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Parameter values in marine biogeochemical models can strongly affect model performance, but can be hard to
define accurately and precisely. When making quantitative comparisons between models it is helpful to
objectively assign optimal parameter values, so it is the best model performance rather than the degree (or
lack) of tuning which is assessed. The efficacy of two optimisation techniques, a variational adjoint (VA) and a
micro genetic algorithm (μGA), was studied with respect to the calibration of two simple one-dimensional
models for Arabian Sea data. Optimisations were randomly initialised a number of times, and given the level of
uncertainty in the data, the two techniques performed equally well in terms of reducing model-data misfits.
When ten parameters were optimised for either model, the Arabian Sea data were insufficient to constrain
unique solutions; several parameters could be set anywhere across a wide range of values while providing a
similarly good fit to the data. The significance of this underdetermination was assessed by evaluating model
solutions against unassimilated equatorial Pacific data. When no prior information was used to assist the
optimisation, the underdetermined solutions led to highly variable and often poor performance at the
equatorial Pacific. Prior information was used to gain a more reliable solution in two ways: (1) by fixing all
poorly-constrained parameters to their default prior values, optimising only parameters that were well-
constrained by the data; or (2) by placing broad limits on the search to exclude unrealistic parameter values.
Using the first approach the optimisation routines could constrain unique solutions andmodel performance in
the equatorial Pacific was very consistent. The precise results were however sensitive to the uncertain a priori
values of the fixed parameters. The second approach was less prescriptive, and consequently led to a more
variable performance in the equatorial Pacific. It is argued that the first approach is unrealistically precise as it
ignores any uncertainty in the unconstrained parameters, while solutions from the second approach may be
unnecessarily broad. In conclusion, unconstrained parameter optimisation procedures should be assisted by
stating all that is known a priori about the parameters, but no more.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Marine biogeochemical models typically rely on the aggregation of
many diverse species into broad functional groups (Hood et al., 2006),
with the fluxes of matter between model compartments described by
empirical functions. The parameterisation of those functions is often set
according to the results of laboratory based studies of plankton
monocultures (Pahlow and Oschlies, 2009), and as such may not be
representative of the diverse range of organisms present in oceanic
ecosystems. An alternative approach has been to use optimisation
techniques to adjust model parameters, with the aim of minimising the
misfit between the model output and a set of in situ observations. This
method has the advantage that the parameters are assigned values based

on thebehaviourof all the components in theobservedecosystem.Studies
have repeatedly shown, however, that observations are currently
insufficient to accurately constrain the number of parameters required
byeven the simplest ecosystemmodels (Matear, 1995; Fennel et al., 2001;
Friedrichs et al., 2007). For example, three ecosystem models, with
between11and20 tunableparameterswereoptimisedby(Matear, 1995)
against in situ data at Station P in the North Pacific using a simulated
annealing algorithm. Analysis of the error covariance matrix for the
optimalparameters revealed that, as a consequenceof partially-correlated
parameters, no more than ten independent parameters could be
constrained by the available data. Regardless of the model, the number
of parameters that could be constrainedwas always found to be less than
the total number of parameters.

If ecosystemmodels such as these are to be optimised, it is necessary
to find a way of dealing with the many unconstrained parameters. It is
also important to know that the optimised parameter values are
sensible, and that a model is not getting the right answer for the wrong
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reasons (Anderson, 2005; Friedrichs et al., 2006). One technique is to
provide additional information in the optimisation that attaches a high
penalty to parameter values that are thought to be unrealistic. For
example, estimates of the probable distribution of each parameter can
be included as a penalty term in the model-data misfit function, so that
any values that deviate too far from prior beliefs are assigned a large
misfit cost (Fasham and Evans, 1995; Matear, 1995; Schartau et al.,
2001; Evans, 2003). More simply, bounds can be defined that prevent
each parameter from taking values outside of a certain range (Schartau
and Oschlies, 2003).

A similar but related approach requires the optimisation of only a
few well-constrained parameters, fixing the remainder to precise
default values (i.e. restricting their allowed range to a single value). In
a comparison of three ecosystem models (with 10–19 parameters),
(Friedrichs et al., 2006) used the variational adjoint method to
demonstrate that the predictive ability of those models was a strong
function of the number of parameters optimised. A set of cross-
validation experiments illustrated that if too many unconstrained
parameters were allowed to vary, the more complex models were
unable to reproduce any unassimilated data.

The use of formal parameter optimisation becomes particularly
important for studies concernedwithmaking quantitative comparisons
between models (Friedrichs et al., 2006, 2007). It would not be fair, for
example, to test a model parameterised for the English Channel against
one that hadbeen set up in the Sargasso Sea, if the goalwas to reproduce
biogeochemical observations from the North Atlantic subtropical gyre.
Parameter optimisation techniques allow the fair and objective
assignment of parameter values, so that any differences in model
performance can be attributed to differences in model structure, rather
than to the relevance of the parameter values (Friedrichs et al., 2007).

In this paper, two optimisation routines, a variational adjoint (VA)
method and a micro genetic algorithm (μGA) are compared. In the first
instance, the ability of the two techniques to yield a good fit between the
models and assimilated data is assessed. The optimisation routine that
returns the lowest misfit should ideally be preferred, but given most
marine biogeochemical models are to some degree underdetermined, it
is also necessary to examine the consequences of this uncertainty in the
optimised parameter values. If the parameters are highly overfit to the
assimilated data, it is likely that they will perform badly with regard to
unassimilated data (Friedrichs et al., 2006), so in addition to looking at
theminimummisfit costs achieved by the two techniques, the solutions
are examinedwith regard to their ability to reproduce independent data.

