is represented on a geo-

graphical grid of 6:4� 106 positions, including 50 differ-
ent vertical layers; 26-yearly averages raises that number

to 1:7� 108 grid values. As the references make clear, the
system includes a variety of parameterizations including
those for the effects of the unresolved eddy field, and the
special physics of the surface layer. Although the reliabil-
ity of these parameterizations has been and continues to
be much debated, the use of 26 years of data leads to
adjustments in the parameters so that the state vector
reproduces within estimated errors (a difficult subject in
itself), the great bulk of the global data sets.

The free-running configuration is important because
the results then satisfy basic global conservation of mass,
energy, vorticity, etc. up to numerical accuracy – a fea-
ture not generally true of estimates commonly labelled
‘reanalyses’ (Bengtsson et al., 2004). Adjusted control
parameters include the initial state, the meteorological
forcing/coupling fields, and interior values of parameter-
ized mixing rates. In terms of volume of data, the result
is dominated by altimetry, Argo float profiles, instru-
mented elephant seals, and 6-hourly meteorological
reanalysis products, all weighted by estimated errors. In
contrast with earlier decades, by 1992 the observation
system had become qualitatively more homogeneous and
dense – reducing the tendency for changing observation
methods and patterns to produce artifacts in the state.
Direct observation of the deep ocean (below about
2000m) remains very thin, and the values calculated here
rely heavily on the known physics in the model connect-
ing the upper and lower oceans while still accounting for
whatever deep CTD temperature and salinity data that
are available. References should be consulted for a full
discussion. Only the temperature field is described here –

because it has serious climate-change implications, has
the longest records albeit at scattered points, and is
observationally relatively intuitive.

The state estimate includes the full global ocean including
ice-covered regions, and spans the entire 26 years of the esti-
mate. (Comparisons – not shown – with an earlier 20-year
climatology, omitting first and last years, and using only
latitudes equatorward of 60� Fukumori et al. (2018) showed
only small changes in the results.) Annual averages, which
suppress much high frequency variability, including the spa-
tially complicated annual cycle of temperature, are used as
a first-step in reducing the volume of numbers required to
describe the ocean – a significant reduction compared to a
1-hour or smaller model time-step. A second major data
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volume reduction is obtained by working with the column
average annual temperatures – an unorthodox variable, but
nonetheless one describing a major variability aspect.

Figure 1 shows the model topography, whose numerous
deep sub-basins are readily apparent, each having a phys-
ics determined by details such as proximity to large-scale
boundaries, topographic slopes, presence of bottom rough-
ness, latitude, structure of meteorological exchanges, etc.
and which can be expected to generate full water column
disturbances, not necessarily localized, as averaging periods
increase.

Fourier spectra in space and/or time have proved in
many ways to be the most productive representation of
geophysical variability. An approach to the frequency-
wavenumber spectrum was described by Wortham and
Wunsch (2014). On the other hand, such descriptors are
most powerful when fields are statistically stationary (in
the ‘weak-’ or ‘wide’-sense), that is homogeneous in space
and time. In the present situation, the spatial inhomogen-
eity is so strong that the estimated Fourier results are not
discussed. Temporal non-stationarity is less obvious, but
the trend-like behavior seen below in some elements
would suggest that it is present as well.

The nature of the temperature field can be seen from
the 1994 potential temperature average shown in Fig. 2
for 477m and its temporal standard deviation in Fig. 3.
That particular depth was chosen as a compromise gener-
ally lying below the mixed-layer, but above the main
thermocline. As has been realized since oceanographic
antiquity, little or no structure arising from the huge mid-
ocean ridges and other topographic features can be

perceived in the upper ocean levels. Apart from the con-
tinental margins, inferring topography from such a pic-
ture would fail. Inferences about large-scale wind
structures are, however, possible. Determining an accur-
ate spatial mean temperature from in situ measurements
requires a large number of values, appropriately distrib-
uted, even were there no underlying temporal changes.
Notice that at this depth, no particular excess variance is
seen in the equatorial Pacific Ocean.

