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ABSTRACT4

An updated empirical, analytical model for the frequency and wavenumber distribution of5

balanced motion in the ocean is presented. The spectrum-model spans periods longer than6

the inertial but shorter than a decade, and wavelengths between 100 km and 10,000 km. As-7

suming geostrophic dynamics, a spectrum-model for the streamfunction is constructed to be8

consistent with a range of observations, including sea surface height from satellite altimetry,9

velocity from moored and shipboard instruments, and temperature from moorings. First10

order characteristics of the observed spectra, including amplitude and spectral moments,11

vary slowly geographically. The spectrum-model is horizontally anisotropic, accommodating12

observations that zonal wavenumber-frequency spectra are dominated by a “nondispersive13

line”. Qualitative and quantitative agreement is found with one-dimensional frequency and14

wavenumber spectra, and observed vertical profiles of variance. Illustrative application is15

made of the model spectrum to observing system design, data mapping, and uncertainty16

estimation for trends.17
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1. Introduction18

Data describing the general circulation of the ocean are extremely noisy (e.g., Ganachaud19

(2003); Zhai et al. (2011)). Extraction of signals from such observations requires a detailed20

knowledge of the space and time-scales of the stochastic variability. Of course, one person’s21

noise is another’s signal. Stochastic variability is itself a part of the ocean circulation and22

is of great interest in its own right. Since the time of the Mid-Ocean Dynamics Experiment23

(MODE Group 1978), the oceanographic community has collected countless measurements24

showing variability of different types (including velocity, temperature, surface elevation) in25

time and/or space. Synthesizing those observations of ocean variability into a quantitatively26

useful form is a considerable challenge. The specific availability since 1992 of high accuracy27

near-global altimetry has sparked a number of partial synthesis efforts, including estimates28

of the frequency spectrum (e.g., Le Traon (1990); Lin et al. (2008); Hughes and Williams29

(2010)) and of wavenumber spectra (e.g., Stammer (1997); Le Traon et al. (2008); Xu and30

Fu (2012)). A first attempt at the desired combined frequency/wavenumber spectrum was31

made by Zang and Wunsch (2001) and Wunsch (2010).32

The purpose of this present paper is to extend these earlier efforts so as to construct a33

full four-dimensional (three wavenumbers plus frequency) spectral representation of oceanic34

variability, along with an estimate of the extent to which it is likely both accurate and useful.35

A wide range of observations are used, including sea surface height (SSH) from altimetry,36

temperature and velocity time series from moored instruments, and velocity from shipboard37

current meters. As a consequence of the available observational record, the resulting descrip-38

tion extends from periods longer than the inertial to about a decade, and wavelengths from39

about 100 km to several thousands of kilometers. As a short-hand, variability in these ranges40

will be referred to as “balanced motions”, suggesting the expectation of near-geostrophy in41

their physics.42

Altimetric data provide the only continuous, near-global record of ocean variability with43

a simple dynamical interpretation. (Owing to the complex boundary layers at the air-sea44
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interface, sea surface temperature, salinity, and color are much more difficult to interpret.)45

As such, the altimetric record provides the backbone of the resulting spectral model, jointly46

covering horizontal wavenumber and frequency.47

Like all data, the altimetric record contains complicated structures from measurement48

noise and from the elaborate data processing involved in estimating SSH from the raw49

observations. Accounting for these complexities has to be part of the synthesis effort. The50

greatest problem with reliance on SSH is in understanding how it reflects motions interior51

to the ocean. Although in the geostrophic limit employed here, boundary layer phenomena52

are not of first-order concern, the partition of SSH into barotropic and baroclinic structures,53

expected to be a function of wavenumber/frequency and geography, is perhaps the greatest54

theoretical and observational challenge.55

To address the problem, the vertical structure of variability is inferred where possible56

from moored instruments. Unfortunately, the number of moored instruments with sufficient57

duration and vertical resolving power is very limited (Scott et al. 2010). What data are58

available are used in combination with basic theoretical ideas to construct a strawman spec-59

trum. Some of the theoretical considerations are put in context by employing an oceanic60

general circulation model (GCM; called ECCO2), with the strong caveat that the same very61

small data base renders nearly impossible tests of model skill.62

To a degree, this paper attempts to do for oceanic balanced motions what the Garrett-63

Munk (Garrett and Munk 1972, 1975) spectrum did for the internal wave band. Their64

work has served as a tool for interpreting experimental results, highlighted gaps in the65

observational record, and inspired theoretical efforts to explain their description. At the end66

of this paper, the utility of the present spectrum-model1 will be demonstrated by application67

to the important problem of oceanic trend determination. Importantly, the spectrum-model68

can be used to predict vertical and horizontal coherence between measurements. Many69

1The terminology “spectrum-model” is used to distinguish the results from a “spectral model” (GCM

formulated in spectral space) or “model spectrum” (spectrum of GCM output).
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elements of the result are also in need of theoretical explanation, and perhaps progress in70

that direction will be a result.71

2. Dynamic model for balanced motion72

Zang (2000) took the linearized, quasi-geostrophic, β-plane equations as a basic dynam-73

ical model and showed that the spectra of horizontal velocity (u, v), vertical velocity w,74

vertical displacement ζ, density ρ, potential temperature θ, and pressure p can all be derived75

from the spectrum of the geostrophic streamfunction ψ = p/ρ0f0, where ρ0 is the reference76

density and f0 is the local Coriolis parameter. In this section, the basic dynamical model77

introduced by Zang (2000) is reviewed and the implied relations between observable spectra78

are recorded. Separating variables,79

ψ(x, y, z, t) =
∞∑
n=0

ψn(x, y, z, t) (1)

=
∞∑
n=0

Ψn(x, y, t)Fn(z), (2)

where the orthonormal vertical modes, Fn(z), satisfy (e.g., Gill 1982)80

d

dz

(
f 2

0

N2(z)

dF

dz

)
+ γ2F (z) = 0, (3)

where N(z) is the buoyancy frequency. With its boundary conditions (3) forms a Sturm-81

Liouville eigenvalue problem whose eigenfunctions, Fn(z), 0 ≤ n <∞, represent the vertical82

structure of horizontal velocity free modes in the ocean, and whose eigenvalues are related83

to the deformation radius Ld = 1/γ.84

The vertical velocity is proportional to another vertical mode, Gn(z):85

Gn(z) =
1

N2(z)

dFn(z)

dz
, (4)

satisfying86

d2Gn(z)

dz2
+ γ2

n

N2(z)

f 2
0

Gn(z) = 0 (5)
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with appropriate boundary conditions.87

Equations (3) and (4) are typically derived under the “basic textbook theory” (BTT)88

assumptions of linearity, resting mean state, and flat bottom and rigid-lid boundary condi-89

tions. Although these conditions are not satisfied in the real ocean, solutions to (3) form90

a complete set capable of describing any vertical structure. However, if the assumptions91

are violated, the representation may be very inefficient. Alternative surface boundary con-92

ditions account for Ekman pumping (Philander 1978) or nonlinear buoyancy advection, as93

in “surface quasi-geostrophic” (SQG) theory (Lapeyre and Klein 2006). Alternative bottom94

boundary conditions account for bathymetry (Tailleux and McWilliams 2001; Killworth and95

Blundell 2004). Important modifications to (3) will be discussed in section 5.96

Treating the streamfunction as a sum of plane waves, the full streamfunction in mode n97

is98

ψn(x, y, z, t) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

ψ̃(k, l, ω, n)Fn(z)ei2π(kx+ly−ωt) dk dl dω, (6)

where ψ̃(k, l, ω, n) is the Fourier transform of the streamfunction. Note that cyclic frequencies99

and wavenumbers are being used. For a generic variable χn(x, y, z, t), the nth mode is100

χn(x, y, z, t) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

χ̃(k, l, ω, z, n)ψ̃(k, l, ω, n)ei2π(kx+ly−ωt) dk dl dω. (7)

Zang and Wunsch (2001) derived the characteristic functions χ̃(k, l, ω, z, n), and the repre-101

sentations are:102

p̃(k, l, ω, z, n) = ρ0f0Fn(z), (8)

ũ(k, l, ω, z, n) = −i2πlFn(z), (9)