The two optimisation techniques are compared in terms of their
ability to calibrate a simple, single size-class model and a slightly more
complex, multiple size-class model to Arabian Sea data, with solutions
evaluated against independent, equatorial Pacific data, as an assessment
of predictive skill. The techniques are applied to each model with first
ten, and then three free parameters, as the following questions are
addressed: What is the minimum misfit found by each technique? Do
the two techniques yield the same consistent solutions? How useful are
the solutionswhen they are used tomodel independent data? And how
much information do different approaches yield with regard to
assessing model skill?

2. Methods

The modelling and optimisation framework was taken directly
from Friedrichs et al. (2007), with the addition of the μGA
optimisation technique. These aspects are summarised in Sections 2.1
to 2.4. The numerical experiments performed here are described in
Section 2.5.

2.1. Biogeochemical models and physical forcing

Twomodels of different complexity were selected from the suite of
biogeochemical models analysed by Friedrichs et al. (2007). The first

model was chosen as the simplest of those with no size-class
discrimination of plankton types; the second was the simplest of
the models that did contain an explicit representation of different
plankton size-classes. Both of these models were also examined in
Friedrichs et al. (2006). A schematic diagram indicating the basic
structure of both models is given in Fig. 1. Table 1 lists both sets of
model parameters and their default prior values.

The four-component (dissolved inorganic nitrogen, phytoplankton,
zooplankton and detritus) ecosystem model, requiring ten ecological
parameters, was developed specifically for the Arabian Sea. Regular
entrainment of nutrients brought about by seasonal monsoon events
makes the use of a diatom-mesozooplankton based system appropriate
at this site, with resolution of the microbial loop less important than at
more oligotrophic sites. A full model description can be found in
McCreary et al. (1996). The nine-component model, containing two
size-classes of phytoplankton, zooplankton, and detritus, together with
ammonium, nitrate, and iron was developed to simulate the high-
nutrient–low-chlorophyll conditions observed in the equatorial Pacific
(Christianet al., 2002) and requires23ecological parameters. Themodel
structure incorporates both iron limitation of larger phytoplankton and
the nanozooplankton–microzooplankton pathway that play an impor-
tant role at that site. The implementation used here is identical to that
described by Christian et al. (2002), except that the a priori maximum
grazing rate parameter for large phytoplanktonwas increased to 50 d−1

(Friedrichs et al., 2007).
The ecosystemmodels are run in a one-dimensional framework and

are forced by time-series profiles of temperature, vertical diffusivity and
vertical velocity, together with mixed layer depth and surface values of
photosynthetically available radiation. The physical framework is
identical to that used in Friedrichs et al. (2007), and a full description
can be found there.

2.2. Biogeochemical data

In situ observations of dissolved inorganic nitrogen, chlorophyll a,
14C primary production and detrital flux from sediment traps at
approximately 800–880 m were available from the US Joint Global
Ocean Flux Study (JGOFS) equatorial Pacific Process Study (February
and November 1992) (Murray et al., 1995) and Arabian Sea Process
Study (January to December 1995) (Smith et al., 1998). Data were
restricted to those collected at station S7 in the Arabian Sea (16.0°N,
62.0°W) and those collected within one degree of the equator during
the equatorial Pacific (140°W) cruises. All observations were
interpolated vertically onto the model grid, resulting in six dissolved
inorganic nitrogen and five chlorophyll a and primary productivity
profiles in the Arabian Sea, and 40 dissolved inorganic nitrogen and 27
chlorophyll a and primary productivity profiles for the equatorial
Pacific. Sediment trap data for particulate nitrogen flux were available
from the 800 m trap at 16.0°N, 61.5°W within the Arabian Sea, and
from the 880 m trap in the equatorial Pacific (Honjo et al., 1995,
1999). Model detrital flux was extrapolated from the deepest model
layer (150 m) to the level of the observations using the flux
attenuation formula of Martin et al. (1987).

2.3. The cost function

Following Friedrichs et al. (2007), the cost function J quantifies the
misfit between observed values (â) and modelled equivalents (a). It
was evaluated at each site using a weighted sum of squares function,

J =
1
M

∑
M

m=1
W2

m
1
Nm

∑
Nm

j=1
ða−âÞ2jm: ð1Þ

Individual misfits were summed over the number of different data
types (M=4; nitrate, chlorophyll a, primary productivity and export)
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and the number of observations (Nm). At each site, misfits to each
category of data were weighted proportionally to the standard
deviation of the observations, σm (Table 2), such that,

Wm =
Cm

σm
: ð2Þ

The weighting factor Cm (set to 7 for productivity data and 3.5 for
all other types) was included to increase the confidence associated
with observations of primary production, which would otherwise be
very low as a consequence of their high variability. The number of
observations for each data type at each site, Nm, was included in
Eq. (1) so that more frequently observed data types would not
dominate J. Models are not significantly different if the values of J
differ by less than one.

2.4. Optimisation techniques

The VA technique applied by Friedrichs et al. (2007) is contrasted
with another method, the μGA, which was taken from Carroll (1996)
and was used by Schartau and Oschlies (2003). While the VA is a
deterministic, gradient descent technique that may be applied in an
unrestricted search, the μGA is a stochastic technique that makes no
use of the gradient of the cost function and is limited to searching only
a predefined range of parameter values.

