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Abstract5

Understanding of the major sources, sinks, and reservoirs of energy in the ocean is briefly6

updated in a diagram. The nature of the dominant kinetic energy reservoir, that of the7

balanced variablity, is then found to be indistinguishable in the observations from a sum of8

barotropic and first baroclinic ordinary quasi-geostrophic modes. Little supporting evidence9

is available to partition the spectra among forced motions and turbulent cascades, along with10

significant energy more consistent with weakly nonlinear wave dynamics. Linear-response11

wind-forced motions appear to dominate the high frequency (but subinertial) mooring fre-12

quency spectra. Turbulent cascades appear to fill the high wavenumber spectra in altimetric13

data and numerical simulations. Progress on these issues is hindered by the difficulty in con-14

necting the comparatively easily available frequency spectra with the variety of theoretically15

predicted wavenumber spectra.16

1 Introduction17

The quantitative description of the sources, sinks, and reservoirs of energy in the ocean has18

emerged in recent years as a focus of attention both because it constitutes a piece of fundamental19

understanding, and because it has consequences for determining how the system can change.20

Description and physical understanding are dependent upon both observations and theories of21

oceanic motions; given the complexity and huge range of time and space scales involved in22

oceanic flows, the challenge of a full description is a formidable one.23

∗Corresponding author. Email: cwunsch@mit.edu
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The energetics of the circulation have traditionally been given little attention in physical24

oceanography presumably because, as in much of fluid dynamics, a knowledge of the flow field25

is diagnostic of the energy, whereas the energy is not diagnostic of the fluid flow except in a26

gross sense. Kinetic energy is here given a special status because it is intimately connected to27

the movement of water, and hence directly to the general circulation. This paper begins with a28

recapitulation and update of the overall energy budget described by Wunsch and Ferrari (2004)29

and Ferrari and Wunsch (2009, supplemental material). As will be seen, much remains obscure,30

especially in the transfer of energy to and from the various reservoirs, but one of the more31

troubling problems concerns the largest kinetic energy reservoir–that of the geostrophically32

balanced flows. Thus in the remainder of the paper, we attempt a discussion of the theory and33

observations pertaining to its understanding.34

2 The Energy Reservoirs35

As discussed in textbooks (e.g., Gill, 1982, Vallis, 2006) fluids contain three distinct energy types:36

kinetic (KE), potential (PE), and internal (IE). Each represents a different set of problems in37

making an appropriate estimate of its value, and in the interpretation of that value. Dynamical38

coupling means that a change in the value of any one of them generally implies an eventual39

change in one or both of the others.40

For many purposes, the kinetic energy becomes the focus of attention because it represents41

most directly the fluid flow, its transport properties and the mixing rates of the system (see42

Ferrari and Wunsch, 2009). Although there is some ambiguity of definition (in terms of separa-43

tion of mean and anomaly contributions), interpretation of KE is comparatively straightforward.44

Both PE and IE involve a considerable degree of arbitrariness–the defining geopotential for the45

former, and reference temperature for the latter, and changes in their values are physically more46

useful than are their absolute values, however defined. To further complicate their discussion,47

much published attention is focussed on how much potential and internal energies are avail-48

able in the sense that they can be converted through specifically defined processes, into kinetic49

energy, and how much is necessarily passive.50

Fig 1 shows an updated schematic of oceanic energy reservoirs, sources, sinks, and transfer51

routes. The ocean is divided into a near-surface energetic mixed-layer, an upper ocean (roughly52

100m to 1500m) and an abyssal ocean below about 1500m to the bottom. Internal-inertial53

waves, including internal tides, are displayed separately although they are part of the overall54

oceanic energy reservoirs. Green denotes primarily ageostrophic motions, blue those that are55

dominantly in geostrophic balance. Transfers are in terawatts (TW=1012W), and reservoir56
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values are in exajoules (EJ=1018J) except for the time-mean general circulation which is in57

yottajoules (YJ=1024J). The latter reservoir is almost entirely potential energy and the value58

is not very meaningful except that it is very large compared to anything else. Its value does59

become an issue when discussing qualitative, climate-scale, general circulation shifts that would60

increase or decrease it (e.g., in homogenizing the whole water column). The boxed area on lower61

left is a separate recapitulation of the general circulation between time mean and variability. As62

far as practical, values have been inferred from direct observations rather than from models–for63

whose energy cycles many other questions remain.64

Fig. 1 is necessarily incomplete and somewhat inconsistent. The near-surface-mixed layer65

variability includes a geostrophic component as well as a strongly ageostrophic one, and the latter66

is present everywhere as well. Loss of balance in the abyssal ocean is thought to be another67

source of internal waves, but the details and rates remain obscure. Ultimately, all dissipation68

is in the form of Joule heating. Where no value is shown, no plausible estimate was found. A69

value of 0 implies something with magnitude of less than about 0.01TW (some may be negative).70

With the exception of the total tidal dissipation, all these numbers probably have uncertainties71

of a factor of 2, and in some cases factor of 10 errors are conceivable. True numerical balances72

have not been attempted, and most numbers are mainly invitations to the reader to provide73

better ones.74

Letters (a), (b),....,(A), (B),... denote the reference list in the box below. References must be75

consulted for what is a tangled and uncertain tale. Thorpe (2005, Appendix 4) shows comparable76

values for some of the components here as well as some regional values.77
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References for power numbers (TW): (a) Lunisolar tidal dissipation in the ocean. Dickey et al.

(1994); Munk (1997). (b) Conversion to internal tides and shallow water dissipation; primarily

semi-diurnal; Egbert and Ray (2003). (c) Wind generation of inertial waves and transfer to upper

ocean. Alford and Whitmont (2007), based on an approximate mean of 0.5×10−4W/m2and is all
kinetic energy; cf. Furuichi et al. (2008). (d) Wind work rate on sea surface Huang (2004); Rascle

et al. (2008). (e) and (f) Work rate from evaporation, precipitation, total heat flux. Huang (2004).

This component of possible energy transfer has given rise to a contentious and increasingly obscure

literature; see Winters and Young (2009) for entry. (g) Pressure work rate. Ponte (2009) from

ECCO-GODAE state estimate v2.216. Wang et al. (2006) estimate is 10 times larger. Ponte also

estimates a much larger negative working on the ocean by the S2 air tide.(i) Work on the Ekman

layer. Wang and Huang (2004). (j) Rate of work on geostrophic flow. Wunsch (1998); von Storch

et al. (2007) value reduced by 25% according to Hughes and Wilson (2008). Compare to Scott

and Xu (2008). von Storch et al. (2007) suggest the sum of the Ekman and geostrophic powers

are 3.8TW, but when reduced by 25% is indistinguishable from values here. (k) Power input to

surface waves; Rascle et al. (2008). (m) Flux onto beaches. R. Flick (personal communication,

2007), based on the assumption of a 1m average significant wave height and an exposed coastline

of 600,000km. See also Beyene and Wilson (2006), as the issue is important for deriving energy

from waves. (n) Transfer from mixed layer to ocean below. von Storch et al. (2007) reduced

by 25% for the eddy-effect and so fortuitously the same as Wunsch (1998) value. (o) Biomixing.