ṽ(k, l, ω, z, n) = i2πkFn(z), (10)

w̃(k, l, ω, z, n) = i2πωf0Gn(z), (11)

ρ̃(k, l, ω, z, n) = −ρ0f0

g
N2(z)Gn(z), (12)

ζ̃(k, l, ω, z, n) = −f0Gn(z), (13)

θ̃(k, l, ω, z, n) = f0
∂θ0

∂z
Gn(z), (14)
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where θ0 is the time-mean potential temperature.103

Different frequencies, wavenumbers, and vertical modes are assumed uncorrelated as-104

suring horizontal spatial and temporal stationarity. Among other phenomena, these as-105

sumptions ignore the possible presence of coherent mesoscale features (Chelton et al. 2011).106

Because they are represented by phase-locked modes, an increased variance is expected rela-107

tive to that of a stationary random wave field. While Chelton et al. (2011) show the presence108

of coherent features in the SSH record, other forms of variability are also plainly present in109

the records. A more complete description than the one to be obtained here eventually needs110

to account for both coherent and incoherent (statistically stationary, random) components111

of the variability.112

A spectrum-model113

The three-dimensional frequency and wavenumber spectrum for the mode n streamfunc-114

tion is115

Φψ(k, l, ω, n) = 〈|ψ̃(k, l, ω, n|2〉, (15)

where angle brackets represent an ensemble average. For other variables, the spectrum at116

depth z and mode n can be calculated from the spectrum of the streamfunction and the117

appropriate characteristic function:118

Φχ(k, l, ω, z, n) = |χ̃(k, l, ω, z, n)|2Φψ(k, l, ω, n) (16)

and which can be summed over all vertical modes:119

Φχ(k, l, ω, z) =
∞∑
n=0

|χ̃(k, l, ω, z, n)|2Φψ(k, l, ω, n). (17)

Two- or one-dimensional spectra can be obtained by integrating the three-dimensional120

spectrum over one or two dimensions. Notation for the one-, two-, or three-dimensional121

spectra of a variable χ can be quite cumbersome. Φχ(k, l, ω, z) is written for the spectrum122

of χ at depth z, and the arguments (k, l, ω) denote the dimensionality. For example, the123
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two-dimensional wavenumber spectrum is124

Φχ(k, l, z) =

∫ ∞
0

Φχ(k, l, ω, z) dω. (18)

Similarly,125

Φχ(l, z) =

∫ ∞
0

∫ ∞
−∞

Φχ(k, l, ω, z) dk dω. (19)

For simplicity and in the absence of observational evidence to the contrary (Zang and126

Wunsch 2001), we assume that the shape of the spectrum in horizontal wavenumber-frequency127

space is independent of mode number. Accordingly, a streamfunction spectrum of the form128

Φψ(k, l, ω, n;φ, λ) = Φψ(k, l, ω;φ, λ)E(n)I(φ, λ) (20)

is proposed, where Φψ(k, l, ω;φ, λ) is the three-dimensional wavenumber-frequency spectrum,129

and which changes slowly with latitude φ and longitude λ. E(n) represents the relative130

contribution from each vertical mode n. I(φ, λ) is a normalization factor:131

I(φ, λ) = EKE

[∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

1

2
(|ũ|2 + |ṽ|2)Φψ(k, l, ω;φ, λ) dk dl dω

∞∑
n=0

E(n)

]−1

, (21)

where EKE is the the surface eddy kinetic energy estimated from altimetry (Stammer 1997).132

With this normalization, (20) matches the observed surface eddy kinetic energy.133

Many applications of the spectrum-model rely on the Wiener-Khinchin theorem, show-134

ing that the Fourier transform of the stationary process power spectrum is the covariance135

function:136

Cov(rx, ry, τ) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

Φχ(k, l, ω)ei2π(krx+lry+ωτ) dk dl dω, (22)

where rx, ry, τ are the displacements in the zonal, meridional, and temporal directions,137

respectively. Normalizing by the signal variance gives the correlation function138

Cor(rx, ry, τ) =
Cov(rx, ry, τ)

σ2
χ

, (23)

where σ2
χ is the variance of χ. For standard one-dimensional autocovariances,139

(24)

Cov(rx) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

Φχ(k, l, ω)ei2πkrx dk dl dω. (25)
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For two time series (possibly representing different quantities) at locations (x, y, z) and140

(x+ rx, y + ry, z
′), the cross-spectrum between χ(x, y, z, t) and Υ(x+ rx, y + ry, z

′, t) is141

ΦχΥ(ω; rx, ry, z, z
′) =

∞∑
n=0

∫ ∞
−∞

∫ ∞
−∞

χ̃(k, l, ω, z, n)Υ̃∗(k, l, ω, z′, n)Φψ(k, l, ω, n)ei2π(krx+lry) dk dl,

(26)

where χ̃ and Υ̃ are the characteristic functions for the two variables and ∗ indicates the142

complex conjugate. The coherence is143

Coh(ω; rx, ry, z, z
′) =

ΦχΥ(ω; rx, ry, z, z
′)√

Φχ(ω, z)ΦΥ(ω, z)
. (27)

Spatial variation in the spectral shape is neglected in the coherence calculation. Observations144

out to periods of a few years show little correlation between measurements separated by145

more than a few hundred kilometers (Stammer 1997). While significant coherence over long146

distances may exist at very low frequencies (due, for example, to a shift in gyre location over147

decades), we are not aware of any supporting observations.148

3. Observed spectrum149

From the earlier work cited above, it is clear from the outset that, unlike the internal150

wave case, a truly universal spectral description of balanced motions is impossible. Many151

qualitative aspects of the spectrum vary geographically including eddy kinetic energy levels,152

which change by over four orders of magnitude (Stammer 1997). The slowly varying geo-153

graphical factors attempt to accommodate this spatial nonstationarity in as simple a fashion154

as possible.155

Oceanic spectra, grouped by data type, are now examined.156
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a. Altimetry157

1) Multi-dimensional spectral shape158

The most complete observations of the spectrum of ocean variability come from the159

AVISO multi-mission mapped altimetry product (Ducet et al. 2000). We use the “reference”160

version, in which data from two simultaneous satellite altimeter missions were merged and161

mapped onto a 1/3◦ Mercator grid at 7-day intervals for the period October 1992–December162

2010; the 1993–1999 mean was removed at each grid point. From the AVISO product, the163

three-dimensional power spectrum can be estimated as discussed in Wortham (2013).164

One striking characteristic of the resulting spectrum is its dominance almost everywhere165

by a “nondispersive” straight line in zonal wavenumber-frequency space (Wunsch 2009, 2010;166

Ferrari and Wunsch 2010; Early et al. 2011) with phase speed independent of wavelength or167

frequency over a wide range. This phase speed is faster than the standard long Rossby wave168

prediction at most latitudes (Chelton and Schlax 1996) and has attracted wide theoretical169

attention. The nondispersive line dominates at wavelengths larger than about 500 km, and170

periods longer than two weeks at 10◦, or longer than two months at 40◦. At shorter wave-171

lengths, the anisotropy diminishes, and the spectrum appears to approach an isotropic power172

law in wavenumber, though the resolution of the gridded altimetry product is insufficient173

to make a definitive statement at wavelengths shorter than 200 km. At high frequency, the174

spectrum approaches approximate power laws in both frequency and wavenumber.175

2) Dominant periods and wavelengths176

Display and interpretation of multi-dimensional spectral structures is extremely chal-177

lenging and some simplified representations are useful. For example, Jacobs et al. (2001)178

estimated zonal wavelength, meridional wavelength, and period by fitting an exponential to179

the binned covariance function estimated from altimetry. Here, spectral moments (Vanmar-180
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cke 2010) are used. Define,181

〈ωq〉 =

∫ ∞
0

ωqΦη(ω) dω

/∫ ∞
0

Φη(ω) dω, (28)

〈kq〉 =

∫ ∞
0

kq [Φη(k) + Φη(−k)] dk

/∫ ∞
0

[Φη(k) + Φη(−k)] dk, (29)

〈lq〉 =

∫ ∞
0

lq [Φη(l) + Φη(−l)] dl

/∫ ∞
0

[Φη(l) + Φη(−l)] dl, (30)

for integer q. For k and l, the moments of the spectrum are averaged over both positive and182

negative wavenumber2 and are estimated globally on a 5◦ grid as follows: for each point, using183

