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Abstract

The problem of oceanographic state estimation is described and contrasted with the

meteorological process of data assimilation. In practice, all such methods reduce, on the

computer, to forms of least-squares. The global oceanographic problem is at the present

time focussed primarily on smoothing, rather than forecasting, and the data types are un-

like meteorological ones. As formulated in the consortium Estimating the Circulation and

Climate of the Ocean (ECCO), the method of Lagrange multipliers is used to render the

problem one of unconstrained least-squares and an automatic di¤erentiation tool is used to

calculate the so-called adjoint code to determine descent directions. Major problems today

lie less with the numerical algorithms (least-squares problems can be solved by many means)

than with the issues of data and model error. The results of ongoing calculations suggest

that the solutions are now useful for scienti�c purposes. Both methodology and applications

are developing in a number of di¤erent directions.

1 Introduction

In physical oceanography, the problem of combining observations with numerical models di¤ers

in a number of signi�cant ways from its practice in the atmospheric sciences. It is these di¤er-

ences that lead us to use the terminology �state estimation�to distinguish the oceanographers�

problems and methods from those employed under the label �data assimilation� in numerical

weather prediction. �Data assimilation� is an apt term, and were it not for its prior use in

the meteorological forecast community, it would be the terminology of choice. But meteorolo-

gists, faced with the goal of daily weather forecasting, have developed sophisticated techniques
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directed at their own particular problems, along with an opaque terminology not easily penetra-

ble by outsiders. Because much of oceanography has goals distinct from forecasting, the direct

application of meteorological methods is often not appropriate.

This paper is primarily based upon experience with calculating the oceanic state within an

academic consortium �Estimating the Circulation and Climate of the Oceans� (ECCO). The

consortium was established in 1998 to exploit the new global data sets that became available

during the World Ocean Circulation Experiment (WOCE) as well as the much more skillful

ocean general circulation models that had also been developed.

In general terms, anyone faced with trying to calculate a system state by combining a physical

model with a set of observations is faced with an estimation problem. Estimation theory is an

enormous subject with a wide range of methods available. Among the techniques used are

maximum likelihod, minimum variance, and Bayesian ones. In a somewhat di¤erent context,

these are all methods for solution of �inverse problems,�although there has been a tendency by

some authors to de�ne inverse problems as referring only to steady-state situations. (But for

a more general point of view, see Bennett, 2002.) In the geophysical sciences, inverse methods

were introduced by Backus and Gilbert (1965; see especially Parker, 1994) for situations in which

the parameters sought represented a static earth.

Much of the theory underlying meteorological state estimation, as in the original inverse

theory of Backus and Gilbert (1965), formulates the problems in terms of continuous time and

space. The combination of continuous, in�nite domain, �elds with �nite, discrete observations

leads to an interesting set of mathematical issues in functional analysis (see Parker, 1994; Ta-

lagrand, 1997; Bennett, 1992; 2002). Oceanographers, coming later to this problem, enter it at

a time when computational resources are widespread and far more powerful than they were in

the early days of the meteorological problem. Thus, the point of view taken within the ECCO

Consortium is, both for practical and pedagogical reasons, that the problems are discrete and

�nite, ab initio, and that in practice, they can all be regarded as versions of classical non-linear

least-squares.

Justifying this point of view requires some e¤ort. The fundamental assumption is that an

adequate discretization of the �uid dynamical and thermodynamical equations governing the

�uid �ow is available. �Adequate�means that with su¢ cient grid re�nement or increase in the

number of basis functions, one could not distinguish the numerical solution from that of the

underlying continuous formulation that generated it. Whether the discretization exists when

required is a separate problem� the assumption here is that it could, and if important enough,

will eventually exist. Alternatively, one is simply asserting that a �nite dimensional discrete

scheme, no matter how large that dimension might prove to be in practice, can always be found
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that is su¢ cient for the purpose at hand. Is there a physically meaningful system that is not

in principle susceptible to rendering in �nite dimensions? We are assuming, without proof, that

the answer is �no.� (The expression �physically meaningful� is intended to exclude analogues

of the pathological functions used by mathematicians as counter examples to physical intuition.

A simple representative is the curve of unbounded variation, sin (1=t) ; jtj ! 0; which probably

does not occur anywhere in nature.)