2.4.1. The variational adjoint (VA) technique
Adjoint models allow the calculation of the gradient of a model

output function with respect to a (potentially large) set of model
parameters. The VA technique seeks to minimisemodel-data misfit by
efficiently adjusting model parameters based on the gradient
information provided by the adjoint model. Such techniques have
the additional benefit of automatically computing the inverse of the
Hessianmatrix of second order partial derivatives of the cost function.
This provides an estimate of the uncertainty and correlations among
the optimal parameters.

The variational adjoint is an iterative process. The numerical model
is run forward with an initial guess for the parameter values, and the
cost function is evaluated. The adjoint model code—here automati-
cally compiled using the Tangent linear and Adjoint Model Compiler
(TAMC) (Giering and Kaminski, 1998)—is then run backwards in time,
yielding the gradient of the cost function with respect to the model
control parameters. The gradient information is passed to a limited
memory quasi-Newton optimisation procedure (Gilbert and Lemaré-
chal, 1989), which calculates the optimal direction and step size as the
parameters are adjusted towards the minimum of the cost function.
The new parameter values are evaluated in the forward model, and
the steps are repeated until a certain convergence criterion, based on
the norm of the gradient of the cost function, is satisfied.

The calculation of the cost-function gradient by the adjoint is based
on the assumption of a linear response to changes in the model
parameters. While this is likely not the case for biogeochemical models

Fig. 1. The four-component (a) and nine-component (b) biogeochemical models. State variables are shown as boxes, fluxes as arrows. The optimised parameters are shown next to
the fluxes they describe.
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such as those applied here (Schartau and Oschlies, 2003), the TAMC can
nonetheless produce sensible and functional code for both the models
presented here, as well as for number of others (Friedrichs et al., 2007).

2.4.2. The micro genetic algorithm (μGA)
The μGA is a stochastic optimisation technique analogous to

evolution by natural selection. The algorithm begins with a set of
randomly generatedmodel parameter vectors. Each parameter vector is
evaluated in the forward model and is assigned a misfit value as the
model output is evaluated against observations. At the end of each
generation the parameter vectors are randomly combined into pairs.
Within each pair, individuals are compared in terms of model-data
misfit, and the less fit parameter vector is discarded. This process of
sorting and selecting the parameter vectors is repeated so that the
population size is maintained. Each of the selected individuals is then
encoded as a single string of binary digits and is assigned to a pair with
another individual. Before each parameter vector is reproduced in the
next generation of the algorithm, a process analogous to genetic
crossover is applied. A single point along each pair of binary strings is
selected at random, and all the digits occurring after this point are
swapped between the individuals.

By selecting the fittest individuals, information describing the best
parameters is passed into the next generation, whilst the crossover
ensures that new points in the parameter space are evaluated. The
μGA cycles through a predefined number of generations, and at the
end of each generation, the fittest individual is passed directly to the

next generation. This prevents the best solutions from being lost as
the random processes of the algorithm are applied. Because the μGA
does not use mutation (a feature of the traditional GA), members of
the population tends to converge on the best parameter vector. In
order to maintain the search across a broad region of the parameter
space, once the binary code describing the individuals contains less
than 5% variability across the population, it is regenerated at random,
with the best individual again conserved.

The μGA requires a number of its own parameters, such as the
number of individuals within each generation. These parameters can be
adjusted to improve the rate of convergence on a solution, but to avoid
the possibly lengthy process of trial and error required to find the
optimal configuration, the default values (Carroll, 1996) were applied.
In all cases, the μGA population size was equal to the number of free
parameters and all optimisations were run for 5000 generations.

2.4.3. Restricting the parameter space
Just as the values of three coordinates, x, y and z can beused to define

any point in three-dimensional space, the values of nmodel parameters
can be used to define a point in an n-dimensional parameter space. This
analogy is useful for visualising the optimisation problem, which can be
described as the search for the point (or region) of the parameter space
associated with theminimum cost. The VA technique is free to evaluate
an almost continuous range of parameter values across an infinite, or
unbounded, parameter space (Schartau et al., 2001). The μGA by
contrast, as a consequence of its stochastic approach to handling
parameter values, is restricted to searching a number of discrete points
within a finite region of the model's parameter space.

The VA technique was applied here to search an unbounded
parameter space because, in agreement with Friedrichs et al. (2006,
2007), preliminary experiments revealed that the application of a
penalty term caused poorly-constrained parameter values to become
trapped by the sharp changes in gradient at the edges of the
parameter space. The μGA by contrast does not become trapped as
it makes no use of the cost-function gradient. In fact it requires upper
and lower limits to be set for each parameter because of the way a
binary string is used to specify the discrete values of the parameters.
In this study, 6-bit strings were used, and so each parameter could
only be assigned one of 64 discrete values in a predefined range. The
upper and lower limits were set to exclude any unrealistic values for
the parameters. For some parameters, such as the half-saturation
constant for nutrient uptake (N0) in the four-compartment model, the
minimum values were set to zero, as any negative values would be
nonsensical. Although some of the remaining minima and maxima
were defined somewhat subjectively, they were set to conservatively
broad values so that no realistic values were excluded from the
solution. The limits of the μGA search space for both models are listed
in Table 1.