SSH maps within a box 10◦ in longitude by 30◦ latitude, the spatial mean and linear trend184

in latitude and longitude are removed at each time step, and the three-dimensional FFT is185

computed for the region. k-l-ω spectra are computed from the FFT, averaged over three186

neighboring frequency/wavenumber bands. Other windowing functions did not significantly187

alter the results. See Wortham (2013) for further details.188

Maps of the inverse of the first moments of frequency and wavenumber are shown (Fig. 1).189

Hatched areas in the wavelength plots indicate regions where more power lies in the posi-190

tive wavenumber part of the spectrum than in the negative wavenumber part. For zonal191

wavenumber, hatching indicates a dominance of eastward propagation. For meridional192

wavenumber, hatching indicates a dominance of poleward propagation. Dominant peri-193

ods increase from less than 100 days near the equator to about 300 days at 40◦. Dominant194

zonal wavelengths decrease from about 1400 km near the equator to 750 km at 40◦, while195

meridional wavelengths range from 900 km to 650 km. Such maps provide a quantitative196

point of comparison for the spectrum-model in section 4.197

The AVISO mapping procedure imposes space and time correlation scales on the data198

product (Ducet et al. 2000), which impact estimated dominant periods and wavelengths.199

Specifically, AVISO frequency spectra have a steeper high-frequency roll-off than other ob-200

servations, resulting in longer dominant periods (Chiswell and Rickard 2008). Despite such201

2Alternatively, we might calculate the moments for positive and negative wavenumber independently, as

in Wunsch (2010).

10



limitations, the AVISO gridded altimetry is used since it allows for straightforward compu-202

tation of zonal and meridional spectra.203

3) Spectral slopes204

While the gridded altimetry provides a useful tool for studying the three-dimensional SSH205

spectrum and its global variations, the AVISO mapping procedure significantly alters the206

shape of the resulting spectrum (Wortham 2013). Therefore, we now consider the spectrum207

from TOPEX/POSEIDON along-track altimetry, rather than the gridded altimetry product,208

using the multitaper estimate as with all one-dimensional records in this paper.209

Observed wavenumber spectra are shown for two locations in the North Pacific (Fig. 2):210

a high energy region of the Kuroshio extension centered at 35◦N, 168◦E and a relatively low211

energy region of the subtropical gyre centered at 35◦N, 222◦E. In the high energy region, the212

spectral slope in the 100–200 km wavelength band is close to k−4, while the spectral slope213

is significantly flatter in the low energy region, closer to k−2. In the high wavenumber tails,214

the spectrum flattens to k−1 at both locations. For reference, we also show the wavenum-215

ber spectrum from AVISO gridded altimetry, linearly interpolated along the satellite track.216

The spectrum from AVISO gridded altimetry is steeper than from un-gridded altimetry at217

wavelengths shorter than about 250 km.218

Wunsch and Stammer (1995), Le Traon et al. (2008), and Xu and Fu (2012) have fit219

power laws to the high-wavenumber SSH spectrum. High-wavenumber spectral slopes vary220

geographically, but the true values remain uncertain. Much of the high wavenumber tail is221

due to noise, but the extent to which the altimetric wavenumber spectrum is contaminated222

by noise is a matter of debate. Stammer (1997) concluded, based on filtered along-track223

wavenumber spectra from altimetry, that SSH spectra displayed a remarkably universal k−4
224

power law at wavelengths shorter than 400 km. Xu and Fu (2012) estimated spectral slopes225

varying from k−4.5 in high energy regions to k−2 in low energy subtropics, and k−1 in the226

tropics.227
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For SSH frequency spectral slopes, Stammer (1997) found that different regions (tropical,228

high, and low energy) behaved differently in the low frequency limit, but all approached an229

ω−2 power law at around 30 day periods. The frequency spectrum of sea surface slope230

(proportional to velocity) was found to have an almost white long-period plateau, ω−1/2
231

power-law relation for periods between 40 and 250 days, and roughly a ω−2 relation on232

shorter periods. However, the Nyquist period of the altimetric data is about 20 days, so233

estimates of the high frequency spectral slope are very uncertain. More recent work has234

found ω−2 spectral slopes for velocity in extratropical regions but shallower slopes in the235

tropics (Scharffenberg and Stammer 2010).236

Figure 2 shows observed frequency spectra for the same locations discussed above: 35◦N,237

168◦E and 35◦N, 222◦E. Both locations exhibit a low frequency plateau at periods longer238

than 300 days, appear to approach a ω−2 power law near 100 days, but quickly flatten in239

the high frequency tails. The frequency spectrum from AVISO gridded altimetry, linearly240

interpolated along the satellite track, is also shown (Fig. 2). The spectrum from AVISO241

gridded altimetry is steeper than from un-gridded altimetry at periods shorter than about242

110 days.243

b. Moored kinetic energy244

Frequency spectra of velocity and vertical displacement from moorings are generally245

consistent with an ω−2 slope for periods shorter than 30 days in many regions (Ferrari246

and Wunsch 2010). Figure 3 shows observed kinetic energy spectra from moored current247

meters at several locations and depths in the North Pacific. Locations are 14◦N, 230◦E;248

28◦N, 208◦E; 32◦N, 232◦E; and 39◦N, 232◦E. Though moorings may be blown-over by strong249

currents, leading to measurements at varying depth, no correction for this effect has been250

made. All spectra are normalized by the total variance so that the shapes of the spectra can251

be easily compared.252

Overall, a low frequency plateau transitioning to a high frequency ω−2 power law exists253
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in all the results. However, near 100 day periods, the mooring spectra are flatter than254

similar spectra from altimetry (e.g. Stammer 1997). Strong regional and depth dependent255

differences are seen. For example, the spectral slope tends to become steeper with depth at256

the 28◦N mooring. Also, the frequency of the transition from the low frequency plateau to257

a high frequency power law increases with depth at the 39◦N mooring.258

c. Moored temperature259

Figure 4 shows observed temperature spectra from the moored instruments shown in260

Fig. 3. Temperature frequency spectra have a shape generally similar to those for kinetic261

energy. In general, the frequency spectra can again be described as a low frequency plateau262

transitioning to a high frequency ω−2 power law.263

The observation that frequency spectra of kinetic energy and temperature have roughly264

the same shape puts an important constraint on the spectrum-model. For some functional265

forms, the characteristic functions for the dynamical model, (9) and (14), would predict266

different spectra for energy and temperature. For example, suppose Φψ ∼ (k2L2 + l2L2 +267

ω2T 2 + 1)−α, where L and T are characteristic length and time scales, respectively. After268

multiplying by the appropriate characteristic function and integrating over k and l, the269

dynamical model predicts high frequency spectral slopes ω4−2α for velocity but ω2−2α for270

temperature. In contrast, if Φψ ∼ (k2L2 + l2L2 + 1)−αω−2, the dynamical model predicts271

frequency spectral slopes ω−2 for both velocity and temperature. The first functional form272

is inconsistent with observations. This suggests a separable form for the spectrum, at least273

in the frequency and wavenumber range where the spectrum follows an approximate power274

law. However, we have already seen that westward motions dominate (Fig. 1), ruling out275

the possibility of a completely separable spectrum.276
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d. Shipboard velocity277

Wavenumber spectra of kinetic energy are available from both towed and shipboard278

Acoustic Doppler Current Profiler (ADCP) instruments, with the latter being more com-279

mon. Shipboard measurements in the Gulf Stream show a k−3 spectral slope for kinetic280

energy, implying k−5 in SSH for balanced motions (Wang et al. 2010). In the central North281

Pacific (25–35◦N, 140◦W), spectral slopes from shipboard ADCP are close to k−2 for velocity,282

implying k−4 for SSH (J. Callies 2012, private communication). Both of the in situ spectral283

slope estimates are steeper than altimeter-derived estimates in their respective regions (Xu284

and Fu 2012), casting doubt on spectral slopes estimated from altimetry at these wavenum-285

bers. However, the in situ estimates may include a significant contribution from ageostrophic286

motions, complicating the interpretation.287

Results from a 1000 km section from a meridional transect as part of WOCE section P14N288