There is another aspect to this problem. All atmospheric and oceanic circulation models

contain semi-empirically determined sub-gridscale processes. An example is the invocation of

biharmonic friction operators, r4, to mimic small-scale turbulent dissipation. Many of the

problems involved in solving inverse problems in continuous formulations are generated by these

high derivatives e.g., the singular behavior of an analytical Green function� see Bennett (1992).

What is unclear is whether the purely discrete rendering of the biharmonic operator is any less

convincing as a representation of what is basically an unknown process? If the discrete rendering

of this and other terms is regarded as adequate, all issues of convergence, continuity, di¤eren-

tiability, existence, essentially disappear. From a pedagogical point of view, many of the most

important estimation methods (Kalman �lters, adjoints, etc.) can be reduced to the practice

of conventional least-squares (Wunsch, 1996, 2006). That is, we have deliberately removed the

most intriguing mathematical issues from the problem� in the interest both of practical utility,

and as a way of making the methodologies accessible to scientists interested in phenomenol-

ogy rather than mathematics. (Analogous reductions are widespread in practical problems. A

particularly well-known one is Levinson�s (1947) conversion of Norbert Wiener�s mathemati-

cally challenging �lter theory� based on spectral factorization by Wiener-Hopf methods� to the

least-squares form widely exploited in exploration geophysics.)

The data sets employed by oceanographers di¤er considerably from those employed by me-

teorologists. As discussed below, these di¤erences do not create any fundamental obstacles, but

require changes in the details of representation.

2 The Goal

Meteorological data assimilation has been driven by the compelling need to forecast the weather.

The dominant problem in oceanography at the present time is quite di¤erent� it is to under-

stand how the system works. Observing the ocean is technically far more di¢ cult than observing

the atmosphere� fundamentally because of its opacity to electromagnetic radiation. Thus, until

comparatively recently, oceanographers of necessity had to treat the ocean as an unchanging,

essentially static, system. With the data sets that have accumulated since approximately the

3



beginning of WOCE, about 1992, marked by the launch of the high precision altimetric mission

TOPEX/POSEIDON, it becomes possible to contemplate calculating the time-evolving ocean

state� to begin the process of answering the questions of whether, how, and by how much and

why, the ocean circulation changes? In the terminology of control theory, the meteorological

problem has been primarily one of �ltering and prediction (extrapolation); the oceanographic

one is primarily one of �smoothing�(interpolation). Both of these emphases can ultimately be

expected to change and overlap, but they describe the present situation. Note in particular, that

ocean models are major components of climate models. Such models are run out into the inde�-

nite future, and absent any general understanding of ocean model errors, it is almost impossible

to interpret the result. State estimation as practiced here, becomes in part, a serious attempt to

understand which elements of ocean models are likely skillful, and capable of integration with

bounded errors for �nite times.

The ECCO consortium thus has undertaken the smoothing problem of using a stored data

set over a �nite time interval, for the purpose of making best estimates of the oceanic state

during that time in such a way that the �nal estimate would be dynamically and kinematically

self-consistent, accompanied by an understanding of the structure of residual data/model mis�ts.

Solution of the smoothing problem makes the result di¤er fundamentally from what is sometimes

called, in the meteorological literature �reanalysis�(e.g., Kalnay et al., 1996). Such calculations

maintain a �xed numerical model con�guration over a �nite time interval, but produce an

analysis at time, ta; using data only for t � ta, in an approximate ��ltering� calculation.

The omission of data in the formal future, t > ta, means that the system state estimate can

undergo jumps, implying implicit non-physical sources, and rendering very di¢ cult the physical

interpretation of the time-evolving state. Methods have been employed (e.g., Bloom et al., 1996)

to smooth out the discontinuties over �nite times, but still leaving arti�cial imbalances in the

solution. Reanalyses done sequentially in the forward direction alone can leave important global

imbalances: for example (Stammer et al., 2004), the Kalnay et al. (1996) estimates do not

conserve freshwater or enthalpy. Such artifacts were deemed unsuitable for ECCO purposes,

and is one reason that conventional meteorological practice is not obviously suitable for the

oceanographic problem.

Some fundamental assumptions were made, ones that side-step the underlying mathematical

problems:

(1) The ocean state could be adequately represented by the particular GCM of Marshall et

al. (1997), if run at adequate resolution. This model is an approximate numerical representation

of the full non-linear Navier-Stokes and thermodynamical equations on a sphere. There is no

proof of the numerical convergence of any known GCM in the limit of arbitrarily �ne resolution.
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(Gri¢ es, 2005, provides an overview of ocean modelling issues and fundamentals.)