Dewar et al. (2006); see also Gregg and Horne (2009), Katija and Dabiri (2009). (p) Geothermal

energy input. Huang (2004). (q) Sen et al. (2008). Estimated from numbers of Hughes and

Wilson (2008). (s) Baroclinic instability. WF2004; Huang (2004) estimate is 1.1TW; D. Ferreira

(personal communication, 2008,) 0.3TW. (t) Marshall and Naveira Garabato (2007), Southern

Ocean alone, with their κ ≤ 10−3m2/s over 1000m abyssal depth, an area of 6×1013m2 and mixing
efficiency, Γ = 0.2. Watson (1985) also suggests values near 1TW but from a different mechanism

and numbers were not added here. (u) Wind work against eddies extrapolated from results of

Duhaut and Straub (2006) and others as described by Ferrari and Wunsch (2009). (v) Western

boundaries in particular are intended (D. Marshall, private communication, 2009). (w) Williams

et al. (2008) suggest as much as 1.5TW could be involved.

Reservoir values (EJ or YJ): (A) Internal waves. Munk (1981). How much of this includes inertial

waves is not clear. (B) Inertial waves assigned 50% of the internal wave energy based on North

Atlantic current meter records.. (C) Model results; B. Arbic (personal communication, 2008).

(D) Time mean general circulation. Oort et al.(1989). Essentially all potential energy, and not

especially meaningful. Determining how much is “available” is a complex, somewhat ambiguous,

undertaking not carried out here, but they estimate about 200EJ are available potential energy; see

Winters and Young (2009). (E) Geostrophic variability. Zang and Wunsch (2001); D. Menemenlis

(personal communication, 2007, from ECCO2 model); Wunsch (1998). (F) Very uncertain. See

Thorpe (2005, P. 211). Vortical modes, exceptionally, are thought to represent at least in part a

transfer of internal wave energy into geostrophic motions.

78

4



3 Balanced Kinetic Energy79

Despite many remaining quantitative uncertainties, a zero-order understanding exists of most80

of the major energy reservoirs in the ocean, including generation and dissipation of internal81

waves, the generation of large-scale potential energy by winds and buoyancy, etc. Some progress82

has been made in understanding the major kinetic energy reservoir–that of the balanced flows83

(geostrophic eddies; see Ferrari and Wunsch, 2009), but its maintenance and dissipation mech-84

anisms and rates remain poorly understood. The problem of the description of the motions85

contained there is now discussed.86

Over the past 20 years, satellite altimetry has emerged as the central data set for describ-87

ing and understanding the distribution and controls on oceanic kinetic energy: the data are88

near-global in scope and, almost uniquely, provide measurements of the spatial structures (e.g.89

Wunsch and Stammer, 1998, or Fu and Cazenave, 2001). The broad spatial resolution is crucial,90

because theories of energy redistribution operate in wavenumber space.91

One major issue (among others) confronts anyone using altimetric data for the study of92

oceanic kinetic energy distributions: The measurement represents surface pressure distributions,93

and these arise from a large number of differing physical processes. As with much physics94

generally, separation of different processes is commonly most straightforwardly done by time95

scale. Thus a surface disturbance with a spatial scale of 200km can arise from balanced motions96

having time scales of weeks to months and longer, or from internal waves having time scales of97

hours to a day or two. But altimeters, with their orbital constraints producing repeat times of98

days to weeks, are ill-suited to producing data with the high frequency sampling necessary to99

distinguish these two radically different physics and to avoid aliasing.100

An additional problem arises because the signal to noise ratio in altimetric data is a strong101

function of wavenumber, apparently falling sharply at scales shorter than about 200km (see102

Stammer, 1997, Fig. 8) and despite strenuous efforts to extract the signal from the noise103

(Scott and Wang, 2005), the results remain not completely convincing, or at best spatially and104

temporally sporadic during intervals and regions of larger signal to noise ratios.105

That internal waves are visible in the altimeter data is made most concrete by the wide-106

spread observations (e.g., Egbert and Ray, 2000) of first mode internal tides. (Because of their107

fixed narrow-band spectral properties, the aliasing of the 12.42 hour M2 tide into an appar-108

ent period near 60 days renders the sampling problem much simpler than with the broadband109

processes characterizing other types of internal waves. Ferrari and Wunsch (2009) display some110

representative frequency spectra including the internal wave band.) Wavenumber spectra at111

spatial scales of order 200km have generally been interpreted (e.g., Katz, 1975) as being wholly112
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attributable to internal waves as described by the Garrett and Munk spectrum (Munk, 1981). In113

contrast, Scott and Wang (2005) have interpreted the motions seen in altimeters on these scales114

as being wholly provided by balanced motions. What seems reasonable is that both motions are115

present, although in what proportions remains unknown. Any major reduction in the variance116

attributed to the GM spectrum would, however, raise apparent conflicts with a multitude of117

other data types; some discussion of the spectral shapes is therefore taken up below.118

Motions seen in altimeters on scales (wavelengths) greater than 200-300km, are unlikely to119

be dominated either by internal waves or their low wavenumber aliases. The usual interpretation120

has relied on results from moorings (Wunsch, 1997) that showed, crudely speaking, 40% of the121

kinetic energy not in the internal wave band was barotropic in nature, with about another122