(180◦E, 20◦–30◦N) at 100 m and span 5 days (Roden 2005) with results in Fig. 5. Tidal or289

other ageostrophic motions are not removed from the record. The observed high-wavenumber290

spectral slope is close to k−2, implying k−4 for SSH.291

Taken together, in situ, altimetric and modeling results are consistent with wavenumber292

spectral slopes in the subtropical North Pacific of −4 ± 1, with in situ results suggesting293

slightly steeper slopes than altimetric results.294

e. Vertical structure295

Most of what is known about the vertical structure of variability from observations is296

based on Wunsch (1997, 1999). Those results support the inference that in the vertical297

dimension a modal representation is most useful (a contrast with the internal wave case). The298

basic inference was that about 50% of the water-column kinetic energy is in the barotropic299

mode, about 40% in the first baroclinic mode, and the remainder in higher baroclinic modes300

and noise. The modes were defined as the basic flat-bottom resting ocean Rossby wave301
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modes. However, Wunsch (1997) found evidence of coupling between the modes, such that302

the total surface kinetic energy was different from the sum of the energy in each mode. Müller303

and Siedler (1992) computed EOFs from several multi-year moorings in the North Atlantic.304

The leading EOF generally had a surface-intensified shape, similar to the first baroclinic305

mode but no zero crossing. Decomposition into dynamical modes showed coupling between306

the barotropic and first baroclinic modes, especially during the most energetic events.307

Given the short duration of most current meter moorings, almost no observational in-308

formation exists about the vertical structure of currents at periods beyond about a year.309

Wortham (2013) resorted to GCM results, based on the 1/6◦ ECCO2 model (Menemenlis310

et al. 2008), which suggested that the barotropic and first baroclinic modes are strongly311

coupled, especially at interannual periods.312

The general lack of evidence on which to base conclusions about the vertical structure313

of balanced motions has been discussed by Wunsch (2009, 2010) and Ferrari and Wunsch314

(2010). In the absence of further observations, we take the evidence from the ECCO2315

GCM (Wortham (2013)) as the basis for the spectrum-model vertical structure, presented316

in section 5. The vertical structure of balanced motions, especially at periods longer than a317

year, deserves further study.318

4. Model k-l-ω spectrum319

The spectrum-model presented as a zero-order approximation by Zang and Wunsch320

(2001) was universal in shape (only the amplitude changed with location) and separable321

in frequency and wavenumber. However, important quantities, such as the first moments of322

the spectrum, vary geographically and observations of the nondispersive line are incompati-323

ble with a separable form. Many observations are consistent with a single spectral form with324

suitable slowly-varying parameters.325

A quantitatively useful analytical description of the observed spectra is sought, along326
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with some description of its accuracies. For the horizontal wavenumber-frequency spectrum327

discussed in section 3, the structure is captured by,328

Φψ(k, l, ω;φ, λ) =
1(

k2L2
x + l2L2

y + 1
)α

(ω2T 2 + 1)

+ exp
[
−
(
k2L2

x + l2L2
y + T 2(kcx + lcy − ω)2

)]
(31)

where α, Lx, Ly, T , cx, and cy are geographically variable parameters. Equation (31) has329

two parts. A power law appears in the first term, with parameters Lx, Ly, and T controlling330

the dominant wavelengths and period of the spectrum, while α sets the high wavenumber331

spectral slope. An exponential term enforces the dominance of westward propagation. The332

exponential term only makes a significant contribution in the range of wavenumber-frequency333

space corresponding to the nondispersive line. This model is entirely empirical, and is judged334

by the authors to provide a reasonable fit to a wide variety of observations described in section335

3. Consistency between the spectrum-model and observations will be discussed below. The336

full spectrum-model is illustrated in Fig. 6 as a set of two-dimensional spectra averaged337

over positive and negative wavenumber half-spaces. Figure 7 displays a three-dimensional338

version.339

Integrating (31) over l and ω produces the zonal wavenumber spectrum:340

Φψ(k;φ, λ) =

∫ ∞
−∞

∫ ∞
0

Φψ(k, l, ω;φ, λ) dω dl (32)

=
π3/2Γ(α− 1/2)

2TLyΓ(α)

(
1 + k2L2

x

)−α+1/2
+

π

2TLy
e−k

2L2
x

(
1 + erf

[
kcxLyT√
L2
y + c2

yT
2

])
(33)

where erf(z) is the error function341

erf(z) =
2√
π

∫ z

0

e−t
2

dt, (34)

with a similar expression for Φψ(l;φ, λ). At high wavenumber, the first term dominates and342

approaches a power law in k with slope −2α + 1. Although wavenumber spectral slopes343

from altimetry vary geographically (Xu and Fu 2012), considerable uncertainty exists in the344
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actual values, as discussed in section 3. In light of this uncertainty, a constant α = 5/2345

is used, to be updated when more reliable observations become available. The resulting346

one-dimensional wavenumber spectral slope is k−4 for SSH and k−2 for kinetic energy.347

Integrating (31) over k and l produces the frequency spectrum:348

Φψ(ω;φ, λ) =

∫ ∞
−∞

∫ ∞
−∞

Φψ(k, l, ω;φ, λ) dk dl (35)

=
π

(α− 1)LxLy

(
1 + ω2T 2

)−1
+

π√
D

exp
[
−L2

xL
2
yT

2ω2/D
]
, (36)

where349

D = c2
xL

2
yT

2 + L2
xL

2
y + c2

yL
2
xT

2. (37)

At high frequency, the first term dominates and approaches an ω−2 power law. This spectral350

slope applies to both SSH and kinetic energy.351

The most important parameters in the spectrum-model (31) are Lx, Ly, and T , which352

set the dominant wavelengths and periods. These parameters are chosen such that the first353

moment of the spectrum-model matches inferences from the AVISO product (Fig. 1). From354

(29) with (32) (and the equivalent relations for l), the first moment of the wavenumber355

spectrum is356

〈k1〉 =
(α− 1)

[√
πΓ(α− 3

2
) + Γ(α)

]
Lx
√
π(α +

√
π − 1)Γ(α)

, 〈l1〉 =
(α− 1)

[√
πΓ(α− 3

2
) + Γ(α)

]
Ly
√
π(α +

√
π − 1)Γ(α)

. (38)

Given 〈k1〉 and 〈l1〉 estimated from the AVISO product (Fig. 1), Lx and Ly are calculated357

from (38) at each location.358

The first moment of the frequency spectrum of SSH depends, unfortunately, on the limits359

of integration. Integrating (28) with (35) to an upper frequency limit ωmax,360

〈ω1〉 =
π(α− 1)

√
D
(
1− exp

[
−ω2

maxL
2
xL

2
yT

2/D
])

+ πLxLy ln[1 + ω2
maxT

2]

LxLyT
(

2π arctan(ωmaxT ) + π3/2(α− 1)erf[ωmaxLxLyT/
√
D]
) . (39)

Given Lx, Ly, and 〈ω1〉 estimated from the AVISO product (Fig. 1), (39) can be solved361

numerically for T at each location. Here, we use ωmax = 1/14 days−1, corresponding to the362

Nyquist frequency of the AVISO product.363
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The parameters cx and cy control the dominant zonal and meridional phase speeds in364

the spectrum-model. cx = ω/k is the result of the eigenvalue problem for the vertical365

structure, e.g. (3). In practice, the phase speed obtained from the modified eigenvalue366

problem discussed in section 5 is used instead. Given the very weak asymmetry between367

northward and southward motions, we set cy = 0 everywhere.368

The spectrum-model (31) is intended to approximate the observed spectrum for peri-369

ods between the inertial period and about 10 years, and wavelengths between 100 km and370

10,000 km. These limits are primarily set by the duration and spatial resolution of the al-371

timetric product that was used to inform the spectrum-model (Chelton et al. 2011). The372

important question of the behavior of the frequency spectrum as ω approaches zero is be-373

yond the scope of this work, but has been discussed elsewhere (Wunsch 2010, and references374

therein). As ω → 0 the spectrum-model here becomes white in frequency with consequences375

for trend determination. In the remainder of this section, the predictions of (31) are com-376

pared with various observed spectra.377

a. Global patterns378

The spectrum-model (31) is spatially variable, resulting in realistic patterns of dominant379

phase speed, period, and wavelength (Fig. 8), with values comparable to Fig. 1. The main380

difference is between phase speeds from AVISO and the spectrum-model; the eigenvalue381

problem used to set cx in the spectrum-model does not permit eastward phase speeds.382

b. Along-track altimetry383

Figure 2 compares wavenumber spectra of SSH from the spectrum-model and altimetry.384