3. Vertical average temperature

If /, k, z, t are latitude, longitude, depth and time respect-
ively, the underlying field is potential temperature,
Tð/p, kq, zr, tmÞ, on the model space-time grid where the

subscripts are integers. The time mean vertical average tem-
perature, �TGð/p,kqÞ, is depicted in Fig. 4, the overbar

denoting the 26-year time average. Some visual covariance
with the bottom topography appears, as expected, with shal-
low regions necessarily being warmer – absent the deep cold
water (the point pattern-correlation is 0.25). Most of the rest
of this paper explores the temporal structure of the vertically
averaged temperature as an ocean descriptor – with the
understanding that ultimately every point (varying with lati-
tude, longitude, depth, and time) is likely quantitatively
unique. The resulting standard deviation of annual values
with depth in the global spatial average can be seen in Fig. 5,
with its near-surface domination.

Water-column average temperature anomaly averaged
also by year, TGð/p,kq, tmÞ, where tm is the year, is the

present focus. TG is interesting as being directly related to

Fig. 1. Bathymetry of the model (km) at 1 km intervals. As the deep ocean influences the thermal structure with increasing duration,
the complex geometry of the topography can be dominant in the physics dividing the ocean into a large number of regionally distinct
places. Compare to Sverdrup et al. (1942, Plate 1). Inset here and in other figures is a histogram of the plotted values.
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annual oceanic heat uptake, a subject not explored here.
From the above references, the results below are expected
to be dominated by the upper ocean, as indicated by the
global average and time-depth variance of temperature
(Fig. 5), noting however, that the upper ocean variability
is partially compensated in the vertical average by the
much-thicker model deep layers. (These particular values
are not corrected for horizontal area changes in the state
estimate model grid.) Vertical averaging also reduces the
lateral inhomogeneity of the temporal variations.

A qualitative sense of the spatial variability in latitude
and longitude of the anomaly over the full water

column through time can be seen in Figs. 6–8. Some
effects of basin-scale topography are visible, particularly
in the Atlantic, southeast Pacific, and western Indian
Ocean. Particularly striking is the anomaly for 1998, the
midst of an El Ni~no episode, with its intense equatorial
features that are not apparent in the two other years
shown. Space-time sampling requirements are visibly
daunting. Some elements of these figures are associated
with the abyssal topography, but any such effect is sub-
tle, and the underlying dynamics is dependent not just
upon the water depth, but also its two-dimensional gra-
dients, at least.

Fig. 2. Average potential temperature (not the anomaly) at 477m during 1994. Note the multi-modality of the values (inset).

Fig. 3. Standard deviation (oC) in time of annual mean temperature at 477m over 26 years. Intricacy of the northern North Atlantic is
apparent, as are the Kuroshio path, the region south of Cape Agulhas, and other ‘hot spots’. Spatial stationarity is an unattractive hypothesis.
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4. Singular vectors, principal component
analysis, EOFs, etc

Description and interpretation of any such field becomes
an exercise in various forms of matrix decompositions. A
brief discussion is provided below to obtain a notation

and to lay out the necessary assumptions. Two of the
best-known methods of reducing space-time patterns to
the simpler representations are via principal oscillation
patterns (POPs), and singular vectors (SVs), the latter
often known as empirical orthogonal functions (EOFs) or

Fig. 4. Twenty-six year time-average of the vertical mean potential temperature (�C) in the ECCOv4r4 state estimate, �T Gð/, kÞ:

Fig. 5. Standard deviation (�C) for potential temperatures as a global average (a) and for the layer-thickness weighted values (b), m
�C. Note use of the logarithmic scale for temperature alone. All model grid areas are given equal weight here.
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principal component analysis (PCA). Both methods are
fully described, e.g. by von Storch and Zwiers (2001). In
practice here, only the second method proves to be effect-
ive at dimension reduction, and the POP discussion is
consigned to the Appendix.