40% lying in the first baroclinic mode (with “barotropic”, “baroclinic” and “mode” being used123

as in the flat-bottom, linear, otherwise resting, ocean theory; see Gill, 1982). Because the124

buoyancy frequency, N (z) , in the ocean is surface intensified, the kinetic energy contribution125

of the first baroclinic mode is also intensified there, leading to the conclusion that, to a useful126

first approximation, kinetic energy inferred from altimeter data is primarily (but not wholly)127

in the first baroclinic mode. This result appeared consistent with theory: Fu and Flierl (1980)128

and Smith and Vallis (2001) showed in simulations of quasi-geostrophic turbulence that the129

energy is rapidly transferred to deep vertical modes and concentrates in the barotropic and first130

baroclinic modes for stratification with a thermocline. Scott and Wang (2005) found evidence131

for a transfer of energy to the deep modes with a spectral analysis of the kinetic energy fluxes132

from altimetry. (When interpreting altimetric results, it is important to keep in mind that the133

barotropic mode contribution to the surface elevation, η, is at least comparable to that of the134

baroclinic mode(s), and generally exceeds it–it is only the long spatial scales of the barotropic135

motions which reduce its velocity and hence its relative kinetic energy.)136

More recently, it has been suggested that the near-surface, balanced motions, are instead137

described by so-called surface geostrophic solutions. As the difference between the two descrip-138

tions is, at least superficially, quite profound with implications for the interpretation of altimeter139

data generally, we now turn to a discussion of the oceanic balanced motions.140
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4 Balanced Motions: The Partition of Interior Modes and Sur-141

face Solutions142

4.1 Theory143

Klein et al. (2009) and Lapeyre (2009) pointed out that Wunsch (1997), Smith and Vallis (2001),144

and other authors since did not consider the presence of surface density anomalies in their char-145

acterization of geostrophic motions. These anomalies drive surface intensified eddy motions, in146

addition to the interior baroclinic and barotropic modes. Tulloch and Smith (2009) confirmed147

that in simulations of quasi-geostrophic (QG) turbulence where surface density anomalies are148

allowed, a large fraction of the surface energy is associated with the surface quasi-geostrophic149

(SQG) solutions, using the meteorological nomenclature (Held et al., 1995, Lacasce and Mahade-150

van, 2006, and others). Lapeyre (2009) further speculated that the SQG solutions dominate the151

signal observed by the altimeter. In the remainder of this paper, the observational evidence for152

SQG motions and their importance to the estimates of eddy kinetic energy is explored.153

QG scalings appear to accurately describe the range of scales that characterize the oceanic154

eddy field between about 10 and 500 km (Charney and Flierl, 1981). Within the QG approx-155

imation, the dynamics are fully described by the distribution of the QG potential vorticity, q,156

given by,157

q = f0 + βy +∇2ψ + ∂

∂z

µ
f20
N2

∂ψ

∂z

¶
, ∇2 = ∂2

∂x2
+

∂2

∂y2
, −H < z < 0, (1)

and buoyancy at the top and bottom boundaries,158

b = f0
∂ψ

∂z

¯̄̄̄
z=0,−H

, (2)

where b = −gρ/ρ0 is the buoyancy anomaly, ρ is the density, ρ0 is a reference density, ψ is159

the geostrophic streamfunction, f0 is the Coriolis parameter at the latitude considered, β is160

the planetary vorticity gradient, and H is the ocean depth. An “invertibility principle” follows161

from equations (1) and (2): given the distributions of q and b, one can solve for the geostrophic162

streamfunction, ψ, and hence the eddy motions. In other words, knowledge of q and b is sufficient163

to diagnostically reconstruct the eddy dynamics–the elliptic problem for ψ has a unique solution164

for known boundary conditions.165

Although ψ and the full spectrum of motions can be inferred from the distributions of q and166

b (the horizontal velocity field is given by gradients of the geostrophic streamfunction, u = −∂yψ167

and v = ∂xψ), one needs prognostic equations to represent the evolution in time of the fields. In168

the QG approximation, the prognostic equation is given by the statement that the QG potential169
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vorticity is stirred by the geostrophic velocity field, but is otherwise conserved,170

∂q

∂t
+ J(ψ, q) = 0, −H < z < 0, (3)

where J is the Jacobian. Surface buoyancy, bs, is both advected by the surface geostrophic171

streamfunction, ψ, and it is forced by vertical advection through the Ekman velocity (wE) and172

by the divergence of surface fluxes, B,173

∂bs
∂t

+ J(ψ, bs) = −wEN
2 + B, z = 0. (4)

At the bottom boundary, the forcing is primarily due to the vertical velocity induced by topo-174

graphic variations and boundary layer drag,175

∂bb
∂t
+ J(ψ, bb) = −N2

µ
J(ψ, h) +

r
ν

2f0
∇2ψ

¶
, z = −H, (5)

where h are the departures of bottom topography from z = −H and ν is the viscosity. These176

forcings result in weak density fluctuations, because the abyssal ocean is less stratified than177

the upper, i.e. N2 is small and bb ≈ 0. For simplicity, topographic variations are ignored and178

the bottom boundary conditions is of vanishing buoyancy fluctuations, bb = 0. Notice that the179

bottom boundary condition (5) holds under the QG assumption that the mean ocean depth H180

is much larger than any topographic variation h. To the extent that this condition is violated,181

the vertical mode decomposition presented below is not very accurate.182

Following Charney (1971), Hoskins et al. (1985), and Bishop and Thorpe (1994), the principle

of potential vorticity inversion can be used to decompose ψ into the so-called interior modes

and the surface solutions. ψ is obtained from (1) and (2) by splitting it into two parts, ψint and

ψsurf (see Lapeyre and Klein, 2006, for more details),

∇2ψint +
∂

∂z

µ
f20
N2

∂ψint
∂z

¶
= q − f0 − βy, (6)

f
∂ψint
∂z

¯̄̄̄
z=0

= 0, (7)

f
∂ψint
∂z

¯̄̄̄
z=−H

= 0 (8)

and

∇2ψsurf +
∂

∂z

µ
f2

N2

∂ψsurf
∂z

¶
= 0, (9)

f
∂ψsurf
∂z

¯̄̄̄
z=0

= bs, (10)

f
∂ψint
∂z

¯̄̄̄
z=−H

= 0, (11)
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Because the problem is formally linear, this separation is just the well-known classical one of a183

problem with interior sources, but a homogeneous boundary condition; and of one a homogeneous184

interior problem, with an inhomogeneous boundary condition (see e.g., Jackson, 1975, and the185

Appendix here). These two elliptic problems produce two different solution sets: ψint satisfies186

a homogeneous surface boundary condition and is governed only by the interior q distribution,187

giving rise to the Sturm-Liouville modes described below. In contrast, ψsurf is associated with188

surface buoyancy anomalies with a zero interior q. It defines the so-called SQG solutions, E189

(Lapyere, 2009)∗.190

The interior solution ψint can be projected onto vertical eigenfunctions Fj(z) and Fourier191

modes in the horizontal and in time,192

ψint =
1

(2π)3
1

H

X
j

ZZZ
Ψ̂int
j (κx, κy, ω)Fj(z) e

ıκxx+ıκyy−ıωt dκxdκydω, (12)

with193 ¡
κ2 + λ2j

¢
Ψ̂int
j (κx, κy, ω) = −

ZZZZ 0

−H
[q(x, y, z, t)− f0 − βy] Fj(z) e

−ıκxx−ıκyy+ıωtdxdy dz dt,

(13)

where H is the ocean depth and κ2 = κ2x+κ2y. The Fj(z) are the eigenfunctions solutions of the194