The study by Friedrichs et al. (2007) found that the data available
for assimilation were adequate to constrain only between two and
four parameters for each model. It is likely that the application of an
unbounded search with ten unconstrained parameters will lead to
highly uncertain and perhaps unrealistic estimates of the optimal
parameters. This can be prevented by placing limits on the parameter
search space, as is required for the μGA (Schartau and Oschlies, 2003),
or by fixing the least constrained parameters to some sensible values
and only optimising those parameters which are well-constrained by
the data (Friedrichs et al., 2006, 2007).

A reduced subset of well-constrained parameters was identified
for each model using the technique of Friedrichs et al. (2007). Each
model was at first optimised for the full set of parameters, with
parameter uncertainty identified using the inverse of the Hessian
matrix. In each case the most unconstrained parameter was fixed to
its prior default value and the optimisation process was repeated,
sequentially fixing out all those parameters with uncertainty greater
than 100% of their prior value. For each model, three well-constrained

Table 1
Tuned model parameters with prior values and minimum and maximum limits on the
μGA search. The bold text indicates parameters that were varied in both the 10 and 3
parameter optimisations.

Parameter Symbol Default Range Units

4-component model McCreary et al. (1996)
1
2
saturation for Z grazing F0 1 0 – 5 mmol N m−3

Light saturation constant I0 40 5 – 80 Wm−2

1
2
saturation for N uptake N0 1 0 – 10 mmol N m−3

Grazing preference
coefficient

ϕp 0.83 0 – 1 –

P growth rate parameter g 2.9e−5 1e−6 – 1e−4 d−1

Z grazing rate parameter gr 4.6e−5 1e−5 – 1e−4 d−1

P mortality μp 1.2e−6 1e−8 – 1e−5 d−1

Z assimilation coefficient az 0.1 0 – 1 –

Z messy feeding to N an 0.4 0 – 1 –

Detrital remineralisation e 0.125 0.025 – 25 d−1

9-component model Christian et al. (2002)
Grazing rate parameter
(Zs on Ps)

gPs 50 5 – 60 d−1

Grazing rate parameter
(Zl on Pl)

gPl 50 5 – 60 d−1

Grazing rate parameter
(Zl on Zs)

gZs 10 5 – 60 d−1

Assimilation efficiency λ 0.75 0.1 – 0.9 –

Zs mortality rate δs 0.05 0 – 0.2 d−1

Zl mortality rate δl 0.2 0 – 2.0 d−1

Ps mortality rate ms 0.05 0.05 – 1.2 d−1

Pl mortality rate ml 0.2 0.05 – 1.2 d−1

Detrital remineralisation
rate

c 0.35 0.1 – 0.5 d−1

Max C specific growth rate Pmax
C 1.0 0.1 – 2.0 d−1

Table 2
Standard deviations for Arabian Sea and equatorial Pacific data.

Data type Arabian Sea Equatorial Pacific Units

Nitrate 2.48 1.87 mmol N m−3

Chlorophyll a 0.22 0.09 mg chl m−3

Primary production 19.2 8.51 mmol C m−3 d−1

Export 1.44 0.47 mmol C m−3 d−1
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parameters were identified in this way, and these are listed in bold
type in Table 1.

The two alternative approaches to incorporating prior information
are applied here, optimising each model to Arabian Sea data with the
unbounded VA and the bounded μGA, for at first ten, and then three,
free parameters.

2.5. Numerical experiments

Each model was first optimised for ten free parameters. This was
the total number of biological parameters in the four-component
model, and to maintain consistent degrees of freedom between
models only ten out of the 23 biological parameters in the nine-
component model were selected for optimisation. These ten para-
meters were identified in the sensitivity analysis of Friedrichs et al.
(2007) as being the ten most well constrained by the Arabian Sea and
equatorial Pacific data. The selected parameters relate to a broad
range of the model pathways, from phytoplankton growth rates to
detrital remineralisation and are listed in Table 1. The ten-parameter
optimisations will include several poorly-constrained and partially-
correlated parameters (Friedrichs et al., 2007), thus allowing some
comparison of how well underdetermination is handled by the
different optimisation approaches.

Both the VA and μGA techniques can be sensitive to the parameter
values used to initialise the search (Friedrichs, 2002; Schartau and
Oschlies, 2003). Thus each model was optimised ten separate times
for both the μGA and the VA, each time starting with a different set of
randomly generated parameter vectors, all within the parameter
ranges defined in Table 1. Each model was optimised to Arabian Sea
data, with every solution subsequently applied in an attempt to
reproduce unassimilated data from the equatorial Pacific. The misfit
costs associated with the independent data were labelled the
“predictive costs” of the solutions (Friedrichs et al., 2007), and they
can be used to make a quantitative assessment of the predictive skill
of optimised models (Gregg et al., 2009).

3. Results

The optimised model-data misfits for the assimilated Arabian Sea
data, together with the associated predictive costs at equatorial Pacific
are shown in Fig. 2. As each optimisation technique was repeated ten
times from different points in the parameter space, results are
presented in groups of ten. The minimum misfit, Jmin, achieved for
each set of optimisations is taken as the best estimate of the global
minimum yielded by a particular technique. Accounting for estimates
of the observational error (Eq. 2), a misfit difference of less than one is
not significant, and therefore for each set of optimisations, all
solutions with a cost of Jb(Jmin+1) are equally valid. These solutions
are subsequently referred to as “acceptable solutions” (Table 3),
though as discussed in Section 2.4.3, this does not necessarily imply
that all the optimised parameter values are realistic. In Fig. 2 the
acceptable solutions are shown as filled black bars. The unfilled bars
represent the optimisations that did not converge on the (estimated)
global minimum.