The three objects in the title of this section are basic-
ally the same. A singular value decomposition termin-
ology will be used, as it appears to be the most nearly
generic.1 Textbook discussions can be found in Jolliffe
(2002), Lawson and Hanson (1995), von Storch and
Zwiers (2001), Wunsch (2006) and in Jolliffe and Cadima
(2016), amongst others.

Consider any two dimensional matrix M where each
column represents variations over space coordinates, and
with time varying between columns, e.g. Mrðr, tÞ: The

subscript r is used to show that the position, rj, is an
element of a vector, rather than being, e.g. latitude, and
longitude separately as in M. Using the Eckart-Young-
Mirsky theorem,

Mr r, tð Þ ¼ UrðrÞKrVrðtÞT ¼
XK¼26

j¼1

krjurjðrÞvTrjðtÞ (1a)

Ur ¼ urjf g,Vr ¼ vrjf g,Kr ¼ diag krj
� �

(1b)

exactly, where the elements of the diagonal matrix Kr are
the singular values, krj: Maximum dimension, K, is less
than or equal to the smaller of the number of rows and
columns in Mr (in this paper, maximum dimension (rank)
is limited by the number of years used, K¼ 26). Each col-
umn, urj of the K�K orthogonal matrix Ur varies with

Fig. 6. Anomaly of vertically integrated temperature for 1993, TGðk,/, t ¼ 1993Þ (�C).

Fig. 7. Same as Fig. 6 except for 1998 – an El Ni~no year.
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the geographical location.2 Columns, urj, are readily
remapped back to ordinary geographical space. Each col-
umn, vrj, of the K � K orthogonal matrix Vr is the time-
history of the particular spatial pattern in urj: All vectors
have a norm of 1 and the units of Mr are in Kr: (Because
the SVD is used in several different ways here, Table 1
lists the differing labels.)

Useful extensions of singular vector analyses are pos-
sible, including application in the frequency domain. For
example, Wills et al. (2018) discuss separating atmospheric
patterns by forcing decoherence of large-scale variability.
They did however, employ a 114-year long record, some-
thing far beyond what is oceanographically available.

5. Vertical structures

Before describing the results for the vertically integrated
field, it is useful for the reader to recognize some of the
vertical structures that are being suppressed by integra-
tion and subsequently ignored. At each lateral position
rj, the potential temperature anomaly is a two-dimen-
sional matrix of depth and year, Tðrj, zk, tpÞ, with a sin-
gular value decomposition,

T rj, zk, tpð Þ ¼
X25

q¼1

kTquTq rj, zkð ÞvTq rj, tpð ÞT , (2)

and is different for every horizontal grid point. K¼ 25
because the vanishing temporal mean reduces the degrees
of freedom by 1 from the 26 years available. Here, pos-
ition rj is only parametric in the SVD with the independ-
ent variables being depth and time. Anomalies are
calculated relative to the time-mean at each point and

depth. Note the similarity to the results of Pauthenet
et al. (2019), but with their analysis is confined to the
upper ocean and including salinity changes.

The SVD is here applied to the layer-depth-weighted
potential temperature anomalies, a weighting that much
reduces the vertical variance changes (Fig. 5) without
removing it altogether. SVD elements are labelled udj, etc.
Because temperature structures in the near-surface
boundary layer are dynamically distinct, the depth range in
Eq. (2) is applied only to the region below the 10th layer,
105m and greater. Fig. 5 shows the global average singular
values as well as the fraction of the global average variance

in each k2j =
P25

q¼1 k
2
q: In the global median, the first three

singular vectors describe more than 95% of the vertical
variance – although the nature of those singular vectors
varies widely over the ocean. Their global means, denoted
by a bracket, h�i, are shown in Fig. 9. A quasi-linear trend
is visible in hv1ðtpÞi representing an overall trend (net
warming) in this mode. The corresponding hud1ðzÞi, trun-
cated in the figure, reaches a maximum at a depth of 300m.
But note that even so, a non-negligible cooling exists at
depth both in this and other modes. A sign convention has
been imposed such that a positive near-surface (105m)
value in udjðzpÞ corresponds to a warming when the corre-
sponding vdjðtpÞ is increasing.