Sturm-Liouville vertical operator,195

∂

∂z

µ
f2

N2

∂Fj
∂z

¶
= −λ2jFj ,

∂Fj
∂z

= 0, z = 0,−H,

with the eigenvalues λj , which are the inverse deformation radii. (Mode j = 0 is the barotropic196

one, j = 1, 2, .., are the first, second, etc., baroclinic ones.) A question arises as to whether the197

q − f0 − βy term can be expanded into periodic Fourier modes. While this is a concern for cli-198

matological potential vorticity distributions, here the focus is on potential vorticity fluctuations199

associated with geostrophic eddies on scales smaller that O(100km) which do not have large200

scale linear gradients and can be expanded efficiently into Fourier modes.201

The Fourier transform of the surface streamfunction ψsurf can be written in the form,202

ψ̂surf = f−10 b̂s(κx, κy, ω)E(κ, z), (14)

where b̂s is the amplitude of the Fourier transform in time and space of buoyancy. For each203

wavenumber the “surface solution,” E(κ, z), satisfies,204

∂

∂z

µ
f2

N2

∂E

∂z

¶
= κ2E,

∂E

∂z
= 1 at z = 0,

∂E

∂z
= 0 at z = −H. (15)

∗Although the SQG functions E are commonly also referred to as “modes,” we reserve that terminology, as is

conventional, for the unforced solutions of the homogeneous Sturm-Liouville system.
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Unlike the Fj , the vertical structure of E depends upon the horizontal wavenumber, and the205

system is forced.206

Finally, the Fourier transform of the geostrophic streamfunction is given by the sum of207

interior modes and surface solutions,208

Ψ̂ (κx, κy, z, ω) =
X
j

Ψ̂int
j (κx, κy, ω)Fj(z) +

b̂s(κx, κy, ω)

f0
E(κ, z). (16)

The vertical structure of the Fourier modes is given by the Fj modes for motions associated209

with interior potential vorticity anomalies, and by the E functions for the motions driven by the210

surface buoyancy anomalies.211

It is useful to compare the decomposition, Eq. (16), with the more traditional one of just212

the linear modes of the QG equations. The former decomposition relies on the separation of213

motions driven by interior potential vorticity anomalies and those arising from surface buoyancy214

anomalies. The latter is based on the normal modes that arise from the QG equations linearized215

about a fixed mean state on a flat bottom. Only in special limits do the linear modes correspond216

to interior modes or surface solutions. If the mean state includes an interior potential vorticity217

gradient on flat bottom, but no surface buoyancy contribution, then the linear modes are the218

classic free modes discussed e.g., by Gill (1982) and used by Wunsch (1997). These modes have219

the same vertical structure and are identical to the interior modes Fj(z), because they both220

satisfy homogeneous boundary conditions. Alternatively, the mean state can be chosen to have221

only a surface buoyancy contribution, but no interior potential vorticity variations. Classical222

examples are the Eady (1949) problem on the f -plane or the modified one on the beta plane,223

where the planetary vorticity gradient is cancelled by a vertically sheared velocity (Lindzen,224

1994). In both examples the linear solutions are surface trapped and correspond to the E (κ, z).225

Philander (1978) and Frankignoul and Müller (1979a,b) considered the linear modes with226

an interior PV gradient that arise if specific forcing is applied at the surface. Whether the227

“forced” linear modes project onto surface solutions or interior modes, depends on the mean228

state considered. A more detailed analysis of the forced modes is deferred to Section 4.4, where229

the ocean response to a time dependent wind forcing is discussed.230

4.2 Projection Onto the Interior Vertical Modes231

Following Wunsch (1997, hereafter W97), the full geostrophic streamfunction, composed of inte-232

rior modes and surface contributions, can be projected onto the interior modes, Fj (z), because233

they represent a mathematically complete basis for u, v; see the Appendix. The total stream-234
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function can be expressed as a function of horizontal wavenumber and modes Fj alone,235

Ψ̂j = Ψ̂
int
j (κx, κy, ω) +

f0Fj(0)

HN2(0)

b̂s(κx, κy, ω)

κ2 + λ2j
, (17)

and Ψ̂j is the total amplitude of the mode. Note that the WKBJ approximation of the normal236

modes shows Fj(0) =
³
2HN(0)/

R 0
−H N(z0) dz0

´1/2
, i.e. Fj(0) is independent of mode number237

for j > 1 (the barotropic mode has unit amplitude). The projection of surface solutions onto238

the interior ones decreases with mode number and horizontal wavenumber.239

Because the Fj are complete in representing u, v, and the E project onto them, the distinction240

between E and the ordinary linear Fj , is primarily one of efficiency. To the degree that motions241

are dominated by E, the projection onto the Fj would produce a decomposition in which the242

latter were phase-locked in time in such a way as to maintain the near-surface amplification.243

If, however, the Fj are randomly phased, the E solutions cannot dominate. Phase-locking is244

necessary, but not sufficient, to imply the presence of E–as it can be produced by other physics245

(e.g., surface wind forcing or bottom topography).246

Anticipating that oceanic motions are well-described by a superposition of the barotropic247

and first baroclinic modes (W97 and Section 4.7 of this paper), the phase relationship between248

these two modes can then be used to test whether the motions are consistent with SQG theory249

predictions. Altimetric data suggest that the energy-containing eddies have scales close to the250

first deformation radius. If those motions were associated with surface buoyancy anomalies, they251

would decay exponentially from the surface with an e-folding scale close to that of F1, as can be252

seen by substituting κ = λ1 in the hyperbolic problem for E in (15). The barotropic and first253

baroclinic modes can sum up to reproduce such a vertical profile, if they are phase-locked to254

reinforce at the surface and cancel at depth. Lacking such a phase-locking, the SQG hypothesis255

is not tenable.256

Potential vorticity and streamfunction are less accessible from observations than are KE and257

PE. In a QG system, the total energy takes the form,258

E = 1

2

ZZZZ
|∇ψ|2 dxdydzdt+ 1

2

ZZZ
f2

N2
|∂zψ|2dxdydzdt.

The first term is the KE and the second the PE, and the two contributions to energy can be
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expressed in terms of the interior modes and surface solutions,

Ek =
1

2

ZZZZ
|∇ψ|2 dxdydzdt = 1

2

1

(2π)3
1

H

X
j

ZZZ
κ2

¯̄̄̄
¯Ψ̂int

j +
f0Fj(0)

HN2(0)

b̂s
κ2 + λ2j

¯̄̄̄
¯
2

dκxdκydω,

(18)

Ep =
1

2

ZZZZ
f20
N2
|∂zψ|2dxdydzdt =

1

2

1

(2π)3
1

H

XZZZ
λ2j

¯̄̄̄
¯Ψ̂int

j +
f0Fj(0)

HN2(0)

b̂s
κ2 + λ2j

¯̄̄̄
¯
2

dκxdκydω.

