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1 Halosteric Effects and Sealevel Rise

Munk (2003) noted that the conventional interpretation of the effect of ocean freshening on

sealevel change seemed incomplete. His discussion was somewhat terse, and so this is an attempt

to do it out with a bit more explanation. Munk’s notation is slightly different.

Salt Perturbation from Fresh Water

Consider a fluid of depth h (0) of well-mixed density ρ (0) and salinity S (0) . It is assumed

that

ρ (0) = ρF (1 + βS (0)) , (1)

with ρF being the density of fresh water. The total salt content is

ρ (0)S (0)h (0) = ρF (1 + βS (0))S (0)h (0) (2)

A small amount of fresh water of thickness ∆h, h (1) = h (0)+∆h, is added to the fluid and then

completely mixed again. The total added mass is ∆hρF where ρF is the density of fresh water

(the non-linear mixing influence on volume is neglected; see Gille, 2004). The new well-mixed

density, ρ (1) = ρ (0) +∆ρ, is,

ρ (1) (h (0) +∆h) = ρ (0)h (0) + ρF∆h (3)

= ρF (1 + βS (0))S (0)h (0) + ρF∆h.

Writing

ρ (1) = ρF (1 + βS (0) + β∆S) ,

substituting into Eq. (3), neglecting terms of O (∆S∆h) , produces

∆S

S (0)
= − ∆h

h (0)
. (4)
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Figure 1: Definition sketch of a fluid of initial depth h (0), salinity S (0) and density ρ (0). A fresh water

layer of depth ∆h is added so that h (1) = h (0) +∆h.

Alternatively, the total salt content is unchanged, and must be such that,

ρ (1)S (1) (h (0) +∆h)
new salt

= ρ (0)S (0)h (0)
old salt

,

or

(h (0) +∆h) (S (0) +∆S) (ρ (0) +∆ρ) = ρ (0)S (0)h (0)

Expanding

h (0)S (0) (0) +∆hS (0) ρ (0) +∆Sh (0) ρ (0) +∆ρh (0)S (0) +O (∆h∆S) = h (0) ρ (0)S (0)

So that,

∆Sh (0) ρ (0) +∆ h (0)S (0) = −∆hS (0) ρ (0)

But, ∆ρ = ρFβ∆S, and thus

∆S = − ∆hS (0) (0)

h (0) (0) + ρFβh (0)S (0)

= − ∆h
h (0)

µ
S (0) ρ (0)

ρ (0) + FβS (0)

¶
≈ − ∆h

h (0)
S (0)

That is, again,
∆S

S (0)
= − ∆h

h (0)
.

If h (0) = 4000m, ∆h = 10cm (about 30-50 years of recent accumulation), ∆S/S (0) ≈ −2.
5× 10−5. Is that measurable?
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The new density is ∆ρ = ρFβ∆S = −ρFβS (0)∆h/h (0) ≈ 35∆h/h (0) .
Halosteric Change

What is meant by the steric change? It seems to mean the density shift from changing

salinity, somehow converted into a volume or mass change. It’s not entirely clear how this is to

be interpreted.

Suppose, as above, we add a layer of fresh water, such that ∆S = −S (0)∆h/h (0) . The
original fluid column with density (0) generates a pressure at z = −h (0) of,

p (0) = −gρF
Z η(0)=0

−h(0)
(1 + βS (0)) dz = gρFh (0) (1 + βS (0)) .

The new density, after the fluid is well mixed is,

ρ (1) = F

∙
1 + βS (0)

µ
1− ∆h

h (0)

¶¸
,

and the new pressure is

p (1) = −gρF
Z η(1)

−h(0)

∙
1 + βS (0)

µ
1− ∆h

h (0)

¶¸
dz

= gρF (η (1) + h (0))

∙
1 + βS (0)

µ
1− ∆h

h (0)

¶¸
= p (0) + gρFh (0)βS (0)

µ
− ∆h
h (0)

¶
+ gρFη (1) (1 + βS (0)) +O (η∆h/h) .