To show the variety of lowest modes, Fig. 10 depicts a
sampling along 180� W in the Pacific Ocean. Vertical
structures vary from having no zero crossings to having
two or more.

Let nz denote the number of zero-crossings in ud1
below 100m. If nz ¼ 0, temperature change is of one sign
with depth, and might be associated with a simple vertical

Fig. 8. Same as Fig. 6 except for 2017. An east-west basin divide occurs in the Atlantic Ocean.
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heave or with the first linear baroclinic mode, although
such an association is a very loose one. Similarly, nz ¼ 1,
might be associated with the 2nd linear baroclinic mode,
with one sign change with depth.

Fig. 11 displays the histograms of the number of zero
crossings in all of the singular vectors, and of the number
of zero-crossings in ud1 alone. The most common mode is
that with no zero-crossings, and it constitutes approxi-
mately 40% of the lowest mode. That is, about 40% of
the ocean area is described (insofar as the corresponding
kd1 dominates) by a pure vertical heave of the isotherms
(see the discussion in Bindoff and Mcdougall, 1994). But
globally, the structure is vertically very complicated in
these terms, likely because of the large variety of topo-
graphic interaction physics. Fig. 12 shows the horizontal
distribution of the variance accounted for by the lowest
SVD pair, kd1ud1vTd1, with the caveat that the structure of
ud1 varies spatially. Apart from the eastern North Pacific,
the western North Atlantic and the southern Indian
Ocean, the lowest pair, of differing structures, accounts
for 50% or more of the variability. An explanation of

why those regions appear exceptional is not attempted
here. Even there at least 40% of the variability is
accounted for.

6. SVD of vertical average temperature

Now mapping /i,kk onto a two-dimensional vector pos-

ition, rj, the result, �TG rðrj, tpÞ, is a matrix with averages
over a time-interval of 1 year. Water-column average
potential temperatures anomalies relative to the overall
26-year time mean are computed at each grid point with
each matrix column defining those temperatures at all lat-
eral locations at one time, tp. Fig. 13 displays the ordered
squared singular values and their normalized sum squared
from the water depth average anomalies. Evidently,

reproducing 90% of the space-time variance of �TGr

requires of order 13-orthogonal patterns, with moderate
domination of the lowest vectors. As many references
remind readers (e.g. von Storch and Zwiers, 2001, p.
294), the singular vectors do not necessarily have any

Table 1. Notation used when applying the SVD to differing fields. Singular vectors are all functions of a
geographic coordinate, or of time.

SVD notation Field Dependence

urj, krj, vrj Generic in space Space coord., arbitrary field, arbitrary field
uTj, kTj, vTj Vertical temperature Depth, temperature, time
udj, kdj, vdj Vertical thickness weighted Depth, temperature� layer-thickness, time
uGj, kGj, vGj Global vert. avg. temperature Latitude/longitude, Temperature, time

Fig. 9. (a) Global mean of first 3 vertical singular vectors. u d1ðzÞ reaches 0.1 at a depth of 300m and the plot is truncated for
visibility. (b) Shows the accumulated variance in each global median k2di normalized to sum to 1. Roughly speaking, the lowest SVD
carries about 75% of the variance and the first 3 represent over 95% of the variance. (c) Shows the first 3 vd1ðtÞ:
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dynamical mode significance, whereas the POPs
(Appendix), can.