(19)

In Section 4.7 it is shown that, consistent with the results of W97, the bulk of the KE259

measured by current meters mounted on moorings is typically concentrated in the barotropic260

(j = 0) and first baroclinic (j = 1) modes. However the goal of this paper is not to analyze261

the partitioning of energy across Fj modes, but rather to investigate its partitioning between262

surface and interior solutions. The first step is then to convert the results by integrating over263

the horizontal wavenumbers to obtain frequency spectra. Expressions for the frequency spectra264

in the various Fj modes will be derived under two different assumptions. First, predictions will265

be made assuming that the frequency distribution of eddy energy is solely due to turbulent266

eddy interactions. Second, solutions will be derived assuming that motions at all frequencies are267

directly forced by surface winds. Mooring data will be used to determine whether these limits268

are useful for interpreting the observations.269

4.3 Turbulent Eulerian Frequency Spectra270

The first scenario considered is one in which atmospheric forcing, through wind stress and271

buoyancy fluxes, acts only at scales much larger than the scale of oceanic eddies of a few hundred272

kilometers and decorrelates over times much longer than the eddy turnover times of a few weeks.273

In this limit the distribution of eddy energy through wavenumber and frequency space is the274

result of eddy stirring of potential vorticity in the ocean interior and buoyancy at the surface.275

Theories of QG turbulence take this perspective and refer to the range of scales dominated by276

eddy-eddy interactions as the “inertial subrange.”277

QG turbulence theory makes predictions for the energy spectra as a function of wavenumbers.

These are defined as the integrals over all frequencies of the expressions for KE and PE in (18)
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and (19),

Skj(κx, κy) =

Z *
κ2

¯̄̄̄
¯Ψ̂int

j +
fFj(0)

HN2(0)

b̂s
κ2 + λ2j

¯̄̄̄
¯
2+
dω, (20)

Spj(κx, κy) =

Z *
λ2j

¯̄̄̄
¯Ψ̂int

j +
fFj(0)

HN2(0)

b̂s
κ2 + λ2j

¯̄̄̄
¯
2+
dω, (21)

where the angle brackets indicate an average over many realizations of the turbulent field. At

scales smaller than the deformation radius, theory predicts that the wavenumber spectra are

isotropic and it is useful to work in terms of the isotropic spectra, i.e. spectra integrated along

circles in wavenumber space, defined as,

SI
kj(κ) =

1

2π

Z 2π

0
κSkj(κx, κy)dφ, (22)

SI
pj(κ) =

1

2π

Z 2π

0
κSpj(κx, κy)dφ, (23)

where (κ, φ) are polar coordinates in wavenumber space.278

Unfortunately, few oceanic data provide simultaneous measurements of the horizontal and

vertical distributions of eddy energy. Current meters mounted on moorings do provide measure-

ments of eddy energy as a function of depth and time. Eddy energy spectra as a function of

frequency and mode number can be constructed,

Skj(ω) =
1

(2π)2

ZZ *
κ2

¯̄̄̄
¯Ψ̂int

j +
f0Fj(0)

HN2(0)

b̂s
κ2 + λ2j

¯̄̄̄
¯
2+
dκxdκy, (24)

Spj(ω) =
1

(2π)2

ZZ *
λ2j

¯̄̄̄
¯Ψ̂int

j +
f0Fj(0)

HN2(0)

b̂s
κ2 + λ2j

¯̄̄̄
¯
2+
dκxdκy. (25)

The question then is how to relate wavenumber to frequency spectra–because we have theories279

for the former, but data for the latter.280

The velocity and buoyancy fluctuations at a fixed point in a turbulent fluid are due to the281

sweeping of small eddies by the energy-containing eddies. That is, a probe measuring at a fixed282

point in space would map the spatial frequency of the turbulence into the time-frequency by the283

“Taylor hypothesis”,284

ω = Uκ, (26)

where U is the RMS velocity of the energy containing scales (e.g., Vallis, 2006). Such a rela-285

tionship holds only if the KE at a wavenumber κ is dominated by the larger energy containing286

eddies. This hypothesis requires that the KE spectrum rolls off faster than κ−1 in wavenum-287

ber (Vallis, 2006), consistent with the turbulence generated in QG models. The relationship also288
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requires that the energy-containing eddies are more persistent than small-scale ones, so that U289

is approximately steady on many turnover times of the smaller scale eddies. In general, one290

would anticipate that U would necessarily have a stochastic character. The argument further291

assumes that no waves are present in the turbulent field, so that the frequency variability is292

entirely generated by stirring and not by intrinsic oscillatory motions.293

Alternatively, the relationship between frequencies and wavenumbers can be diagnosed from294

the oceanic energy spectrum as measured by altimeters. Fig. 2 shows an estimate of the zonal-295

wavenumber/frequency power density spectrum of sea level (from Wunsch, 2009). Dashed lines296

indicate the linear dispersion curves for the barotropic and first baroclinic mode basic theory297

Rossby waves of a flat bottom ocean. Although significant energy is indistinguishable from298

the first baroclinic mode at the very lowest frequencies and wavenumbers, the great bulk of299

the energy lies far from the dispersion curves of linear theory. As already discussed above,300

altimetric observations do not separate the energy in wavenumbers having radically different301

frequency content, and the signal to noise ratio at high wave numbers is poor. The amplification302

of the energy spectrum along a straight line (the “non-dispersive line”) confirms that for motions303

lying close to that region, a linear relationship between κx and ω is reasonable and would set304

a bound, over 15 years, on variations in U, if the Taylor hypothesis is to be invoked. Similar305

results are found at other latitudes far from strong currents. In major currents the zonal-306

wavenumber/frequency is still linear but Doppler-shifted by the mean flow as shown in Fig. 3,307

a frequency-zonal-wavenumber spectral estimate for 55◦S in the Southern Ocean. Even though308

such a relationship seems to vindicate Taylor’s hypothesis, it is unlikely to be the result of309

advection of small eddies by larger ones. Because the larger scale eddies are here part of the310

turbulence, U itself is a time-varying stochastic variable, and the latitude dependence, and311

sharpness of the non-dispersive line over 15 years, is not easy to reconcile with its necessary312

temporal variation. Chelton et al. (2007) show that the linear relationship is likely the result of313

waves and eddies propagating zonally at a wave speed c, so that,314

ω = cκx (27)