The spectrum-model is normalized such that it has the same total variance as the observed385

one. In both regions, the model captures the general shape of the observed spectrum at386

wavelengths larger than 200 km. In particular, the transition from plateau to power law387
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occurs at the same wavelength in the spectrum-model as in the altimetric spectrum. The388

model has a constant high-wavenumber spectral slope of k−4 for SSH and does not agree389

with the altimetric spectra for scales smaller than about 200 km, where the observations are390

contaminated by measurement noise (Xu and Fu 2012).391

Figure 2 also shows modeled frequency spectra for the same locations. Again, the392

spectrum-model transitions from plateau to power law at the same frequency as the alti-393

metric spectrum, and the ω−2 power law is a reasonable fit for periods longer than about394

60 days. The frequency of the transition is set by the parameter T . At shorter periods the395

spectrum from along-track altimetry flattens, but the spectrum-model follows the spectrum396

from AVISO.397

c. Moored kinetic energy398

Figure 3 shows normalized modeled kinetic energy spectra at several locations and depths399

in the North Pacific. Overall, the spectrum-model follows the observed values, and captures400

the transition from plateau to ω−2 power law and, over most of the frequency range, is401

within the estimated uncertainty of the observed spectra. Although Fig. 3 suggests that the402

spectral shape changes with depth, these changes are not statistically significant given the403

available data, and are not reflected in (31).404

As ω approaches f/2π from below, the observed spectrum (Fig. 9) transitions smoothly405

into the internal wave regime at frequencies not modeled here. The transition regime between406

the present model and the Garrett-Munk spectrum, plus tidal and inertial peaks, remains407

to be properly represented, an effort not undertaken here.408

d. Moored temperature409

Figure 4 shows normalized temperature spectra from the moored instruments shown in410

Fig. 3. Again, for most instruments, the spectrum-model follows the observed spectra within411

19



the estimated uncertainty of the latter.412

e. Shipboard velocity413

The model wavenumber spectrum of kinetic energy is shown in Fig. 5. At this location,414

the spectrum-model amplitude was lower than the observed by a factor of 2 and is normalized415

to have the same total variance as the observations so the spectral shape can be compared.416

The model k−2 spectral slope is close to that observed, and the spectrum-model is within417

the estimated uncertainty of the observed spectrum at all wavelengths.418

5. Model vertical structure419

The vertical structure of the spectrum-model proposed by Zang and Wunsch (2001) was420

largely based on the observations of Wunsch (1997). They used the representation of (3)421

under BTT boundary conditions with mode partition E(0) = 1, E(1) = 1, E(2) = 1/2, and422

E(n) = 0 for n ≥ 3 in (20). While this recipe works in some locations (Zang and Wunsch423

2001), it has a strong tendency to overestimate kinetic energy in the abyss and underestimate424

kinetic energy near the surface. That is, kinetic energy is more surface intensified than their425

vertical structure predicted. Wortham (2013) suggests that such a systematic misfit to the426

observed kinetic energy profile is indicative of coupling between the barotropic and baroclinic427

modes.428

Several dynamical processes have been proposed to explain the surface intensification of429

kinetic energy. These include the impact of mean flow (Keller and Veronis 1969; Killworth430

et al. 1997; Dewar 1998; de Szoeke and Chelton 1999; Killworth and Blundell 2004, 2005),431

large scale sloping topography (Killworth and Blundell 1999), small scale rough topography432

(Rhines and Bretherton 1973; Samelson 1992; Bobrovich and Reznik 1999; Tailleux and433

McWilliams 2001), surface forcing by Ekman pumping (Frankignoul and Müller 1979b,a;434

Müller and Frankignoul 1981; Killworth and Blundell 2007), SQG dynamics (Lapeyre and435
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Klein 2006; LaCasce 2012), and nonlinearity (McWilliams and Flierl 1979; Vanneste 2003;436

Chelton et al. 2007, 2011). See Wortham (2013) and references therein for a more complete437

discussion. We focus on the roles of mean flow and rough topography because they predict438

the observed vertical structure, while recognizing that other dynamics may be important439

too.440

Samelson (1992) found that rough topography produced surface intensified Rossby waves441

in a 2-layer model, and Bobrovich and Reznik (1999) provided an analytical description of the442

effect in a constant stratification. The latter showed that rough topography reduces the wave443

amplitude near the bottom, though this analytical theory is difficult to apply for realistic444

stratification. Tailleux and McWilliams (2001) have presented a simple approximation of the445

impact of topography through their “bottom pressure decoupling” (BPD) theory. Essentially,446

the BPD formulation replaces the standard bottom boundary condition, dF/dz = 0, with447

F (z) = 0 at z = −H. Aoki et al. (2009) showed that this BPD theory and mean flow both448

improved the representation of vertical structure in a GCM.449

Consider the quasi-geostrophic vorticity equation, linearized about the local mean state450

U = U(z)i + V (z)j (Aoki et al. 2009),451 [
∂

∂t
+ U

∂

∂x
+ V

∂

∂y

] [
∇2ψ +

∂

∂z

(
f 2

0

N2

∂ψ

∂z

)]
− ∂

∂z

(
f 2

0

N2

∂V

∂z

)
∂ψ

∂y

+

[
β − ∂

∂z

(
f 2

0

N2

∂U

∂z

)]
∂ψ

∂x
= 0, −H < z < 0. (40)

Imposing wave solutions in the form ψ(x, y, z, t) = F (z)e−i2π(kx+ly−ωt) in (40), the vertical452

structure satisfies453

(K ·U− ω)

[
∂

∂z

(
f 2

0

N2

∂

∂z

)
−K2

]
F (z) =[
l
∂

∂z

(
f 2

0

N2

∂V

∂z

)
− k

(
β − ∂

∂z

(
f 2

0

N2

∂U

∂z

))]
F (z), (41)

where K = (k, l) and K =
√
k2 + l2. Given the mean flow U, stratification N2, and454

suitable boundary conditions, (41) forms an eigenvalue problem which can be solved for455

the eigenmodes Fn(z) and eigenvalues ωn, n = 0, 1, 2, . . .456
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Following the formulation of Aoki et al. (2009), including the effects of mean flow and457

BPD, the vertical modes are the eigenmodes of (41) subject to the boundary conditions458

dF

dz
= 0 at z = 0, (42)

F = 0 at z = −H. (43)

We use l = 0 and k = 1/(100Ld), effectively in the long-wave limit, where Ld is BTT first459

baroclinic mode deformation radius. Mean flow U, salinity S, and potential temperature θ460

are taken from the OCCA atlas (Forget 2010), and stratification is computed using a neutral461

density calculation (Chelton et al. 1998).462

Comparison with vertical profiles of EKE and temperature variation at the four mooring463

sites shown in Figs. 3 and 4 produced a reasonable fit with the mode coefficients E(0) = 1/2,464

E(1) = 1, E(2) = 1/4, E(3) = 1/10, E(n) = 0 for n ≥ 4. These coefficients are then used465

globally. The coefficients E(n) used here are preliminary, and the representation of the466

vertical structure in the spectrum-model deserves further study. The resulting spectrum-467

model vertical structure is discussed below.468

A possible significant shortcoming of the representation in (20) is the assumption that469

the vertical structure is independent of period/wavelength. In almost all extensions (e.g.470

Tailleux and McWilliams (2001); Killworth and Blundell (2004); Lapeyre and Klein (2006)),471

vertical mode structure depends on wavelength. With existing observational technologies,472

the period/wavelength dependence of the vertical structure will be very difficult to determine.473

EKE(z) and σθ(z) profiles474

The Appendix describes by example how to compute various quantities from the spectrum-475

model. Here some summary comparisons with other observations are made. Figure 10 com-476

pares the vertical profile of kinetic energy for the spectrum-model with sub-inertial kinetic477

energy from the set of current meters discussed in section 3b. Sub-inertial kinetic energy is478

estimated by integrating its spectrum over frequencies below 1/5 cpd for each instrument,479