Patterns of the first 3 uGi are displayed in Figs. 14–16.
Here the strongest pattern, accounting for about 25% of
the 26-year variance, has a time dependence, vG1ðtÞ that is
dominated by an overall visual near-straight line trend. It
corresponds to the similar behavior of v1ðtÞ The same

convention is made here that positive regions of uGið/,kÞ
increase (warm) with increasing vGiðtÞ and corresponding
negative regions decrease. The North Atlantic produces
the most complex response, with strong cooling adjacent
to strong warming including the Gulf of Maine region
(e.g. Piecuch et al., 2017). Evidently, the global pattern of
full-water column temperature change, while quasi-linear
in time, is made up of the difference between large-area

cooling and warming regions. uG2ð/,kÞvG2ðtÞT has a max-
imum following the 1997–1998 El Ni~no event, with an
equatorial structure strongest in the western Pacific
Warm Pool, but one also connected to a global pattern
of change. That and the 3rd singular vector (Fig. 16) also
contain major elements in the northern North Atlantic,
supporting an hypothesis that the intricate changes there
are the result of several different physical mechanisms
and consistent with the complexity of the interannual
changes in Figs. 6–8.

That a net warming of the water column average tem-
perature has occurred over 20þ years is no surprise
(Meyssignac et al., 2019; and numerous others). Overall
warming of the South Atlantic in uG1 is striking. Note
the inference (e.g. Gebbie and Huybers, 2019) that
considerable parts of the deep ocean are still cooling
from long-ago meteorological changes, superimposed here
on fluctuations from ordinary internal variability at all
depths with mixed signs.

The use of a vertical average temperature anomaly
mutes the known strong variability at fixed depths. uG3
(Fig. 16) does contain a long zonal feature near the equa-
tor in the Pacific Ocean – likely a small residual of the
strong ENSO cycle manifest there in the upper ocean. On
the other hand, vG2, the temporal coefficient of uG2,
shows a clear maximum value during the ENSO episode
of 1998. It too has an equatorial Pacific feature, although
not conspicuously stronger there than elsewhere.

Fig. 10. The lowest singular vector ud1 at a variety of latitudes
along 180� W (dimensionless). Greatest depths do not exist for
these particular positions.

Fig. 11. (a) Fraction of the number of zeros occurring in all vertical modes ud: (b) Fraction of the number of zeros occuring only in
the lowest mode ud1:

MULTI-YEAR OCEAN THERMAL VARIABILITY 9



6.1. Uncertainties of the SVD

For singular vectors corresponding to nearly equal singu-
lar values, it is well-known that an instability exists of the
detailed structures contained in the two sets of vectors.
Thus, Jolliffe (1986, p. 39), the asymptotic properties of
the singular values ki and uGi can be obtained if subject
to a comparatively simple hypothesis about the statistical
distribution of the field covariance, and then ki, ui are

normally distributed. When the results here were com-
pared to those from a shorter 20-year interval
(ECCOv4r3), changes were only slight.

7. Summary and discussion

An unorthodox use is made of the column-average verti-
cal potential temperatures in the ocean to reduce the

Fig. 12. Fraction of the vertical variance at each point in the lowest singular vector ud1 (dimensionless). It is, in general, not the same
as a linear dynamical mode, but contains extra structure (zero crossings in the vertical).

Fig. 13. (a) Global median singular values kGj (�C) and their normalized cumulative sum (b). (c) Shows the mean temporal coefficients
vGjðtÞ for j ¼ 1, 2, 3:
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numerical volume, and thus describe the bulk ocean
potential temperature variability over 26 years. These
structures are computed from an energy, mass, etc. con-
serving state estimate. The state estimate used here is not
truth: like any statistical best-estimate it has intrinsic sto-
chastic and systematic uncertainties. Using singular vec-
tors (SVDs or EOFs) requires about 13 globally
uncorrelated vector pairs in the horizontal domain for the
water-column vertical average temperature. The spatial
structure vectors, uGi, (notation defined in Table 1) mark-
edly display the complex of time scales and structures of

the northern North Atlantic – emphasizing the links
between purely local and global-scale changes.