Consistent with this interpretation, the energy distribution in frequency-meridional-wavenumber315

is isotropic and shows no preferential phase speed (not shown). Regardless, based on Fig. 2, one316

can assume a linear relationship between frequency and zonal wavenumber. This key result can317

then be used to make predictions about oceanic frequency spectra. If the wavenumber spectrum318

is isotropic and is proportional to κ−α, then the one-dimensional zonal wavenumber spectrum is319

also proportional to κ−αx . The relationships (26 or 27) then imply that the frequency spectrum320

is proportional to ω−α321
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The characteristics of QG turbulence depend on whether it is generated primarily by stirring

of large scale interior potential vorticity anomalies or whether it is mostly due to stirring of

large scale surface buoyancy gradients. In the former case, turbulence is dominated by the

interior modes, while surface buoyancy contributions to KE and PE can be ignored. Charney

(1971) and, more recently, Smith and Ferrari (2009), show that in this case the spectrum of

|Ψint
j (kx, ky)|2 is confined to the barotropic and first baroclinic modes, is nearly horizontally

isotropic in wavenumber space, and scales as κ−6 for horizontal scales shorter than the first

deformation radius. Using Eq.(22), SI
kj(κ) ∼ κ−3 with contributions for the barotropic and first

baroclinic modes. The barotropic mode does not project on PE and (23) implies that SI
pj(κ) is

dominated by the first baroclinic mode and rolls off as κ−5. Using the relationships in (26 or

27), one obtains scalings for the Eulerian frequency spectra of the Fj ,

Skj (ω) ∝ ω−3, for j = 0, 1 (28)

Spj (ω) ∝ ω−5, for j = 1. (29)

Tulloch and Smith (2009) show that the buoyancy anomalies in SQG turbulence simulations

have a 2D spectrum |b̂s|2 ∝ κ−8/3 (corresponding to an isotropic buoyancy spectrum rolling off

as κ−5/3) for scales smaller than O(100)km. If the surface solutions dominate the overall energy,

the energy spectra be proportional to,

Skj (ω) ∝
|Fj(0)|2ω1/3
(ω2/U2 + λ2j )

2
, (30)

Spj (ω) ∝
|Fj(0)|2λ2jω−5/3

(ω2/U2 + λ2j )
2
. (31)

Once again, the wavenumber spectra have been converted into Eulerian frequency spectra us-322

ing (26). For wavenumbers/frequencies smaller than the corresponding deformation radius,323

Skj ∝ ω1/3, while for higher wavenumbers/frequencies Skj ∝ ω−11/3. The same scaling is ob-324

tained using relationship (27).325

Data (discussed below) suggest a power law close to -2 and are not consistent with either the326

interior potential vorticity or surface buoyancy turbulence prediction. Turbulence theories are327

not irrelevant to the ocean, but apparently other processes dominate the excitation of energy at328

high (but subinertial) frequencies.329

4.4 Forced Eulerian Frequency Spectra330

The turbulent hypothesis considered above is that all eddy variance at high frequencies is gener-

ated through a turbulent cascade of potential vorticity and buoyancy variance from large to small
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scales. An alternative view is that eddy energy at high frequencies is directly forced by winds

and buoyancy fluxes at the ocean surface, and dominates the observations. In this scenario, the

linearized potential vorticity and buoyancy equations in the presence of external forcing are,

∂tq + β∂xψ = 0, −H < z < 0, (32)

∂tb = Q at z = 0, b = 0 at z = −H, (33)

where Q = −wEN
2 + B (recall Eq. (4)) is the sum of wind forcing and buoyancy fluxes. Note331

that the wind forcing is being written as an equivalent buoyancy forcing from Ekman layer diver-332

gences. Apart from external forcing, the equations are linearized around a uniform background333

state (i.e. no mean currents). It is worth interpreting this system in light of the surface/interior334

modes described above. Equation (33) shows that external forcing generates perturbations,335

b, in the QG approximation. Eq. (32) then shows that the geostrophic streamfunction stirs336

the planetary potential vorticity gradient in the ocean interior and generates q perturbations.337

In summary, the forced problem generates both b and q perturbations and therefore excites a338

superposition of Fj and E.339

Solutions to this system of equations are given in Frankignoul and Müller (1979a),340

Ψ̂ (κx, κy, ω, z) =
X
j

f0Fj(0)

HN2(0)

Q̂(κx, κy, ω)

ı(κ2 + λ2j )

Fj(z)

ωj − ω
. (34)

where Q̂(κx, κy, ω) is the Fourier transform of the forcing, Q, and ωj = −βκx/(κ2 + λ2j ) are the341

intrinsic frequencies of Rossby waves†. Absent other effects, the amplitude of the normal modes342

Ψ̂j becomes infinite when the frequency of the forcing matches the dispersion relation of Rossby343

waves for some wavenumber.344

The oceanic response can therefore be off-resonant or resonant. For frequencies larger than345

the maximum frequency, ωmax
j , of Rossby waves, no resonance can occur and the oceanic response346

can be described in terms of finite power spectra. In the frequency range, ω ≤ ωmax
j , there347

always exists a wavenumber for which the oceanic response is resonant and formally infinite.348

The singularities could be removed by introducing dissipation mechanisms. Because, however,349

†Flierl (1978) shows that one can define a single parameter λ2 = −κ2−βkx/ω, which expresses the “equivalent

depth” of the forcing (Lindzen, 1967; Philander, 1978). One can then write the solution for a forced problem as,

Ψ̂j =
f0Q̂(kx, ky, ω)

ıωHN2(0)
j

Fj(0)Fj(z)

λ2j − λ2
. (35)

The parameter λ2 can be either positive or negative, corresponding to positive or negative equivalent depths

f20λ
2/g. Negative equivalent depths (λ2 < 0) give a response with a pressure signal (the geostrophic stream-

function) decreasing rapidly with depth. Setting β = 0, prevents the generation of interior potential vorticity

anomalies, λ2 becomes negative, and the forced linear modes project only onto the surface modes.
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the nature of dissipation is still controversial, as discussed in Section 2, the resonant response350

cannot be described easily. Frankignoul and Müller (1979a) show that the response at resonance351

could be used to compute the rate of energy input at those frequencies. This energy would then352

flux to other frequencies through wave-wave interactions and dissipation.353

Data, however, suggest that resonant responses in the ocean are unlikely. For barotropic mo-354

tions, Luther (1982), and Woodworth et al. (1995) show evidence for a weak excess energy near355

five day periods. Frequency-wavenumber spectra (Wunsch, 2009) from altimetry show almost all356

of the energy at mid-latitudes measurably removed from any linear dispersion relationship–a357

requirement for resonance (see Fig. 2). Absorbing and scattering topographic features and ocean358

boundaries, as well as strong non-linear interactions, probably preclude anything approaching359

true basin resonances or forced travelling wave ones. Even the excess energy observed at the360

vanishing zonal group velocities for equatorially-trapped gravity wave modes (Wunsch and Gill,361