(2) Oceanic observation errors, control elements, and model state variables are su¢ ciently

close to Gaussian to justify use of a minimum variance estimator (essentially that the probability

densities are unimodal). Although there are fragmentary tests of the probability densities of

oceanic and atmospheric variables, there is no general description or theory.

(3) It is possible to use oceanographic data of arbitrary type. As will see in the next sections,

the data types used in practice vary greatly.

Neither assumptions (1) nor (2) is rigorously correct, but they provide both a starting point

and a focus for constant vigilance.

Adopting the notation of Wunsch (1996), the algebraic expression of the problem is as follows:

Let x (t) be the model state vector at discrete time t: Although an unnecessary assumption, in

practice, all of our data at time t are linearly related to the state vector as,

E (t)x (t)+n (t)= y (t) ;

where n (t) is a stochastic noise vector such that,

hn (t)i = 0;
D
n (t)n

�
t0
�TE

= �tt0R (t) :

The GCM is represented as,

x (t) = L (x (t��t) ;B (t��t)q (t��t) ;� (t��t)u (t��t) ; t��t) ; (1)

where L is a non-linear operator (a FORTRAN code), q (t) are known sources/sinks/boundary

conditions. u (t) is the unknown control vector with moments,

hu (t)i = 0;
D
u (t)u

�
t0
�TE

= �tt0Q (t) :

If hu (t)i 6= 0; the known form would be included in q (t) : The matrices B; �; are available to

distribute the forcing and control vectors over the state vector in a �exible way (see Wunsch,

1996).

The state vector, x (t) ; contains just enough information about the �ow to march the model

one time step into the future, given externally prescribed boundary conditions and sources or

sinks. In the present case, it includes three components of velocity, surface elevation, tempera-

ture, and salinity at each grid point. The control vector contains any model variables subject

to adjustment, here initial coniditions on temperature and salinity, time-dependent corrections

to the externally prescribed meteorological forcing, as well as parameters such as mixing co-

e¢ cients. An important point, commonly only implicitly acknowledged, is that the u (t) also
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include the model error. Little is known of model error and an important unsolved math-

ematical problem concerns its representation as a function of time and space. In practice,

structures that are incorrectly rendered by a model are treated as data error with little un-

derstanding of the consequences. Initial conditions are represented as ~x (0) = x0; such thatD
(x0 � x (0)) (x0 � x (0))T

E
= P (0) : (Tildes represent estimates. x (t) is the hypothetical true

value.) That is, there is an uncertain initial condition. (From here, we assume �t = 1:)

Adopting the point of view that we are solving a least-squares problem, we seek to minimize

the objective function,

J =

tfX
t=1

[y (t)�E (t)x (t)]T R (t)�1 [y (t)�E (t)x (t)] + [x0 � x (0)]T P (0)�1 [x0 � x (0)] (2)

+

tf�1X
t=0

u (t)T Q (t)�1 u (t) ;

subject to Eq. (1). The second term in J speci�cally calls out the initial condition uncertainty,

but it could equally well be included in the third term. The state and control vectors in Eq. (2)

and below could be written with tildes, but these are omitted here as there is little possibility

of confusion. Under the Gaussian assumption (implying a linear dynamical model), a solution

would coincide with the minimum variance estimate and would simultneously be a maximum

likelihood solution� assuming the error covariance matrices R;Q;P are properly speci�ed. As

written, however, because the R;Q;P are poorly known, this problem is best regarded as

one of constrained least-squares (curve �tting). One approach to solving it would be to use a

sequential method, such as an extended Kalman �lter, followed by e.g., an extended form of the

RTS smoother (Rauch et al., 1965). Within ECCO, such an approach in approximate form has

been undertaken by Fukumori et al. (1999)

Here we proceed to reduce the problem from constrained to unconstrained least-squares by

introducing vector Lagrange multipliers, � (t) augmenting the objective function,

J 0 = J � 2
tfX
t=1

� (t)T [x (t)� L (x (t� 1) ;B (t��t)q (t� 1) ;� (t� 1)u (t� 1) ;t� 1)] : (3)

J can be regarded as a regularizing requirement. One can write down explicit normal equa-

tions, which with nonlinear L; will be a set of nonlinear simultaneous equations, generally
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well-conditioned. They have the following structure:

1
2

@J 0

@u(t)
= Q (t)�1 u(t) +

�
@L (x(t); Bq(t); �u(t))

@u (t)

�T
�(t+ 1) = 0 ; (4)