22



and a similar estimate is made from the model. For most instruments, the model kinetic en-480

ergy agrees with the observed to within a factor of 2, indicated by gray shading in the figure,481

and often better. The main exception is near 1000 m at 28◦N, where the model overestimates482

the observed kinetic energy by a factor of 3.483

Figure 11 compares the vertical profile of temperature standard deviation σθ for the484

spectrum-model with observations from moored temperature sensors. The predicted tem-485

perature standard deviation is within a factor of 2 of the observations in almost all cases,486

as indicated by gray shading in the figure. An example of the calculation of temperature487

standard deviation is reproduced in the Appendix.488

For a further evaluation of spectrum-model, we expand the analysis to the large number489

of moored current meter and temperature sensors collected in the Global Multi-Archive490

Current Meter Database (CMD) (Scott et al. 2010). We found 4112 current meter records491

with a duration of at least 180 days moored in water deeper than 1000 m and with nominal492

instrument depth at least 500 m above the sea floor. From this set, we excluded records with493

quality control flags set in the original archive, records with less than 50% data coverage,494

and instruments within 5◦ of the equator or 2.5◦ of land. These criteria resulted in 2179495

current meter records and 1948 temperature records included in the analysis. The locations496

of these instruments are mapped in Fig. 12.497

The sampling frequencies for the records analyzed vary from 5 min to 1 day. To produce498

homogeneous records for comparison with the spectrum-model, all records are reduced to499

5 day moving averages. When there are missing data in a 5 day window, the average is500

computed as long as there are at least 2.5 days of good data within the window; otherwise,501

the time period is flagged as missing and no temporal interpolation is made. For each 5 day502

averaged time series, we compute the EKE and temperature standard deviation σθ. For each503

record, EKE and σθ are computed from the spectrum-model at the instrument location and504

depth.505

Scatterplots compare the EKE and σθ from the spectrum-model with the CMD records506
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(Fig. 13). If there were perfect agreement between the spectrum-model and the CMD records,507

all points would fall along the 45◦ line. For EKE, there is strong correlation between the508

spectrum-model and observed values (Pearson correlation coefficient r = 0.85). Conspicuous509

in the EKE scatterplot is a cluster of points well below the 45◦ line, with the spectrum-model510

underestimating the observed EKE. At these points the spectrum-model vertical structure511

for EKE is very surface intensified. This surface intensification is caused by the local mean512

flow U in (41). Strong, presumably unrealistic surface intensification in the spectrum-model513

occurred in about 50 cases. For σθ, the correlation is weaker (r = 0.77) and the spectrum-514

model is biased high. Both correlations are highly statistically significant (P < 10−4).515

Biases in the spectrum-model are revealed by examining the following statistic, similar516

to that used by Scott et al. (2010):517

DEKE =
EKECMD − EKEMOD

EKECMD + EKEMOD

, (44)

Dσθ =
σθ,CMD − σθ,MOD

σθ,CMD + σθ,MOD

, (45)

where subscripts CMD and MOD indicate values from observations and the spectrum-model,518

respectively. This statistic maps the discrepancy onto the interval [−1, 1]. For perfect agree-519

ment between the spectrum-model and observations, DEKE and Dσθ would be distributed520

like the Dirac-δ function.521

Figure 14 shows histograms of DEKE and Dσθ , grouped by instrument depth. Depth bins522

are 0–700 m, 700–3000 m, and below 3000 m. The depth bins are selected to give roughly523

equal numbers of instruments in each bin. Overall, EKE from the spectrum-model is slightly524

stronger than from the CMD, with the strongest bias in the 700–3000 m bin. The distri-525

bution of Dσθ reveals the depth-dependence of the spectrum-model bias. Above 700 m, the526

spectrum-model σθ tends to be smaller than observed, while between 700 and 3000 m, the527

spectrum-model σθ tends to be larger. Below 3000 m, the spectrum model has a strong528

bias toward high σθ. Median values for DEKE and Dσθ in each depth bin represent the529

spectrum-model bias (Table 1).530
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6. Applications531

Many potential applications, both theoretical and practical, exist for the spectrum-model.532

At the core of the theoretical applications lies the need to explain why it takes on the char-533

acteristics it does, including power laws, dispersion curves, and modal coupling. Although534

some of these have been touched upon in the discussion of the construction of the model,535

these and similar questions are not pursued further here. The model can also be used to536

predict spectral energy and enstrophy fluxes, as in Scott and Wang (2005) and Arbic et al.537

(2012). Finally, the spectrum-model can be used to estimate isopycnal eddy diffusivities.538

Following Taylor (1921), diffusivity due to mesoscale eddies can be expressed in terms of539

the Lagrangian velocity autocorrelation function which, in turn, can be estimated from the540

spectrum-model (Davis 1982; Zang 2000).541

The spectral representation is also useful in discussions of space-time sampling require-542

ments for a variety of physical parameters, including the variability of volume flux across543

a latitude line or heat content, determination of the accuracy of estimated values, and the544

significance of any observed purported trends. As one illustration of this type of application,545

Wunsch (2008) used estimates of eddy variability to show that time series of meridional trans-546

port calculated from a pair of moorings spanning the North Atlantic will exhibit stochastic547

fluctuations with multi-year time scales. Such stochastic fluctuations complicate the task of548

identifying secular trends in the ocean circulation related to climate change. Equation (31)549

can also be used to predict unobserved spectra, such as for the wavenumbers of vertical550

displacement.551

Many practical applications of the spectrum-model rely on estimates of space and time552

correlation functions, given by (24). The one-dimensional correlation functions of tempera-553

ture as a function of zonal, meridional, and temporal separation are shown in Fig. 15. At554

30◦N, 190◦E, the correlations show approximately exponential decay, with e-folding wave-555

length of 125 km for zonal separation, 110 km for meridional separation, and 40 days for556

temporal separation.557
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The correlation function is useful, for example, in objective mapping of satellite and in558

situ data. In this context, the spectrum-model provides an estimate of the signal covariance.559

In objective mapping, the goal is to estimate the value of a field, χ, at a general point r̃ given560

a set of measurements y at positions ri. While simple linear interpolation is often used, more561

general methods (e.g. Bretherton et al. 1976; Wunsch 2006, §3.2) make use of covariances562

within the signal and noise, which can be estimated from the spectrum-model.563

Using (27), we plot the meridional velocity coherence at 30◦N, 190◦E for meridional564

separations between 0 and 200 km (Fig. 16). Since the spectral shape is independent of depth,565

the predicted coherence is the same at all depths. As expected from the autocorrelation566

function, there is little coherence for separation beyond about 100 km. An example coherence567

calculation is reproduced in the Appendix.568

Finally, the model is applicable to observing system design and trend detection. In this569

context, the spectrum provides the noise covariance. One can estimate, for example, the570

number of deep Argo floats needed to detect temperature trends in the abyssal ocean over a571

given time period. This and other applications are left for future study.572

7. Discussion573

A strawman empirical model of the four-dimensional spectral density of low frequency574

(longer than about 20 days but shorter than a decade) ocean variability is proposed. The575

model is based on a variety of observations, including satellite altimetry, moored temperature576

and current meters, and shipboard velocity measurements. A model of the spectrum of the577

geostrophic streamfunction is presented, and compared with observations assuming simple578

geostrophic dynamics. However, many regions of the ocean have peculiar dynamics where579

the model is inaccurate. In particular, no attempt is made to match observations in the580

near-surface mixed layer, the core of western boundary currents, the Antarctic Circumpolar581

Current, within about 5◦ of the equator, or poleward of 50◦.582
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For the horizontal wavenumber-frequency portion of the spectrum, an implicit two-scale583

approximation is made; a locally uniform spectrum is modulated by slowly varying geo-584

graphical parameters Lx, Ly, T , and cx. These parameters determine the dominant space585

and time scales of the spectrum, as well as a dominant propagation direction. In this way,586

a single analytical expression (31) represents the shape of the spectrum over much of the587

ocean. A typical spectrum is shown in Fig. 6.588

The amplitude of the spectrum-model is set to match altimetric observations of the sur-589

face eddy kinetic energy. The depth dependence is expressed in terms of Rossby wave vertical590

modes modified to account for the effects of mean flow and rough topography (Tailleux and591