1976), is not apparent at the analogous frequency and wavenumber for Rossby wave modes.362

The off-resonant response is proportional to the atmospheric forcing function Q. Following363

Frankignoul and Müller (1979a), the Q is assumed to be a realization of a statistically stationary364

and homogeneous process with zero mean and power spectrum SQ(κx, κy, ω) defined by,365

hQ̂(κx, κy, ω)Q̂∗(κ0x, κ0y, ω0)i = SQ(κx, κy, ω)δ(κx − κ0x)δ(κy − κ0y)δ(ω − ω0), (36)

where the angle brackets denote ensemble averages and the asterisks complex conjugates. Real-366

ity, stationarity, and homogeneity imply SQ(κx, κy, ω) = SQ(−κx,−κy,−ω). Note that definition367

Eq. (36) implies random phases, thereby excluding standing (basin) modes.368

In mid-latitudes, the dominant time scale of the atmospheric fields is a few days and most369

of the air-sea fluxes are associated with the eastward traveling frontal cyclones and anticyclones370

with wavelengths from 3000 to 7000 km. However, the forcing of the ocean is not confined to371

the energetic weather system band, because atmospheric forcing has significant energy at lower372

frequencies and wavenumbers. Atmospheric spectra are approximately white in frequency for373

periods longer than 10− 20 days, expect for the annual peak (Hasselmann, 1976). Frankignoul374

and Müller (1979b) show that the wind curl stress dominates the atmospheric forcing of the375

ocean and has a white isotropic spectrum in wavenumber for scales shorter than about 3000 km.376

Furthermore the frequency and wavenumber components of the spectrum appear to be separable377

(Willson, 1975), so that a reasonable approximation of the atmospheric forcing spectrum is,378

SQ(κx, κy, ω) = Sω
Q(0)S

κ
Q(κ) (37)

where Sω
Q(0) is the white frequency component of the spectrum and Sκ

Q(κ) is the wavenumber379

component of the spectrum which is zero at large scales and becomes white for scales shorter380
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than ∼3000 km. For present purposes, the wavenumber dependence of the spectrum is not381

very relevant, because we are interested in the frequency response of the ocean obtained by382

integrating over all wavenumbers.383

The off-resonant oceanic spectrum generated by atmospheric forcing is obtained by substi-384

tuting the spectrum (36) into the solution for Ψ̂j , Eq. (35). For frequencies much larger than385

those of Rossby waves, the oceanic spectra are predicted to be red and behave like ω−2. This386

feature is a general one of the response of a much simplified long time scale “climate” system to387

short time scale variability of the “weather” (Hasselmann, 1976).388

Interestingly, in the off-resonant limit, the interior PV gradient β does not enter at leading389

order in the solution and the wind-driven response can be understood in terms of forced SQG390

dynamics–and which is then the same as the linear forced solutions. The wind-driven Ekman391

pumping generates surface buoyancy fluctuations, which drive interior motions. The resulting392

streamfunction spectrum takes the form,393

|Ψ̂|2 ≈
£
f20S

κ
Q(0)E

2(κ, z)
¤ £
Sω
Q(0)ω

−2¤ , (38)

i.e. it is separable into its z-wavenumber dependence and its frequency dependence. The z-394

wavenumber dependence is in the form of the SQG E surface solution with a magnitude set by395

the winds amplitudes through Sκ
Q(0). The frequency dependence is instead proportional to ω

−2
396

at all levels.397

4.5 Altimetric Data398

Why might one anticipate the existence of the E solutions? Isern-Fontanet et al. (2008) find399

that sea level wavenumber spectra are significantly different from a κ−5 law as expected for400

turbulence generated by interior potential vorticity anomalies (the sea level spectrum is equal401

to the eddy kinetic energy spectrum divided by κ2). Instead the spectra have a roll-off not402

inconsistent with a κ−5/3 slope on scales between 100-300 km. Furthermore they find that the403

variance of SST estimated from satellite microwave radiometers also display a κ−5/3 slope at404

scales below 300 km. The −5/3 slope in eddy kinetic energy and SST variance would indicate405

that the SQG is a better dynamical framework than the QG turbulence theory to describe the406

ocean surface dynamics. But the analysis is based on high eddy energy regions like the Gulf407

Stream, Kuroshio and Agulhas regions to maximize the signal to noise ratio at small scales,408

and questions remain as to the generality of the results. This interpretation, moreover relies on409

the assumption that all motions at these scales are generated by turbulent stirring with little410

contribution from wind forcing.411
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SST spectra with a κ−2 rolloff are also reported from SeaSoar data (e.g. Ferrari and Rudnick,412

2000, and references therein). A −2 rolloff is observationally indistinguishable from −5/3. The413

traditional explanation is that the κ−2 is a reflection of frontogenesis in the upper ocean (fronts414

are step discontinuities with a κ−2 spectrum). The shallow SQG spectra at the ocean surface415

are the QG approximation of frontogenesis and hence the two interpretations are consistent.416

Mooring data provide an alternative view of oceanic spectra, because they resolve high417

frequencies. The frequency-wavnumber relationships (26 or 27) are now used to interpret oceanic418

frequency spectra.419

4.6 Mooring Data420

A crucial issue is the vertical structure of the motions. In the compilation by W97, the then-421

available data base was found marginal at best for drawing conclusions about the vertical struc-422

ture, and the result might be best summarized as showing that there is no conflict with the423

inference, already noted above, that roughly 40% of the water column kinetic energy at periods424

beyond one day lies in the barotropic mode (a bit more in the North Atlantic), about 40% in the425

first baroclinic mode, and the rest either in higher modes or observational noise. Although much426

detail is ignored, this crude summary does capture the basic result. At the time of that calcu-427

lation, the possibility of surface-trapped motions was set aside, primarily on the grounds that428

almost no moorings existed with sufficient near-surface instrument positions to demonstrate a429

failure of the flat-bottom, free-mode description. It is important to recall that a single mooring430

has no horizontal scale discrimination power, although it is a powerful means for separating431

the internal wave field from lower frequency motions, something not generally possible with432

the altimeter. To demonstrate the nature of the remaining issues, we here briefly analyze the433

results from three moorings from the Southern Ocean, not available for the earlier study, and434

one mid-latitude mooring. The fundamental decomposition is in the form,435

[u (z, t) , v (z, t)] =
MX
n=0

[αu (t) , αv (t)]Fj (z) + residual. (39)