0 � t � tf � 1

1
2

@J 0

@�(t)
= x(t)� L [x(t� 1); Bq(t� 1); �u(t� 1)] = 0 ; 1 � t � tf (5)

1
2

@J 0

@x(0)
= P(0)�1 [x(0)� x0] +

�
@L (x(0); Bq(0); �u(0))

@x(0)

�T
�(1) = 0 ; (6)

1
2

@J 0

@x(t)
= E(t)TR(t)�1 [E(t)x(t)� y(t)]� �(t) (7)

+

�
@L (x(t); Bq(t); �u(t))

@x(t)

�T
�(t+ 1) = 0 ; 1 � t � tf � 1

1
2

@J 0

@x(tf )
= E(tf )

TR(tf )
�1 [E(tf )x(tf )� y(tf )]� �(tf ) = 0 : (8)

The use of Lagrange multipliers has become known as the �adjoint method�, and, opaquely,

as �4DVAR�, in meteorology. The special case in control theory of a terminal constraint problem

(see e.g., Wunsch, 1988) is widely known as the �Pontryagin Principle.�In the interests of making

clear to the widest possible community what is going on, we will call it the �method of Lagrange

multipliers,�MLM, which has meaning to anyone who has encountered classical mechanics, the

calculus of variations, or constrained least-squares.1

Conceptually, the oceanic problem is perhaps best regarded as a form of control problem�

one seeks to �nd those controls (typically the wind, freshwater, and heat exchanges with the

atmosphere) that drive the ocean (actually the model) through a trajectory within error bars of

1A useful way to gain some insight into these equations is to make the connection to classical mechanics and

di¤erential geometry. Adjoint operators can be de�ned independent of any optimization problem (e.g., Morse

and Feshbach, 1953; Lanczos, 1961) and are intimately connected to the theory of Green functions; for matrix

operators; they are just the transpose. Consider too (e.g., Thirring, 1997), that the partial di¤erential operators

appearing in Eqs. (4-8), before tranposition, de�ne a tangent linear operator (or model) �L acting on a tangent

bundle, TM; and mapping control vector perturbations, i.e. elements of the tangent space Tx(0)(M) at (x(0)) into

the tangent space of the model state Tx(t)(M) at time t via the model Jacobian. Their transposes, as they appear

in Eqs. (4-8) act on the corresponding cotangent bundle, T �M . They de�ne a mapping from the cotangent space

T �x(t)(M) into T
�
x(0)(M). (This description applies to the special case where the control vector consists of the initial

conditions only. The concept is readily extended to time varying boundary controls with a bit more algebra.)

The spaces T �x are dual spaces to Tx, and their elements are called �co-vectors�(note that the gradient is, strictly

speaking, a co-vector rather than a vector). It can readily be shown that the transpose ��L is the adjoint operator

of the tangent linear operator, and thus Eq. (7) de�nes an adjoint model operating on co-vectors along x (t),

and which are often called �adjoint variables.�Following along this route leads into di¤erential geometric optimal

control theory, a subject we will not pursue here.
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all of the observations. The problem is somewhat more complex than a standard discrete control

problem in that the estimated initial conditions, and often internal parameters of the model, are

subject to change as part of the computation. In analogy with the classical problem of robotic

control, a robot arm is required to pass within observational error of a series of known positions,

velocities, acclerations, etc. on its way to a terminal state. But the numerical description of

the robotic arm (the model) is believed to contain inaccuracies that are to be removed as data

are employed. Similarly, the starting conditions for the robotic arm are believed erroneous in

part as well and are to be re-estimated. The goal is to deduce as best possible what the state of

the robotic arm was over the duration of observation and what the actual controls were, while

simultaneously improving the estimates of the model and of the initial conditions. A useful

general survey of many aspects of control theory, written for the physics community, can be

found in Bechhoefer (2005).

If L were a linear operator, one might contemplate simply solving the normal equations by

Gaussian elimination or other algorithm. If non-linear, a variety of search/descent algorithms

are available. The main issue for the oceanographic problem is one of dimension. In the existing

ECCO con�guration (July 2005), with the model written at one-degree spatial resolution and

23 vertical layers, the state vector, x (t) is a 5.3 million dimension vector of three components of

velocity, temperature and salinity and seasurface elevation (u; v; w; T; S; �): The model is time-

stepped every hour for 13 years (1992-2004) producing a total state vector of 6:1�1011 elements.
The control vector, u (t) ; has 310 elements over 13 years, and the data dimension is 2.1�109

elements, also over 13 years. Data numbers are dominated by the 6-hourly meteorological

forcing� but they are adjusted only at two-day intervals to reduce the size of the control vector.