McWilliams 2001; Aoki et al. 2009). Including these two effects greatly improves the agree-592

ment with observations over the conventional flat-bottom, resting ocean theory which does593

not capture the observed surface intensification of kinetic energy. The possibility that other594

dynamical processes (e.g., the generation of strongly surface-intensified eddies by baroclinic595

instability) contribute to the observed vertical structure is not excluded.596

Explanation of the energy levels and spectral shape is not the goal here. We can, how-597

ever, speculate to a degree on the basis of known theories. Müller and Frankignoul (1981)598

present a detailed analysis of the frequency spectrum of the quasi-geostrophic oceanic re-599

sponse to atmospheric forcing. The resulting spectrum is the integral response of the ocean600

to continuous random forcing by the atmosphere. Their predicted spectrum is white at low601

frequencies, changing smoothly to a ω−2 power law at ω ∼ ωmax
n (their Fig. 7). The maxi-602

mum frequency for the first baroclinic mode, ωmax
1 = βLd/2, depends on latitude primarily603

through the deformation radius Ld. Thus, they predict that the break point between the604

white low frequency spectrum and ω−2 power law will decrease with latitude as the defor-605

mation radius decreases. The general shape predicted by Müller and Frankignoul (1981) is606

similar to the model frequency spectrum presented here.607

For the wavenumber spectrum of total energy in the nth mode, Müller and Frankignoul608
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(1981) predict609

En
tot ∼

1

k3 + kL−2
d

. (46)

For the baroclinic modes, the spectrum transitions from a k−1 power law at low wavenumber610

to a steeper k−3 at high wavenumber with the break point near the deformation radius. For611

the barotropic mode, the predicted spectrum is a k−3 power law at high wavenumber. This612

is steeper than the k−2 in the spectrum-model presented here.613

The character of low frequency variability can also be attributed to quasi-geostrophic614

(QG) turbulence theory. QG turbulence theory predicts a forward enstrophy cascade for615

wavenumbers higher than the energy injection scale kI (Charney 1971), and an inverse energy616

cascade for lower wavenumbers. The kinetic energy spectra in the forward and inverse ranges617

are618

E(k) ∼ k−3 for |k| > kI , (47)

E(k) ∼ k−5/3 for |k| < kI . (48)

For balanced motions, this requirement implies a k−5 power law for SSH for |k| > kI ,619

and k−11/3 for |k| < kI . The energy injection wavenumber appears to be close to the620

deformation scale (Scott and Wang 2005). A considerable literature compares observed621

wavenumber spectra with the predictions of turbulence theories (e.g. Stammer 1997; Le Traon622

et al. 2008; Lapeyre 2009; Wang et al. 2010; Xu and Fu 2012). Further, eddy generation623

through baroclinic instability has shown skill in predicting observed wavelengths of variability624

(Tulloch et al. 2011) and seasonal modulation of EKE (Qiu et al. 2008).625

Some inconvenient evidence has been ignored here. Most important, the model assumes626

that variability is due to the superposition of a random wave field, excluding evidence for627

“coherent motions” (Chelton et al. 2011; Early et al. 2011). Structures such as isolated628

vortices, where present, would significantly increase the expected variance relative to a ran-629

dom wave field by phase-locking different horizontal wavelengths and frequencies. These630

effects could be addressed by estimating higher-order spectra, such as the bispectrum and631
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trispectrum, which describe nonlinear interactions between spectral components.632

Despite the shortcomings of the present model, it has reached a stage where it can633

be usefully applied in a variety of areas. Obvious applications include the estimation of634

uncertainties in observed trends, observing system design, objective mapping of data, and635

evaluating the scales of variability produced in ocean GCMs.636
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APPENDIX643

644

Working with the spectrum-model645

Although the shape of the spectrum-model is easily computed from (31) integrated over646

frequency or wavenumber, calculating the absolute amplitude is more complicated. Here,647

we show by example how to use the spectrum-model to predict quantitative values (e.g.,648

variance) for different variables. The variance predicted by the spectrum-model for a generic649

variable χ at depth z is650

σ2
χ(z) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

Φχ(k, l, ω, z;φ, λ) dk dl dω. (A1)

By (17) and (20),651

σ2
χ(z) = I(φ, λ)

∑
n

E(n)

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞
|χ̃|2Φψ(k, l, ω;φ, λ) dk dl dω, (A2)

where Φψ(k, l, ω;φ, λ) is the three dimensional spectrum-model (31). The characteristic652

functions (8)-(14) are separable: χ̃ = χ̂(k, l, ω)χ(z), and we define p̂ = ρ̂ = ζ̂ = θ̂ = 1,653

û = l, v̂ = k and ŵ = ω. All other factors are grouped with the vertical part χ(z), e.g.,654

θ(z) = i2πFn(z). With this separation, the variance is655

σ2
χ(z) = I(φ, λ)

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞
|χ̂|2Φψ(k, l, ω;φ, λ) dk dl dω ×

∑
n

E(n)|χ|2, (A3)

where the first two factors are a horizontally varying intensity, and the last represents the656

vertical structure. (Horizontal variation in the vertical mode shape is implicit.)657

Four possible maps of the horizontally varying part of (A3) exist, corresponding to the658

four functional forms of χ̂ (Fig. 17). These maps primarily reflect the variation in EKE659

through I(φ, λ), but also depend on the spatially variable shape of the spectrum through660

the parameters Lx, Ly, and T . The vertical structure part of (A3) depends on location and661

the specific variable.662
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As an example of the use of the spectrum-model, maps in Fig. 17 can be combined with663

the appropriate vertical structure to estimate variability at a given depth. The vertical664

structure for temperature,
∑

nE(n)|f0Gn(z)∂θ0/∂z|2 is shown in Fig. 18 near 39◦N, 230◦E.665

At this location and 500 m depth, I
∫∫∫

Φψ dk dl dω = 1.4 × 106 m4 s−2 and
∑
E(n)|θ|2 =666

1× 10−8 ◦C2 s2 m−4 so that σθ(500 m) = 0.12 ◦C as in Fig. 11.667

Coherence from the spectrum-model is given by (27) and depends on Fn(z) through the668

characteristic function and I(φ, λ) through (20), quantities which are difficult to compute669

in general. Using the separation χ̃ = χ̂(k, l, ω)χ(z, n) introduced above with (17) and (20),670

(27) is671

Coh(ω; rx, ry, z, z
′) =

C(z)

∞∫
−∞

∞∫
−∞

χ̂Υ̂∗Φψ(k, l, ω;φ, λ)ei2π(krx+lry) dk dl√[ ∞∫
−∞

∞∫
−∞
|χ̂|2Φψ(k, l, ω;φ, λ) dk dl

] [ ∞∫
−∞

∞∫
−∞
|Υ̂|2Φψ(k, l, ω;φ, λ) dk dl

] , (A4)

where672

C(z) =

∞∑
n=0

χΥ
∗
E(n)√[

∞∑
n=0

|χ|2E(n)

] [
∞∑
n=0

|Υ|2E(n)

] (A5)

contains the depth dependence. In general, C(z) depends on the vertical structure functions673

Fn(z) andGn(z), and is difficult to compute. However, in the common case of auto-coherence,674

χ = Υ, C(z) = 1. In this case, the coherence can be computed from the spectrum-model675

(31) and χ̂ part of the characteristic function, integrated over all wavenumbers.676
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List of Tables849

1 Statistics for comparison of the spectrum-model and the CMD. Instrument850

locations are shown in Fig. 12. Median Dχ values represent the bias of the851

spectrum-model for EKE or σθ within each depth bin. 41852
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Table 1. Statistics for comparison of the spectrum-model and the CMD. Instrument loca-
tions are shown in Fig. 12. Median Dχ values represent the bias of the spectrum-model for
EKE or σθ within each depth bin.