The acceptable solutions from any one group of optimisations,
while by definition very similar in terms of cost, often contained very
different estimates of the optimal parameters. This variation is shown
in Fig. 3, where the acceptable solutions from the VA are shown in
blue, while those from the μGA are shown in red. When applied to
modelling the equatorial Pacific data, these solutions often resulted in
highly variable predictive costs (e.g. Fig. 2, panel a-ii). To allow a
single metric estimating the predictive skill given by the acceptable
solutions, the associated predictive costs were condensed into a single
mean value (Table 3).

3.1. Four-component model

When comparing optimisations with the same number of free
parameters using the four-component model, there were no signif-
icant differences in the minimum tuned costs (Jmin) yielded by the
two techniques. All of the acceptable solutions led to an improvement
in terms of cost at Arabian Sea, when compared to the prior parameter
values. The same solutions, however, performedworse than the priors
when applied to the independent equatorial Pacific data (the misfit
costs associated with the prior parameters are given in Table 3).
Although these results held for both the ten-parameter and the three-
parameter optimisations, the minimum tuned costs when optimising
ten parameters (Jmin=6.6, VA; Jmin=7.1, μGA) were between 44 and
48% lower than the cost when only three parameters were optimised
(Jmin=12.6, both techniques).

3.1.1. Ten free parameters
When the four-component model was optimised with ten free

parameters, the VA technique became trapped in local minima on four
occasions. The costs for the six acceptable VA parameter solutions
(Jmin=6.6) were not significantly different from those obtained with
the μGA (Jmin=7.1). As expected, the VA solutions included
unrealistic values for the half-saturation for zooplankton grazing
(F0) and the light saturation constant (I0), which were outside the
range of credible values previously defined for the μGA. This is a
consequence of using an unbounded search with too many poorly-
constrained and partially-correlated parameters. In some cases the
optimised values were physically or biologically meaningless: the first
calibration of ten parameters to Arabian Sea data yielded an
acceptable misfit cost of 6.79, but included a value for F0 of
12,066 mmol N m−3, with I0 set to −8.35 Wm−2. When the μGA
was applied, the optimal parameters, although all realistic, were also
highly variable within the defined range (Fig. 3). All of the solutions
converged to approximately the same cost of Jmin=7.1.

When the acceptable solutions were applied to model the
equatorial Pacific, the VA and the μGA yielded mean predictive costs
of 100.7±11.5 and 131.0±44.1, respectively, with the μGA showing
substantially greater variability. The μGA solutions returned, on
average, a worse fit to the independent data, even though these
solutions did not contain unrealistic parameter values. Conversely, the
very unrealistic VA solution described above yielded one of the lowest
predictive costs at equatorial Pacific for the four-component model.

3.1.2. Three free parameters
When the number of free parameters was reduced to three, the VA

returned a cost of 12.6 every time. The optimal parameters values
were all realistic and showed very little variability (coefficient of
variation, Cv≤0.0000017%) (Fig. 2, row 2), leading to very consistent
costs at equatorial Pacific (181.8±0.0). The μGAwas equally invariant
in terms of the calibrated Arabian Sea cost, but the optimal parameters
were much more variable (Cv≤18.4%), causing significant variability
in cost at equatorial Pacific (184.2±23.0). Although the three-
parameter optimisations were relatively well-constrained, the mean
predictive costs at equatorial Pacific were larger than those from the
more underdetermined optimisations with ten free parameters. This
possibly counterintuitive result will be examined later in Section 4.4.

3.2. Nine-component model

The nine-component model was optimised to Arabian Sea data as
above, and the results are shown on the right hand side of Fig. 2. In
accordancewith results from the four-componentmodel, theminimum
costs achieved when optimising ten parameters (Jmin=6.8, VA;
Jmin=7.6, μGA) were between 32 and 39% lower than when only 3
parameters were optimised (Jmin=11.1, both techniques). In every
instance, with either ten or three free parameters, the optimisations
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successfully yielded lower calibrated costs at Arabian Sea than the prior
parameter values. All of the acceptable solutions performed worse than
the prior parameters, in terms of cost at equatorial Pacific.

3.2.1. Ten free parameters
When tenparameterswere optimised, theVAdidnot converge at all,

with (at least) nine of the solutions trapped in local minima. Again, as

expected, the best solution found by the unbounded VA (Jmin=6.8) con-
tained four unrealistic parameter values (gPs=0.332 d−1, gPl=3.3 d−1,
gZs=−0.417 d−1 and ml=−0.0314 d−1). The μGA converged to a not
significantly higher cost of 7.6 for all optimisations, but the solutionswere
very variable when applied to equatorial Pacific data with a mean
predictive cost of 61.1±28.6. The single acceptable VA solution had a
predictive cost of 48.0. None of the techniques yielded solutions that
outperformed the prior parameters at the equatorial Pacific.