(To restart the optimization requires a numerical state vector at time t; of about 21 million

values, including tendency terms.) Thus the number of equations (albeit they are sparse) is

much too large to be solved directly even with a linear model. In a sequential system such as

the Kalman �lter plus smoother, one is faced with the computation and storage of covariance

matrices square of the dimension of [x (t) ;u (t)] : It is for this reason that Fukumori et al. (1999)

and others have resorted to a series of approximations to the �lter/smoother equations so as to

reduce the e¤ective state and control vector dimensions.

The MLM method, if a solution can be found, does not require the use of covariance matrices

for the state vector� rather it is a whole domain method in which no averaging of interim

solutions takes place� in the present context, that is its great attraction. Consider how an

iterative solution might work: Set, initially, u (t) = 0; as the �rst guess at the controls. Integrate

Eq. (5) forward in time to produce a �rst estimate of x (t) : Then integrate Eq. (7) backwards
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in time to produce a �rst estimate of � (t) : To do these calculations, the partial derivatives,�
@L (x(t); Bq(t); �u(t))

@u (t)

�T
;

�
@L (x(t); Bq(t); �u(t))

@x(t)

�T
; (9)

must be known. But these de�ne the partial derivatives of J; J 0 with respect to the problem

parameters. Thus we are in a position to invoke a quasi-Newton method to reduce the value of J:

One then modi�es the problem parameters, integrates forward and backward again (an iteration)

and re-evaluates the derivatives along the way. This iterative procedure was apparently �rst laid

out in an oceanographic context by Thacker and Long (1988) and has been used many times

since then. The favored descent algorithm is that of Gilbert and Lemaréchal (1989).

3 Making It Work

There are a number of major issues. In some ways, the most interesting is the problem of �nding

the partial derivatives (9). The transposed partial derivatives de�ne the �adjoint model.�In the

discrete formulation we are using, L is de�ned by a computer code (hundreds of thousands of

lines of FORTRAN). and there is no analytical expression available. Our approach has been to

de�ne the adjoint of the FORTRAN-coded model. What has made this a practical possibility is

the existence of automatic (or algorithmic) di¤erentiation (AD) tools (e.g., Rall, 1981; Griewank,

2000), beginning with software such as ADIFOR. But the most important advance was that of

Giering and Kaminski (1998) who, taking account of the special structures of oceanic GCMs,

provided a semi-automatic AD tool for generating code for the tangent linear model (so-called

forward mode� the non-transposed partial deriviatives in Eq. (9)) and the adjoint model (the

so-called reverse mode) corresponding to the transposed partial derivatives. (In its present

con�guration, the particular AD tool used is called TAF� Transformation of Algorithms in

FORTRAN.) The tools can generate higher-order derivative code, e.g., for the Hessians. The

latter are of use in assessing posterior uncertainties; Hessian eigenvalues determine the principal

curvature structures of the objective function, with large curvatures indicating small posterior

uncertaintes in the control estimates (e.g. Thacker, 1989). AD is a powerful tool even in

conventional sequential methods such as the Kalman �lter, because for non-linear systems one

requires the tangent linear model, and which is obtainable in this fashion.

The availability of the adjoint model greatly reduces the computational load of the mini-

mization iterations (see Marotzke et al., 1999; Heimbach et al, 2005). The GCM that is used

in ECCO was constructed from the beginning with its use with an AD tool in mind, as part of

the ATOC (1999) acoustic tomography project. Certain FORTRAN77 and 90 structures remain

problematic in TAF, but are avoidable. AD tools permit the adjoint code to be updated and
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maintained in a practical way in the presence of continuing vigorous model development and

improvement. (One can, as has been done, manually code the analytical form of the adjoint

partial di¤erential equations. See Thacker and Long, 1988; Sirkes and Tziperman, 1997. The

adjoint code then di¤ers from the adjoint of the forward code. The di¤erence may be immater-

ial for some applications, but the maintenance of a hand-coded adjoint for a model undergoing

development can be a major task.)

The fundamental ECCO principle, borne out in practice, is that adequate numerical methods

exist for reducing the mis�t between a model and data: numerical methods can be found that

solve the least-squares problem. That there are challenging numerical and storage problems

goes without saying, but the principle that least-squares �works� is not in doubt. (Much of

the literature in this subject, done using synthetic �data,� really reduces to the uninteresting

conclusion that least-squares solutions can be obtained.)