If we now suppose p (1) = p (0) , as in a level of no motion assumption,

h (0)βS (0)
∆h

h (0)
= η (1) (1 + βS (0)) .

That is,

η (1) =
βS (0)∆h

1 + βS (0)
≈ βS (0)∆h << ∆h

η (1) would vanish if the water is fresh (S (0) = 0) , as Munk (2003) pointed out.

There seems to be no particular reason to resort to halosteric calculations–one should use

the mass/volume change. To convert halosteric changes into sealevel shifts requires additional

information (the mass added).

2 Salinity Boundary Conditions

Huang (1993) called attention to the use in numerical models of the so-called virtual salt flux

boundary condition at the seasurface rather than the actual fresh water flux. Dewar and Huang

(1996) worked out several examples showing how different the temporal behavior under the two
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Figure 2: One dimensional loop model, after Wunsch (2005), Yuan and Wunsch (2005). Here φ+ = φ−

and there are either salinity or mass sources configured as shown. wS is the non-dimensional

unidirectional flow driven by salinity sources, wU , wL are the two different flows imposed by volume

source/sink, with convergence onto the sink.

boundary conditions could be. They did show that the virtual salt flux bc could be recovered

from the freshwater flux one if the fresh water forcing were sufficiently weak. Numerical issues

aside, Huang’s (1993) point is an important one: a boundary source term has been moved from

one governing equation to another, and rather general principles suggest that great care needs

to be taken to assure that the solutions are truly the same. With the advent in the 1990s of

free-surface numerical models, the use of virtual salt flux boundary conditions is regarded as

obsolete; nonetheless, a number of models continue to use it.

In an attempt to elucidate the issue, I consider here a simple example, based upon the “loop-

Stommel” models discussed by Wunsch (2005), Yuan and Wunsch (2005), with geometry shown

in Fig. 2. The flow is assumed one-dimensional with the angle φ measured clockwise from the

top of the loop. At position φ+ there is a source or sink (variously mass or salt), and at φ−

a counterbalancing sink or source. Here temperature will be ignored, and the density assumed

linear in salinity, S :

ρ (φ, t) = ρf (1 + βS (φ, t)) .
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2.1 Salt Flux

Suppose, initially, and as in Yuan and Wunsch (2005), there is a true salt source, S0, at φ+ and

a “negative” source, −S0, (a sink) at φ−.

∂S

∂t
+

w

a

∂S

∂φ
− κ

a2
∂2S

∂φ2
= 2πS0[δ (φ− φ+)− δ (φ− φ−)]

suppressing the subscript on the diffusion κ. Here we will consider only φ− = −φ+, the type-3
convection limit. The momentum equation is,

∂w

∂t
= − ∂p

aρ0∂φ
+ g

ρ

ρ0
sinφ− w (5)

where the Boussinesq approximation is being used, and ε is a friction coefficient. In the Boussi-

nesq approximation, the mass flux is really a volume flux. ρ0 might be taken as either ρF (the

fresh water density) or some higher average value, taking account of the mean salinity. Here we

use ρF . In the Boussinesq approximation,

∂w

∂φ
= 0 (6)

Eq. (5) is integrated between −π and π, thus eliminating the pressure:

∂w

∂t
=

gβ

2π

Z π

−π
S (φ, t) sinφdφ− w

With minor variations, we follow the non-dimensionalization of Yuan and Wunsch (2005),

but using salinity rather than temperature as the overall scale. Thus,

S =
α2

κ
S0S

0, w =
κ

a
w0, t =

a2

κ
t0,

and the governing equations become,

∂S

∂t
+ w

∂S

∂φ
− ∂2S

∂φ2
= 2π[δ (ϕ− ϕ+)− δ (φ− φ−)] (7)

1

Pr

∂w

∂t
=

Ra

2π

Z π

−π
S (φ) sinφdφ− w (8)

∂w

∂φ
= 0 (9)

with

Ra =

s
a
3
2 g

1
24TT0
κ

, Pr = a2 /κ..