3.2.2. Three free parameters
When only three key parameters of the nine-component model

were optimised to Arabian Sea data, the VA converged every time to the
same minimum cost (Jmin=11.07), with parameters showing little
variability (Cv≤4.9%). The μGA also converged every time to the same
minimum cost, with only slightly larger parameter variability
(Cv≤7.1%). As in the four-component model, the associated costs at
equatorial Pacific were more consistent than for the ten-parameter
optimisations, at 32.08±0.2 and 32.11±3.19, for the VA and the μGA
respectively. In contrast to the results from the four-component model,
when only three parameters were optimised, the nine-component
model yielded significantly lower mean predictive costs at equatorial
Pacific than the solutions from the highly underdetermined ten-
parameter optimisations.

3.3. Computational cost

Both techniques requiredmultiple runs of the ecosystemmodels, and
every 1000 iterations took approximately 30 min on a Pentium43.6 GHz

Fig. 2. Cost-function values formodels calibrated to Arabian Sea data. The calibrated costs at Arabian Sea are shown on the left-hand side of the vertical axes, costs when the solutions
were applied to equatorial Pacific are shown on the right. Unfilled bars represent optimisations that became trapped in local minima, filled bars denote where the results were
statistically as good as the estimated global minimum from that technique. Asterisks denote solutions that led to themodel crashing at equatorial Pacific. The grey boxes highlight the
range of the predictive costs that are associated with acceptable solutions, and the dark grey lines show the costs at each site associated with the default prior parameters.

Table 3
Minimum optimised cost-function values and associated predictive costs for each
model/technique. The numbers in brackets gives the number of optimisations within
each group that yielded a cost not significantly different from the minimum. The
standard deviations of the mean predictive costs are also shown.

Arabian Sea Equatorial Pacific

4-component model
Prior cost 35.7 82.9

Jmin Mean predictive cost
10 parameters VA 6.6 (6) 100.7±11.5

μGA 7.1 (10) 131.0±44.1
3 parameters VA 12.6 (10) 181.8±0.0

μGA 12.6 (10) 184.2±23.0

9-component model
Prior cost 44.7 15.4

Jmin Mean predictive cost
10 parameters VA 6.8 (1) 48.0

μGA 7.6 (10) 61.1±28.6
3 parameters VA 11.1 (10) 32.1±0.2

μGA 11.1 (10) 32.1±3.2
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processorwith a 2 Mb cache. The VAwas run for an indefinite number of
iterations,with the algorithmterminatingonce the convergence criterion
was satisfied. The number of iterations required for each run of the
adjoint to converge on a global or local minimum point was between 37
and 2649 for 10 parameters, and between 22 and 52 for 3 parameters.

The μGA was run each time for 5000 generations, with a population
size equal to the number of free parameters. This resulted in 50,000

iterations for the ten-parameter optimisations, and 15,000 for the three-
parameter optimisations. The number of µGA generations was chosen
rather arbitrarily based on previous experiments with other models and
data. In all but one case, the minimum cost at the 500th generation was
not significantly improved upon, even though the algorithmwas run for
an additional 4500 generations. The longest any μGA search was able to
run without any further improvement in the minimum cost was 4964

Fig. 3. Collated output from the repeated optimisations. Any 10-dimensional parameter vector from the μGA can be represented by the abscissa of one point appearing in each of the
10 subplots. The shared ordinate of those points corresponds to the associated misfit value. Output from all runs was combined, with only the minimum misfit achieved for each
discrete parameter value shown by the stepped black line. The red dots represent the estimates of acceptable optimal parameters, while the blue dots show the realistic and
acceptable estimates of the optimal parameters from the adjoint technique. See Table 1 for symbols and units.
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generations (for thenine-componentmodelwith three free parameters),
although in some cases improvements in the minimum misfit value
occurred with less than 200 generations remaining.

4. Discussion

Models ofmarinebiogeochemical systemsare subject to error froma
number of sources, including inadequate structure, parameter errors,
physical forcing and initial conditions. For the purposes of comparing
models it is possible tohold the last two sources of error constant, so that
any differences in performance can be attributed tomodel structure and
parameterisation. Furthermore, by using formal optimisation techni-
ques, it is theoretically possible to objectively and fairly assign optimal
model parameters on the basis of observations, so that models can be
compared in terms of structure alone (Matear, 1995; Friedrichs et al.,
2006, 2007). However, in situ observations of marine systems are
sparse, and studies have consistently revealed that even the simplest
marine ecosystem models are highly underdetermined (Matear, 1995;
Hurtt and Armstrong, 1996; Fennel et al., 2001; Friedrichs et al., 2006).
Parameter optimisation of non-linear systems is rarely a simple task, but
even assuming the best fit can be located, the inherent under-
determination of these systems means that there will be considerable
uncertainty associated with any optimal solution.

This study examined the use of two optimisation techniques, a
variational adjoint (VA) technique and a micro genetic algorithm
(μGA), to optimise two relatively simple (four- and nine-component)
marine biogeochemical models to Arabian Sea data. The optimised
solutions were subsequently evaluated against unassimilated equa-
torial Pacific data. The aim was to investigate the efficacy of different
approaches in terms of reducing parameter error, handling under-
determination and quantifying uncertainty, rather than to compare
the models themselves in terms of the residual structural errors and
parameter uncertainty.