We postulate that numerical means are available for �nding the stationary point(s) of Eq.

(3), be it by direct solution of the normal equations, by deterministic or stochastic search, or

by pure, skillful guess. Such a solution will have a physical validity directly dependent upon

the weight matrices Q (t) ;R (t) ;P (0) appearing in J: The latter are conventionally supposed

to be the error covariances of the data (because in the linear limit, the least-squares solution

would be the maximum likelihood or minimum variance solutions as well� ones which have a

ready physical interpretation). Part of Q (t) represents the covariances of the control vector,

describing e.g., the extent to which the prior wind�eld is subject to modi�cation during the

calculation. (Q (t) also formally includes model errors.) The solution, however it is obtained,

can be no better than the choice of these matrices.

The number of elements summed in the combined,

[y (t)�E (t)x (t)]T R (t)�1 [y (t)�E (t)x (t)] ; (x0 � x (0))T P (0)�1 (x0 � x (0)) ; u (t)T Q (t)�1 u (t) ;

is approximately 2.1�109 as of this writing. Every one of these terms requires a weight! Although
of minor interest to mathematicians, the choice of the weights dominates the current e¤ort. At

this stage, we have a problem primarily of oceanography and meteorology rather than one of

mathematics. Table 1 provides a summary of the di¤erent data types now being �t.

With some minor exceptions, the only estimates of R (t) ;Q (t) ;P (0) refer to the diagonal

values alone� that is, almost nothing is known quantitatively (or more precisely, usefully) of

error covariances in the observed �elds or in the controls.2 Obtaining useful, truly independent,

estimates of the non-diagonal elements of these matrices is an important, ongoing, but barely

2Because the control vector includes adjustments to the meteorological �elds, and which can be regarded as

in part �observed,�the distinction between state vector and controls and what is observed, is largely arbitrary.
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underway, e¤ort (this problem is one primarily of oceanography, not of state estimation, per se).

An interim practice is to use, where regarded as reasonable, smoothing requirements on some

�elds, which are equivalent to specifying o¤-diagonal covariances. Currently, however, even the

diagonal elements represent a great deal of subjective judgement and interpretation of the vast

oceanographic literature referring to all of the observations used. A number of papers (Ponte et

al., 2006; Forget et al., 2006; Stammer et al., 2006) begin to describe the estimated data errors.

As noted above, because the relationship of the weight matrices to the true error covariances

remains uncertain, the solutions described below should be regarded as least-squares solutions,

rather than as maximum likelihood or minimum variance ones� much of the judgement as to

acceptability lies with aesthetics, rather than with rigorous statistics.

4 Sample Results

A number of papers have appeared (e.g., Li and Wunsch, 2004, Hill et al., 2005; Dutkiewiecz

et al., 2006; Losch and Heimbach, 2006) exploiting the adjoint model interpretation as the

sensitivity of the objective function J to perturbations in data and parameters. We will focus

instead on some examples of the results, as yet unpublished, of the most recent optimization

e¤ort in ECCO. The main points to be made here are that the numerical system �works�with

real data, that and there is much more to be done.

The results shown here are the product of hundreds of iterations of the combined forward

and adjoint models over the duration of the data sets. A truly quantitative statement concerning

the optimization pathway is impossible as the current con�guration builds upon some years of

calculation with earlier, shorter data durations, di¤erent model con�gurations (e.g., changed

resolution and sub-components such as mixed-layer models), new data types (e.g., the Argo

�oats), changed weights in J; modi�cations to the line-search algorithm, changes in machine

architecture, etc. Earlier results have been described at length by Stammer et al. (2002a,b,

2003), Köhl et al., (2005) among others. The calculations do strain the largest available high

performance computers.