The primes have been dropped from the nondimensional variables. Ra is a Rayleigh number,

Pr a Prandtl number. Eq. (9) was used in integrating Eq. (8) around the loop. The salin-

ity source/sink are the analogue of the use of virtual salinity boundary conditions in general

circulation models.

5



0 200 400 600 800 1000
0

5

10

15

R
a

w

Figure 3: Non-dimensional w plotted versus the Rayleigh number with φ± = ±π/4 for salinity source
forcing. Flow is clockwise driven by the imposed density difference through the salt flux.

For maximum simplicity, we will only discuss the steady-state, so that:

w
∂S

∂φ
− ∂2S

∂φ2
= 2π[δ (ϕ− ϕ+)− δ (φ− φ−)] (10)

w =
Ra

2π

Z π

−π
S (φ) sinφdφ, (11)

where w is constant in φ. One proceeds as in Wunsch (2004), expanding S (φ) and the delta

functions in a Fourier series. The non-dimensional velocity satisfies,¡
1 +w2

¢
w − 2Ra sinφ+ = 0, (12)

taking φ+ = π/4. w is plotted as a function of Ra in Fig. 3. (The cubic has one real root.)

The flow is then clockwise, with a strength that varies with Ra. Note that the dimensional w is

proportional to κ, and thus vanishes in the limit κ → 0 even with the Rayleigh number going

to infinity (see the discussion in Wunsch, 2005, who used a different scaling, and an inverse

Rayleigh number). The distribution of salinity in the loop is a strong function of Ra, varying

from nearly homogeneous, with boundary layers near the source/sink to stably stratified over

one-half the loop.

The salt distribution for a particular set of values of R,w is shown in Fig. 4, including two

pseudo basins intended to mimic Stommel’s (1961) two box model. The combined diffusion

and downwelling in the region below the salinity source leads to a near uniform high salinity

value, while in the region below the salinity sink there is a competition between upwelling and

downward diffusion producing the familiar near-exponential “abyssal recipes” balance.
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Figure 4: Salinity distribution for R = 1, w = 0.834 plotted as a function of the angle φ (left panel), and

opened out in two pseudo oceanographic boxes. The “tropical box” (center panel) lies below the salt

source and the “polar box” lies below the salt sink. The pseudo depth is z = − (1− cosφ) .

2.2 Freshwater Flux

Now suppose we formulate the problem in the natural sense in which the salt source corresponds

to evaporation (removal of fresh water) and the negative salt flux (out of the tube) corresponds

to a supply of fresh water. There is no salinity source because the atmosphere does not carry

salt. The dimensional salinity equation becomes

∂S

∂t
+

w

a

∂S

∂φ
− κ

a2
∂2S

∂φ2
= 0.

The momentum equation is still Eq. 8.. In the Boussinesq approximation Eq. (6) becomes,

∂w

a∂φ
= −2πQ0[δ (ϕ− ϕ+)− δ (φ− φ−)] (13)

that is, with s source and sink. Note the minus sign. Volume is now being removed at φ = φ+,

(net evaporation) the nominal tropics, and added at φ = φ− (net precipitation) but overall

volume is fixed. To retain the previous scaling, we will take S0 = Q0, and then, in the non-

dimensional steady-state,
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w
∂S

∂φ
− ∂2S

∂φ2
= 0 (14)Z π

−π
w (φ) dφ = Ra

Z π

−π
S (φ) sinφdφ (15)

∂w

∂φ
= −2πQ̄0[δ (ϕ− ϕ+)− δ (φ− φ−)], Q̄0 = Q0

a2

κ
. (16)

w is now a function of φ. Coupling between the volume flux and salinity occurs through Eq.