4.1. Model calibration

The VA and the μGA could not be distinguishedwith regard to their
ability to lower the misfit cost in relation to assimilated data. In all
experiments where Arabian Sea data were assimilated (for the four-
and nine-component models, optimising both ten and three para-
meters) the minimum Arabian Sea costs produced by the μGA were
not significantly different from the costs produced by the VA. When
ten parameters were optimised, however, the VA frequently became
trapped in local minima (four times out of ten with the four-
component model and nine times out of ten for the nine-component
model). This is attributable to the local search method of the VA,
which uses the gradient of the cost function so that it always moves in
the direction of a lower cost and can thus become trapped in local
minima. For the same reason, however, the VA is able to descend very
subtle gradients in the cost function. By contrast, the stochastic μGA,
which does not utilise any gradient information, is not as proficient at
descending fine gradients of the cost function, but is also not as prone
to becoming trapped in local minima.

When ten parameters were optimised for either model, although
similar costs were returned by both techniques, the fitted parameter
values were often highly variable as the optimisations were repeated
(e.g. Fig. 3), demonstrating that the parameters were underdeter-
mined by the data. Indeed, because the search was left unbounded,
many of the solutions from the VA technique contained unrealistic
and sometimes nonsensical parameter values. These values were not
present in the μGA solutions, because that technique was restricted to
searching only a finite and credible region of the parameter space.

By reducing the optimisation problem to just three well-
constrained parameters (Friedrichs et al., 2007), although minimum
costs were two to three times higher than for the ten-parameter
optimisations, the problem of underdetermination was resolved. The

VA did not become trapped in local minima and the solutions did not
contain any unrealistic parameter values. The optimal parameter
values yielded by the μGA were similarly well-constrained near the
centre of the search space. Both techniques consistently returned the
same minimum costs and the optimal parameters were also much
more precisely defined than in the ten-parameter case. The VA
returned almost identical values every time. The μGA did not converge
quite as well as the VA in terms of optimal parameter values, but the
solutions were equally valid in terms of minimum cost.

4.2. Uncertain estimates of model predictive skill

The importance of uncertainty in the optimal parameters becomes
apparent when cross-validation experiments are applied, where the
parameter solutions are used to generate simulations of a second,
unassimilated data set. Take for example the optimisation of either
model to Arabian Sea data using the μGA. With ten free parameters,
the optimisations were poorly-constrained and there was much
variability in the optimal parameters. Although this variation did not
have a significant effect for the Arabian Sea (Fig. 2a-ii and b-ii), when
the solutions were used to model the unassimilated equatorial Pacific
data, the predictive costs varied by more than a factor of two.

Asmore parameters are optimised, the uncertainty associatedwith
the parameters increases (Hastie et al., 2001). Each of the uncertain
solutions can lead to very different estimates of the model predictive
skill with regard to unassimilated data, and so if model predictive skill
is to be assessed using cross-validation, it is either necessary to
accurately estimate the full range of parameter uncertainty (Sec-
tion 4.3), or to fix unconstrained parameters to their default values
such that all the remaining parameters are well constrained
(Section 4.4).While the second approachhas previously been effective
in obtaining consistent solutions (Hemmings et al., 2003; Friedrichs et
al., 2006, 2007), this technique does not necessarily take into account
the uncertainty in the fixed parameter values.

4.3. Parameter uncertainty estimates

When optimising ten parameters using either the VA or μGA, the
parameters were highly underdetermined, and their values could
often be varied across a wide range without having a significant effect
on the model-data misfit (Fig. 3). Most of the ten parameters could
not be precisely constrained by either the VA or the μGA (or for that
matter by any other inverse technique). It is clear that in most cases,
point solutions are unrealistically precise and will be inadequate to
describe exactly what the data tell us about the parameters.

When using inverse approaches to assess model performance it is
important to take this uncertainty into account. Instead of looking at
point solutions it will be more accurate to think of a solution region,
across which the misfit costs are statistically indistinguishable from
the absolute minimum. The dimensions of this region can be
approximated by uncertainty estimates for the optimised parameters,
and the VA and the μGA both offer ways of evaluating these. A useful
review can be found in Schartau and Oschlies (2003).

Although the VA and μGA are both able to provide estimates of
parameter uncertainties, if too many unconstrained parameters are
optimised, then no inverse method will be able to tell us very much
about the parameters. More useful informationmaywell be contained
in good laboratory and field estimates of the parameter values, as long
as they include accurate uncertainty estimates. If such sources of
parameter information were ignored in a model assessment, the
results could easily overestimate the true level of model uncertainty.

4.4. Incorporating prior information

The previous section highlighted that inverse methods may not be
very informative for highly underdetermined problems, and in such

41B.A. Ward et al. / Journal of Marine Systems 81 (2010) 34–43



cases prior uncertainty estimates will do more to constrain the
parameters. It would be sensible to use these prior estimates to
specify the possible range of parameters that are otherwise poorly
constrained by the data, but given that in many modelling studies no
uncertainty estimates are given, it is perhaps not unreasonable to fix
very underdetermined parameters to their precise prior values
instead (Hemmings et al., 2003; Friedrichs et al., 2007).

The following section examines this approach as each model was
optimised with at first ten, and then three free parameters. The analysis
here is restricted to results from the μGAoptimisations, so that the focus
is on the effects of fixing unconstrained parameters, rather than on the
differences between optimisation techniques. (The μGA was selected
simply because it gave the most consistent results with ten free
parameters, and it should be noted that the μGA and VA techniques
produced almost identical results with three parameters; the only
difference being that the VA parameter solutions were less variable.)