Quantity EKE σθ
# instruments 2179 1948
Correlation 0.85 0.77
Median Dχ, <700 m -0.01 0.16
Median Dχ, 700–3000 m -0.10 -0.11
Median Dχ, >3000 m 0.01 -0.45
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List of Figures853

1 Dominant phase speed (top left), period (top right), zonal wavelength (bot-854

tom left), and meridional wavelength (bottom right) based on the inverse855

of the first moment of the one-dimensional spectra. For zonal wavelength,856

the hatched area indicates regions where eastward propagation dominates;857

elsewhere, westward propagation dominates. For meridional wavelength, the858

hatched area indicates regions where poleward propagation dominates; else-859

where, equator ward propagation dominates. 45860

2 Along-track wavenumber (left) and frequency (right) spectra from tracks span-861

ning 30◦N to 40◦N at the indicated longitude (solid line). Dashed lines show862

the spectrum-model at each location, discussed in section 4. Dotted lines863

show the spectra from AVISO gridded altimetry, interpolated along the satel-864

lite track. Vertical bars indicate the 95% confidence interval. 46865

3 Observed (solid) and modeled (red dashed, discussed in section 4) frequency866

spectra of kinetic energy from moored instruments. All spectra are normalized867

by the total variance to compare the shapes. Vertical bars indicate the 95%868

confidence interval. 47869

4 As in Fig. 3, but for the temperature spectrum. 48870

5 Observed (solid) and modeled (dashed, discussed in section 4) wavenumber871

spectra of kinetic energy from shipboard ADCP. The transect spans 20◦–30◦N872

at 180◦E at 100 m depth. The high wavenumber spectral slope for the model873

is k−2. The vertical bar indicates the 95% confidence interval. 49874
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6 The spectrum-model (31) for SSH near 30◦N, 190◦E. Two-dimensional spectra875

Φη(k, ω) (top left), Φη(l, ω) (top right), and Φη(l, k) (bottom) are shown.876

Solid lines indicate the parameters in the model. One dimensional spectra877

are projected on a vertical plane, with high frequency/wavenumber power878

laws labeled. The nondispersive line, with phase speed cx, is most prominent879

in the k-ω spectrum. Due to the difficulty of plotting positive and negative880

wavenumbers together on a logarithmic scale, we show the average of the881

positive and negative wavenumber half-spaces. 50882

7 A 3D representation of the spectrum-model (31) for SSH near 30◦N, 190◦E.883

The red iso-surface illustrates the nondispersive line. Slices through the planes884

ω = 0, l = 0, k = 0, and k = 6× 10−3 cpk are shown. 51885

8 Global characteristics of the spectrum-model (31). Dominant zonal phase886

speed (top left), period (top right), zonal wavelength (bottom left), and merid-887

ional wavelength (bottom right) based on the first moment of the associated888

one-dimensional spectra. 52889

9 Observed (solid) and modeled (dashed) frequency spectra of kinetic energy890

from moored instruments at 32◦N, 232◦E, 1481 m deep, as in Fig. 3, but now891

expanded to show the internal wave regime. The spectral peaks are at the892

inertial and M2 tidal frequencies. 53893

10 Observed (stars) and modeled (solid line) kinetic energy as a function of depth894

from moored instruments. Gray shading indicates EKE within a factor of 2895

of the spectrum-model prediction. Moorings are the same as those shown in896

Fig. 3 and 4. 54897

11 As in Fig. 10 but showing the vertical structure of temperature variance. Gray898

shading indicates σθ within a factor of 2 of the spectrum-model prediction. 55899

12 Locations of current meter mooring sites used. 56900
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13 Scatterplot of EKE (left) and σθ (right) from the spectrum-model and CMD901

instruments. 57902

14 The distribution of DEKE (left) and Dσθ (right) for three depth ranges: 0–903

700 m (blue), 700–3000 m (green) and below 3000 m (red). 58904

15 Autocorrelation function for temperature as a function of spatial (left) and905

temporal (right) separation based on the spectrum-model at 30◦N, 190◦E. 59906

16 Meridional velocity coherence as a function of meridional separation at 30◦N,907

190◦E. 60908

17 Horizontally variable part of (A3) for p̃, ρ̃, ζ̃, θ̃ (top left), ũ (top right), ṽ909

(bottom left), and w̃ (bottom right). 61910

18 Vertical structure part of (A3) for θ̃ at 39◦N, 230◦E. Multiplying by the hor-911

izontally variable part shown in Fig. 17 gives the temperature variance. 62912
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Fig. 1. Dominant phase speed (top left), period (top right), zonal wavelength (bottom left),
and meridional wavelength (bottom right) based on the inverse of the first moment of the
one-dimensional spectra. For zonal wavelength, the hatched area indicates regions where
eastward propagation dominates; elsewhere, westward propagation dominates. For merid-
ional wavelength, the hatched area indicates regions where poleward propagation dominates;
elsewhere, equator ward propagation dominates.
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at each location, discussed in section 4. Dotted lines show the spectra from AVISO gridded
altimetry, interpolated along the satellite track. Vertical bars indicate the 95% confidence
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Fig. 3. Observed (solid) and modeled (red dashed, discussed in section 4) frequency spectra
of kinetic energy from moored instruments. All spectra are normalized by the total variance
to compare the shapes. Vertical bars indicate the 95% confidence interval.
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Fig. 4. As in Fig. 3, but for the temperature spectrum.
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Fig. 5. Observed (solid) and modeled (dashed, discussed in section 4) wavenumber spectra
of kinetic energy from shipboard ADCP. The transect spans 20◦–30◦N at 180◦E at 100 m
depth. The high wavenumber spectral slope for the model is k−2. The vertical bar indicates
the 95% confidence interval.
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Fig. 6. The spectrum-model (31) for SSH near 30◦N, 190◦E. Two-dimensional spectra
Φη(k, ω) (top left), Φη(l, ω) (top right), and Φη(l, k) (bottom) are shown. Solid lines indicate
the parameters in the model. One dimensional spectra are projected on a vertical plane, with
high frequency/wavenumber power laws labeled. The nondispersive line, with phase speed
cx, is most prominent in the k-ω spectrum. Due to the difficulty of plotting positive and
negative wavenumbers together on a logarithmic scale, we show the average of the positive
and negative wavenumber half-spaces.
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Fig. 7. A 3D representation of the spectrum-model (31) for SSH near 30◦N, 190◦E. The red
iso-surface illustrates the nondispersive line. Slices through the planes ω = 0, l = 0, k = 0,
and k = 6× 10−3 cpk are shown.
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Fig. 8. Global characteristics of the spectrum-model (31). Dominant zonal phase speed
(top left), period (top right), zonal wavelength (bottom left), and meridional wavelength
(bottom right) based on the first moment of the associated one-dimensional spectra.
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Fig. 9. Observed (solid) and modeled (dashed) frequency spectra of kinetic energy from
moored instruments at 32◦N, 232◦E, 1481 m deep, as in Fig. 3, but now expanded to show
the internal wave regime. The spectral peaks are at the inertial and M2 tidal frequencies.
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Fig. 10. Observed (stars) and modeled (solid line) kinetic energy as a function of depth from
moored instruments. Gray shading indicates EKE within a factor of 2 of the spectrum-model
prediction. Moorings are the same as those shown in Fig. 3 and 4.
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Fig. 11. As in Fig. 10 but showing the vertical structure of temperature variance. Gray
shading indicates σθ within a factor of 2 of the spectrum-model prediction.
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Fig. 12. Locations of current meter mooring sites used.
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Fig. 13. Scatterplot of EKE (left) and σθ (right) from the spectrum-model and CMD
instruments.
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Fig. 14. The distribution of DEKE (left) and Dσθ (right) for three depth ranges: 0–700 m
(blue), 700–3000 m (green) and below 3000 m (red).
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Fig. 15. Autocorrelation function for temperature as a function of spatial (left) and temporal
(right) separation based on the spectrum-model at 30◦N, 190◦E.
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Fig. 16. Meridional velocity coherence as a function of meridional separation at 30◦N,
190◦E.
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Fig. 17. Horizontally variable part of (A3) for p̃, ρ̃, ζ̃, θ̃ (top left), ũ (top right), ṽ (bottom
left), and w̃ (bottom right).
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Fig. 18. Vertical structure part of (A3) for θ̃ at 39◦N, 230◦E. Multiplying by the horizontally
variable part shown in Fig. 17 gives the temperature variance.
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