In the vertical domain, with a separately computed
decomposition, a smaller number of uncorrelated vector
pairs is required. Approximately 40% of the dominant
(lowest) mode of vertical structure can be described as
analogous to the zeroth dynamical mode (vertical heave),
but overall vertical structures are complicated, in large-
part probably because of the great variety of potential
topographic interactions. An analysis of principal oscilla-
tion patterns, POPS, of the vertical mean potential

Fig. 14. Structure of 1000uG1 mapped onto latitude and longitude (dimensionless). Sign change coincides with the yellow-
blue boundary.

Fig. 15. 1000uG2 mapped onto latitude and longitude.

MULTI-YEAR OCEAN THERMAL VARIABILITY 11



temperatures (in the Appendix) is not successful in meas-
urably reducing the number of required structures.

With extended duration, the geometry of oceanic
boundaries, including the sea floor topography, and
regional long-lived meteorological elements (e.g. regions
of excess curl), begin to emerge from the background
noise, giving rise to kinematically and dynamically dis-
tinct provinces. Analytic understanding of low-frequency
thermal variability takes on a strongly regional character,
while remaining embedded in, and subject to, larger basin
and global scale changes. Results here for the northern
North Atlantic Ocean, consistent with previous regional
analyses, are a particularly clear example of geographical
variation. Any dynamical assumption, implicit or other-
wise, that the time-average ocean has a simplified large-
scale behavior, needs to be justified observationally. The
averaging time, savg, required for that to be rigorously
true, is likely much longer than 26 years, but whether it is
100 or 1000 years, or if it is valid at all, remains obscure
and awaits either much longer observational records, or
analysis of demonstrably skillful high resolution circula-
tion models. Wunsch (2018) and Meyssignac et al. (2019)
address some of the sampling issues associated with per-
sistent spatial patterns in thermal fields. These consequen-
ces are not described here.
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Notes

1. Many other labels exist in a variety of other
fields (e.g. Karhunen-Lo�eve expansion; proper
orthogonal decomposition).

2. Vectors, lower-case bold, q, here are columns.
The transposes, qT , are row vectors. Matrices
are upper case bold e.g. M.

3. The close linkage between covariance
assumptions, e.g. in objective mapping methods,
and assumptions about the underlying physics is
often forgotten or ignored.
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Appendix. Principal observation
patterns (POPs)

Following Hasselmann (1988), the extended account in
von Storch and Zwiers (2001) and references there,
consider the principal observation patterns (POPs) and
which can have a closer relationship to the underlying
dynamics than do the singular vectors. The singular
vectors are able to extract covariances amongst the non-
orthogonal POPs, and thus can sometimes greatly
simplify the dominant patterns, but the forced
orthogonality mixes the POPs in the singular vectors.

To sketch the machinery, consider any time-dependent
model with a state vector, nðtÞ, and whose time-evolution
can be represented in the general linear form (e.g. Wunsch,
2006),

n tþ Dtð Þ ¼ AðtÞnðtÞ þ BðtÞqðtÞ: (3)

AðtÞ is the ‘state transition matrix’ and BðtÞqðtÞ is a generic
representation of model forcing and error fields. In what
follows, three strong, if possibly plausible, assumptions are
made: (1) That the field of annual temperature anomaly is
sufficiently weak that a linear evolution is accurate; (2) that
the governing physics over 26 years are time-stationary
such that AðtÞ,BðtÞ are time-independent, A, B; (3) that the
external control BðtÞqðtÞ is a stochastic process in space
and time, and not dependent upon nðtÞ: Here Dt ¼ 1 year
and nðtÞ ¼ �T G rðtÞ: The subscript r again is placed on �T G to
indicate that it is mapped from latitude and longitude into
a one-dimensional vector at each fixed time. Equation (3)
can be regarded as a generalization of an autoregressive
process of order (1) that is, AR(1), but it is, in practice, a
very general linear state vector representation.