The mean predictive cost for the μGA solutions with the nine-
component model decreased (from 61.1±28.6 to 32.1±3.2) when the
number of free parameters optimised to Arabian Sea was reduced from
ten to three. This is consistentwith thefindings of Friedrichs et al. (2007),
where model predictive skill was seen to increase when only well-
constrained parameters were optimised. The opposite pattern, however,
was seen here in the four-componentmodel, where themean predictive
costwent up (from131.0±44.1 to 181.8±23.0)whenonly three, rather
than ten, parameters were optimised. The grey boxes in Fig. 2 represent
therangeof thepredictive costs fromall the acceptable solutionswith ten
and three free parameters. Although the general response of the mean
predictive cost to removing unconstrained degrees of freedom was
inconsistent, in both cases the solutions becamemuch less variablewhen
only three parameters were optimised.

The variability of the predictive costs was reducedwhen only three
parameters were optimised because seven of the unconstrained
parameters were fixed to precise values. In reality, those values may
be quite uncertain, and could potentially influence the model misfit in
relation to both the assimilated and unassimilated data. The pattern
described in the previous paragraph is consistentwith the fact that the
four-component model was developed for the Arabian Sea, while the
nine-component model was developed for the equatorial Pacific
(Section 2.1). Bearing in mind that the default parameters were also
assigned for those sites, it is perhaps not surprising that the
performance of the nine-componentmodel improved at the equatorial
Pacific when more parameters were fixed to their prior values, while
the performance of the Arabian Sea developedmodel was diminished.

This idea was examined with a cursory sensitivity analysis, where
the values of the seven non-optimised parameters in the four-
componentmodel (previously developed for the Arabian Sea;McCreary
et al., 1996) were replaced with values optimised to equatorial Pacific
data. When the remaining parameters were optimised to Arabian Sea
data, the mean predictive cost in the equatorial Pacific was reduced by
59%. Although this analysis was crude, it demonstrates the possibility
that the unconstrained parameters can significantly affect the perfor-
mance of the model with respect to unassimilated data. By fixing the
unconstrained parameters to precise values, the uncertainty of the
problemmay be significantly underestimated,with themeanpredictive
cost perhaps strongly influencedby thevalues of thedefault parameters.

When ten parameters were optimised in each case, the optimal
parametersweremuchmore variable and sensible parameters couldnot
be returnedwithout the incorporation of someprior information.When
this was done by fixing unconstrained parameters to precise prior
values, theproblembecamewell constrained, but it has beenshown that
estimates of model predictive skill are sensitive to the uncertain prior
values of those parameters. When prior information was introduced
through estimates of the credible range of each parameter, estimates of
model predictive skill were highly uncertain as a consequence of
variability in the unconstrained parameters. In some cases the prior
estimates were the only constraint on the optimised parameters.

4.5. Implications

This study focusses on the use of objective parameter optimisation
for model evaluation and comparison, although the results are also
relevant to applications where the goal is to develop a set of optimal
parameters for forward modelling studies. The results presented here
support the view that even simple marine biogeochemical models are
currently underdetermined by observations at oceanic time-series
sites, and thus no inverse technique will be able to find uniquely
determined solutions for all the parameters. This is not to say
however, that we should always be satisfied just using off-the-shelf
parameters. Although the solutions yielded by parameter optimisa-
tion techniques should only be used when they represent an
improvement on our prior knowledge, that prior knowledge should
not be assumed to be overly precise.

Estimation of parameter uncertainty is particularly important for
the comparison of models of different complexity. Greater complexity
allows models to resolve a more diverse range of biogeochemical
dynamics, and this in turn may make them more generally applicable
at different sites, but the additional parameters required to describe
extra components are likely to add more unconstrained degrees of
freedom. While such models can be more heavily tuned to provide a
better fit to the data, and may resolve more explicit processes, the
benefits of this additional ability to reproduce observations should
always be balanced against any increase in uncertainty associated
with the extra parameters.

If unconstrained parameters are assigned precise prior values it is
likely that themodel uncertaintywill be underestimated. On the other
hand, if the only information used to constrain eachmodel comes from
a severely underdetermined optimisation experiment, then the
solutions will exaggerate any uncertainty. Both of these scenarios
were examined here. When only three well-constrained parameters
were optimised, the results agree with previous work by Friedrichs
et al. (2007) in that the more complex model showed much greater
predictive skill than the simpler model. It can however be argued that
this result does not account for uncertainty in the unconstrained
parameters that were fixed to prior values. Some of this uncertainty
was considered when 10 parameters were optimised within broad
prior constraints, and this did indeed give more variable estimates of
model predictive skill. After accounting for parameter uncertainty in
this way however, the results still support the conclusion that the
multiple size-classmodel had greater predictive skill, although further
work would be needed to account for the effects of all 23 parameters.

Neither of the approaches presented in this study represent a perfect
solution to dealing with uncertainty in parameter optimisation
problems. Only by combining good a priori and a posteriori knowledge
of the parameters and their uncertainties will it be possible to make a
comprehensive comparison between models. Details of how this might
be achieved are beyond the scope of this paper, but one possibility is the
use of more sophisticated prior information than either the point
estimates or the uniform distributions applied here. Such a method
would favour the adoption of a Bayesian approach, where data
assimilation can be used within a formal mathematical framework to
seek improvements in the prior error estimates of all the uncertain
parameter values.
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