(15). Eq. (16) can be integrated directly so that,

w = β0 + w0 (φ)

w0 (φ) = 0, φ− ≤ φ ≤ φ+ (17)

= −2πQ̄0, φ+ ≤ φ ≤ 2π + φ−,

where β0 is an unknown constant. The solution to Eq. (14) is S = S̄, a constant, and Eq. (15)

implies Z π

−π
w (φ) dφ = 0

determining β0. Then the final solution is

w (φ) = wU = −2Q̄0 (π − φ+) , −φ+ ≤ φ ≤ φ+

= wL = 2Q̄0φ+, φ+ ≤ φ ≤ 2π − φ+

S = S̄

shown in Fig.2) which is very different from the solution using virtual salt fluxes. That is, the

flow is away from the volume source, and toward the sink, both above and below the forcing. This

result contrasts greatly with the salinity-forced system, where the flow is uniform of one-sign,

counterclockwise everywhere. The salinity distributions are also very different. Even in this

very simple geometry, the two boundary conditions produce radically different steady states.

Deducing what happens in a GCM is not so easy. The inference is that one should use the

physical, volume flux, boundary condition. Interpreting GCM solutions with virtual salt flux

boundary conditions, particularly where strong fresh water forcing has been imposed, is very

difficult. The loop, in the guise of the Stommel (1961) model, has been widely used to make

inferences about GCM behavior under climate change. In addition to the issue of geometry

taken up by Wunsch (2004), there is a fundamental problem of sensitivity to the form of the

boundary conditions imposed. (This conclusion simply reinforces those of Huang, 1993; Dewar

and Huang, 1996.)
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Note that when forming or melting seaice, there can be a true salt flux (ice has a finite

salinity). One must then use a combination of volume and salt flux boundary conditions in

those regions. Much of the GCM discussion of the salt boundary condition (e.g., Griffies, 2001)

involves the movement of the free surface. The loop model here does not have any counterpart

to that–the different flows occuring simply because of the shift in the equation which is being

driven by the sources.

3 Sampling Problems

Antonov et al. (2002) infer, from observed hydrography, a freshening of the ocean over 50 years

of a halosteric equivalent of 0.055cm/y or about 2. 75 cm of water. The implied salinity change

is then ∆S/S (0) = −∆h/h (0) ≈ −3× 10−2m/4000m= −7. 5× 10−6. The question raised here
is whether such an inference is justified, given the oceanic sampling problems? To suggest the

issue, Fig. 5 shows the distribution of all data in temperature and salinity at 300m in the Levitus

et al. (2001) compilation. Although in recent years, coverage in the Southern hemisphere has

improved considerably by comparison, the enormous holes, particularly in salinity, over much

of the world ocean call into question whether the time mean salinity, much less its temporal

changes, could conceivably be accurately calculated? It is that question we seek to explore.

Consider the problem of making an estimate of the mean value of a field. The observations are

defined as yi = m+ni where m is the true salinity mean and ni is the noise in the measurement.

Make the strong assumption that the noise is unbiassed, hnii = 0, and that something is known
of the error covariance, R = hninji . Make no prior assumption about m = hS0ii . One seeks its
best estimate (e.g., Eq. 3.6.29 of Wunsch, 1996, with m2

0 →∞), the best estimate which is,

m̃ =
1

DTR−1nnD
DTR−1nny

with uncertainty,

P =
D
(m̃−m)2

E
=

1

DTR−1nnD
.

Here D is a column vector of ones, D = [1, 1, ...1]T corresponding to each of the measurements.

In this formulation, the signal is the mean salinity, and thus n includes both errors of

measurement and any spatial structure in Si that makes it locally different from its global mean

value. The main problem then is to estimate Rnn, which as written, includes horizontally,

vertically, and temporally displaced measurements.

One might simplify this problem by assuming that all measurements made within five years

of each other are treated as simultaneous, removing vertical singular vectors to suppress vertical

covariances, and by guessing at a horizontal covariance at fixed levels. Is it worth doing?
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Figure 5: Left column shows the positions where the World Ocean Atlas has more than four data points

in a 1 degree square for temperature and salinity at 300m. Right column shows data that became

available more recently. Coverage declines rapidly with depth.
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