None of these assumptions is rigorously correct: the
state vector of the ECCO estimate includes temperature
only as a subset of the full suite of variables describing the
ocean circulation and not their vertical means; stationarity
in time remains to be properly tested; the best
characterization of BðtÞqðtÞ, including meteorological
variables, is more complicated than an unstructured
random process unrelated to TrðtÞ, and portions of the
field are likely nonlinear. Using the temperature field as a
state vector can be at least partially justified through the
thermal wind equations and the dependence of the
geostrophic adjustments on temperature (density).

Consider the product of Eq. (3) with nðtÞT and with a
bracket denoting expectation:

hn tþ Dtð ÞnðtÞT i ¼ AhnðtÞnðtÞT i þ hBqðtÞnðtÞT i, or (4)

R Dtð Þ ¼ ARð0Þ (5)

where Dt is a nominal time-step which in the raw GCM
is less than 1 hour, but here will be taken as 1 year. (This
choice corresponds to a strong assumption that high

frequency motions act only through BqðtÞ:Þ Expectation
is over a hypothetical ensemble of oceanic states.

A can thus be obtained as

A ¼ R Dtð ÞRð0Þ�1 (6)

assuming the inverse exists.3 (If a dynamical interpretation
of nðtÞ is unacceptable, a minimal interpretation of the
POPs is as the eigenvectors of the normalized lag 1, non-
symmetric, autocovariance matrix and is just a useful
conventional generalized autoregressive fit.) Equation (6)
makes explicit the tight connection between dynamics and
assumptions about covariances, often used in objective
mapping procedures.

Matrix A is square, but not symmetric. As such, its
right eigenvectors, qi, and eigenvalues, si are defined as,

Aqi ¼ siqi, (7)

or

AQ ¼ QS, (8)

where Q has columns qi and S is a diagonal matrix of
eigenvalues. Generally, qi will be complex, and will not
be a complete basis. Vector columns of �T G rðtÞ exist
for each t ¼ 0, . . . , 25: RðDtÞ, Rð0Þ are estimated as usual
from,

~Rð0Þ ¼ 1
26

X25

0

�TGrðtÞ�TGrðtÞT , ~R Dtð Þ ¼ 1
26

X25

0

�TGrðtÞ�TGr tþDtð ÞT :

(9)

With 56,880 horizontal grid points in the restricted
latitude range being used, the ~R matrices are square of that
dimension, but because only 26 samples of �T G rðtÞ are
available, they will be greatly rank-deficient (maximum
rank 25 because the time means of �T GrðtÞ were first
removed). The estimated ~A ¼~RðDtÞ~Rð0Þ�1 only exists in

Fig. 17. Eigenvalues of the principal observation patterns
(POPs), plotted as absolute value, real and imaginary parts.
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the sense of a generalized inverse of ~Rð0Þ (a symmetric
matrix). Here ~Rð0Þ�1 is computed using its non-zero
singular (eigen) values. To reduce the computational load
both covariance matrices were computed using every 5th
spatial point. qi are generally complex. Because A is real,
eigenvalues, sj, are either pure real, or occur in complex
conjugate pairs (see Fig. 17), with corresponding conjugate
eigenvectors q. In the present case, the largest eigenvalue is

pure real, with the rest being nine conjugate pairs.
Magnitudes of the 25 eigenvalues are nearly constant and
the inference is that the POP representation does little to
economise the variability. The columns of eigenvectors are
not orthogonal. The ajðtÞ would normally be fit by least-
squares to the observations through time, but because of
the failure to produce a useful reduced data set, the subject
is left here.

MULTI-YEAR OCEAN THERMAL VARIABILITY 15


	Abstract
	Introduction
	The estimated state
	Vertical average temperature
	Singular vectors, principal component analysis, EOFs, etc
	Vertical structures
	SVD of vertical average temperature
	Uncertainties of the SVD

	Summary and discussion
	Acknowledgements
	Disclosure statement
	Funding
	References