Fig. 1 is intended to show the extent to which an early solution (which is still evolving) over

the interval 1992-2004 is capable of reproducing one of the major constraining data sets� in

this case the sea surface height anomaly (relative to a long-term mean) during July 1997. (An

animation is available at http://ocean.mit.edu/king/mpegs/12iter125.mpeg.) The TOPEX/-

POSEIDON and related altimetric missions provide remarkably accurate measurments of the

absolute global ocean surface elevation every 10 days (absolute accuracies in the range of 2-3cm;

see Wunsch and Stammer, 1998; Fu and Cazenave, 2001). The mis�t terms in J corresponding
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to the time-mean seasurface height over the 13-year model run are displayed in Fig. 2. Ideally,

all these values would be order 1 with outliers consistent with a �2 distribution. There is a

reasonable �t over the bulk of the open ocean. Serious mis�ts persist in coastal regions generally,

in much of the Southern Ocean, and in some regions of strong variability. The scienti�c issue

is now whether these mis�ts represent (A) a mis-weighting of the data; (B) model error; or

(C) simply that the iterative minimization has not had time to reduce these terms, or all of

these things. As noted above, the issue of data weighting takes one into the intricacies of the

underlying observations. In this particular case, calculation of the data errors involves one

in the determination of Earth gravity (providing the reference gravitational surface called the

�geoid�; see Wunsch and Stammer, 1998), the myriad error terms in altimetric determination of

seasurface topography (see e.g., Chelton et al., 2000), and the expected temporal variability as

a function of position and duration in the ocean (Ponte et al., 2006). Model error quanti�cation

involves determining the extent to which a 1� horizontal resolution, 23 vertical-layer model would

be expected to reproduce the mean seasurface topography� were it perfectly known.

A representative mis�t to an entirely di¤erent data type is shown in Fig. 3. These data are

obtained by so-called Argo �oats (see Roemmich and Owens, 2000) drifting freely in the ocean,

and which pro�le temperature and salinity on a vertical ascent to the seasurface where the

data are transmitted ashore by satellites. Similar questions apply here as to the altimetry� are

the data being properly weighted, and is the model being forced toward structures which are

physically impossible for it?

Numerous other applications related to ECCO have appeared. Examples include Ayoub

(2006) and Gebbie et al. (2006), which are regional estimates, the latter using open boundary

conditions and high resolution. Stammer (2005) and Ferreira et al. (2005) discuss estimation

of internal eddy-stress and mixing parameters as part of the optimization. Many others will be

forthcoming.

A reviewer has inquired about system �validation.�In general (see Oreskes et al., 1994) no

system can ever be validated or �veri�ed.�Within the system itself, there is a very powerful

test of the model against the data, as there is no guarantee that the model can reproduce the

observations within error (that is, there may be no solution). The solutions discussed here

appear to be close to consistency with the data, but the optimization calculations are still

incomplete. The present system has been tested against a certain amount of �withheld�data

(what is sometimes mean by �validation,� and which is related to cross-validation and split-

sampling; see Table 1). As expected, there are similarities and di¤erences, but a determination

of whether the di¤erences imply system failure has no readily available answer.
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5 Concluding Discussion

A practical system exists for solving a very large, global-scale, oceanographic least-squares prob-

lem using the method of Lagrange multipliers. The methodology relies heavily on automatic

di¤erentiation (AD) tools now specially constructed for use with oceanic general circulation

models (GCMs). When written in the �nite, discrete form required by computers, most of the

interesting and challenging mathematical issues are side-stepped. Many of the issues in practice

are oceanographic rather than mathematical, and focus on the error covariances of a multiplicity

of data types.

Where is this e¤ort going? ECCO and related projects are developing in several directions.

Understanding of the data errors and acquisition of new data types is ongoing, and likely will

never be completed; it is an asymptotic process. AD tools (http: //www-unix.mcs.anl.gov/-

OpenAD) are under development in a number of places, directed at greater e¢ ciency, an open-

source, and new computer languages; see Naumann et al. (2006). Model errors of certain types

can be eliminated by augmenting the control vector by uncertain model elements, e.g., as Losch

and Heimbach (2006) did for bottom topography. The quest for greater model resolution (see

Menemenlis et al., 2005) continues; this too, is likely an asymptotic process, as is the search for

rules for parameterizing the inde�nitely present sub-gridscale motions. At bottom, of course,

the purpose of all of this e¤ort is to understand the ocean and the practical implications of that

understanding. As one example of that use, Fig. 4 displays the estimated mass, heat and salt

�uxes in the North Atlantic across 26�N as a function of time from the least-squares �t (Wunsch

and Heimbach, 2006). This result is part of the ongoing debate over whether the North Atlantic

circulation is undergoing some kind of important shift. Another example of the application

of the results is in picking apart the heat and freshwater contributors to global sealevel rise

(Wunsch, Ponte, and Heimbach, 2006).

Extension of the primarily �uid physical model used here is being undertaken to include

a more adequate ice dynamics and thermodynamics model. Dutkiewicz et al. (2005) have

employed the same AD tools, and the background physical state for parallel study of oceanic

biogeochemical cycles. Further extension of the models and methods to the study of past climate

states is now getting underway.

Inadequate model resolution is likely to be a major problem for the forseeable future. Some

�uid phenomena in some regions (e.g., boundary jets, fronts, etc.) cannot be parameterized in

any easy or known way, and the estimation of their properties demands a model resolution that

is impossible on a global scale. To this end, developments are underway permitting embedding

of high resolution models into lower resolution global estimates such as the one described here.

13



The major issue is that the sub-model boundaries must be taken as �open,�so as to permit ex-

change of �uid and information between the two models. Although there are some mathematical

questions about the posedness of such approaches (e.g., Bennett, 2002), no particular problems

have been encountered in practice (Ayoub, 2006; Gebbie et al., 2006) when the numerics are

once again viewed as least-squares problems in which regularization is straightforward. The

Gebbie et al. (2006) embedded model is depicted in Fig. 5. It has been argued (e.g., Lea et

al., 2000) that the system may become so chaotic that tangent linear gradients fail to be useful.

Real systems demonstrating a lack of useful numerical di¤erentiability would direct one toward

Monte Carlo methods, but no such situation has so far been met.
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Figure Captions

1. Upper panel shows the seasurface elevation as inferred from 10-days of altimetric data

during July 1997. Lower panel shows the estimate made from the model constrained both to

the upper panel (with data used daily) and to many other data types. Main visual signal is the

large El Niño event that occurred during this time.

2. Mis�t of the time mean over 13 years of the constrained model to the time-average

altimetric seasurface height in an early stage of iteration. An ideal solution would be everywhere

of order 1. Here there are strong regional mis�ts whose explanation is in part misweighted data,

model error, and failure thus far to have achieved complete convergence.

3. Mis�t over 13 years to the so-called ARGO temperature data, vertically averaged. (These

data do not become available until about half-way through the calculation and are dominated

in numbers by the last two years, 2003, 2004.) Again, a nominal value of one would denote an

acceptable solution.

4.Zonal and vertical integrals across the constrained model at 26�N in the North Atlantic

as a function of time, showing (upper panel) the total meridional mass �ux (in Sverdrups -

106m3/s), the meridional heat �ux in W (middle panel), and the salt �ux (in kg/s) in the lowest

panel. This solution is not the �nal one.

5. Temperature �eld (Gebbie et al., 2006) showing nesting of an open boundary high resolu-

tion model into the global one. Open boundary properties, including �ows, become part of the

conrol vector. The temperature ranges from 3.5�C (blue) to 18�C (red).

Table 1, showing the main data sources, coverage, and some information about the originator.

These were the main data types and coverage used as of July 2005. At the bottom, the Table

lists some of the withheld data (but which are intended ultimately for inclusion).
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Figure 1: Upper panel shows the seasurface elevation as inferred from 10-days of altimetric data

during July 1997. Lower panel shows the estimate made from the model constrained both to

the upper panel (with data used daily) and to many other data types. Main visual signal is the

large El Niño event that occurred during this time.
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Figure 2: Mis�t of the time mean over 13 years of the constrained model to the time-average

altimetric seasurface height in an early stage of iteration. An ideal solution would be everywhere

of order 1. Here there are strong regional mis�ts whose explanation is in part misweighted data,

model error, and failure thus far to have achieved complete convergence.
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Figure 3: Mis�t over 13 years to the so-called ARGO temperature data, vertically averaged.

(These data do not become available until about half-way through the calculation and are

dominated in numbers by the last two years, 2003, 2004.) Again, a nominal value of one would

denote an acceptable solution.
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Figure 4: Zonal and vertical integrals across the constrained model at 26�N in the North Atlantic

as a function of time, showing (upper panel) the total meridional mass �ux (in Sverdrups -

106m3/s), the meridional heat �ux in W (middle panel), and the salt �ux (in kg/s) in the lowest

panel. This solution is not the �nal one.
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Figure 5: Temperature �eld (Gebbie et al., 2005) showing nesting of an open boundary high

resolution model into the global one. Open boundary properties, including �ows, become part

of the conrol vector. The temperature ranges from 3.5�C (blue) to 18�C (red).
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Figure 6: Table 1, showing the main data sources, coverage, and some information about the

originator. These were the main data types and coverage used as of July 2005. At the bottom,

the Table lists some of the withheld data (but which are intended ultimately for inclusion).
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