4.6.1 Near 60oS (Mooring A)436

A Southern Ocean mooring at 57.5oS, 4.05oE, Fig., 4, produced records of about 200 days437

from about 4500m of water with five usable current meter and temperature records (from E.438

Fahrbach). The climatological temperature (in situ), salinity and buoyancy frequency profiles439

from the Gouretski and Koltermann (2004) climatology are shown in Fig. 5. Stratification is440
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nearly uniform below about 400m, with a very sharp near-surface thermocline, which can be441

expected to amplify the Fj (z) near the surface, j ≥ 1.442

The modal shapes and instrument depths can be seen in Fig. 6. The vertical displacement443

modes, Gj (z) = f2N−2∂Fj/∂z, vanish at z = 0, producing almost no buoyancy signature,444

whereas the horizontal velocity or pressure modes, Fj (z) , are finite there. The kinetic energy445

profile from the mooring data is in Fig. 7. The instrument closest to the surface at 180m (Fig.446

7) shows an increase in kinetic energy relative to the instruments at mid-water depths, not447

inconsistent with the very sharp near-surface thermocline and the corresponding amplification448

of F1 (0), which increases by about a factor of six, from 500m to the surface. The shallowest449

instrument lies below the region of strongest increase in velocity amplitude towards the surface450

expected from the F modes. Data duration is only 214 days, and inadequate temporal coverage451

is a pervasive problem.452

Following the methodology of W97, a modal fit for αu,v (t) was done. When averaged over the453

whole record, for u, 71% of the variance is barotropic, 23% 1st baroclinic and 5% 2nd baroclinic.454

For v, the corresponding numbers are 72%, 19% and 7%. For temperature, 77% is in the 1st455

baroclinic mode , 21% in the 2nd baroclinic and 2% in the 3rd baroclinic mode. In summary,456

this mooring, south of the Antarctic Circumpolar Current, shows a strong predominance of457

barotropic kinetic energy in periods shorter than about 200 days, with a comparatively modest458

contribution from the first baroclinic mode. If the SQG solution contains primarily motions near459

the Rossby-radius, its vertical structure is almost indistinguishable from that of the near-surface460

behavior of the first baroclinic mode.461

Spectral densities as a function of temporal frequency of the modal coefficients (Fig. 8) are462

strongly red, with no obvious tendency to flatten at low frequencies. These were computed using463

a Daniell window on a periodogram, as the usually-more-desirable multitaper method introduces464

a low frequency negative bias into the spectra. Power laws are roughly −2 for the barotropic465

and first baroclinic modes. KE spectral estimates from individual instruments as a function of466

depth (not shown) do not display any obvious change of slope as one approaches the surface.467

The coherence between the barotropic and first baroclinic modal amplitudes for the zonal468

velocity (Fig. 9) is weak, but significant (values around 0.6) at 180o between the two modes.469

This phase is such (see Fig. 6) to amplify the surface kinetic energy by phase locking the two470

modes as either E solutions or forced modes would require.471

4.6.2 Agulhas Retroflection (Mooring B)472

In contrast is a mooring from an Agulhas Retroflection Experiment (WHOI 835, Luyten et473

al., 1990) at 40oS, 16.5oE, which ran for nearly a year in 4847m of water. This region is an474
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unusual one, and so in the interests of brevity, we only summarize the results. Note too that475

the pressure sensor shows that the instrument nominally at 408m reached a pressure of almost476

1100m during one event. Such excursions render the interpretations of the fits doubtful during477

energetic periods. Modal coefficient spectra tend toward white noise at low frequencies, but478

with nearly equal kinetic energies in modes zero and one, more typical of mid-latitudes than the479

mooring south of the Circumpolar Current. Power law behavior is again near -2 in modes 0 and480

1 at periods shorter than about 50 days. The coherence coupling of the lowest two modes is481

very strong down to 4 days so as to amplify the surface velocity. Agulhas eddies are, however,482

unlikely typical of the world ocean.483

4.6.3 South of Tasmania (Mooring C)484

A mooring South of Tasmania (51◦S, 143◦E; See Phillips and Rintoul, 2000 and the position485

map, Fig. 4)‡, produces barotropic and first baroclinic modes that are strongly coupled, again486

being additive near surface and subtractive at depth (Fig. 10) The modal partition is 59% in the487

barotropic mode with 37% in the first baroclinic mode for u, and with the partition being 67%488

and 27% respectively for v. As noted above, the phase locking is consistent with the presence489

of the SQG surface solution, but also with other explanations. Spectra of the modal kinetic490

energies and of the vertical displacement power are shown in Fig. 11. Kinetic energy spectra491

display an approximate -2 power law.492

4.6.4 Nares Abyssal Plane493

To contrast with the Southern Ocean moorings, the example of one on the Nares Abyssal Plane494

in the North Atlantic at 23◦N, 64◦W is recapitulated (it was included in W97). Spectral densities495

(Fig. 12) show more high mode contribution than in the Southern Ocean, but with a continued496

barotropic KE dominance in the lowest frequency band. Some marginal coherence at about 0.4497

exists in a narrow band between about 15 and 20 days periods (not shown), but there is none498

detectable in the more energetic lower frequencies and the modes are not significantly phase-499

locked. This mooring is, as one expects absent strong modal coherence, one that was found to500

give very different values of surface KE values when independent and phase-locked modes were501

assumed.502

‡Instrument depths provided in the data files obtained from the WOCE Current Meter Archive at Oregon

State University are the instrument nominal depths. Actual pressure depths used here are taken from Table 1 of

Phillips and Rintoul (2000), which appears to have an error in labelling the 3320m instrument as having failed,

rather than the one at 1150m.
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4.6.5 Implications of the Mooring Data503

Together with the results of W97, the mooring data lead to the conclusion that the Fj (z) prove504

adequate to represent the horizontal velocities in essentially all of the available data. (Vertical505

displacement analyses, with some spectra shown here, have been de-emphasized because of the506

noisiness in the calculations arising from the need to use the time-varying temperature profiles.)507

Kinetic energy frequency spectra are generally close to ω−2 over much of the range of accessible508

time scales.509

The existence of SQG surface solutions, E, requires an analysis of the phase coupling of the510

coefficients, αj (t). In the Southern Ocean moorings here, there is some indication of barotropic/-511

baroclinic mode coherence leading to near-surface amplification which would be consistent with512

the presence of a forced E. However, in the compilation of W97, and as tabulated there in the513

column marked “ratio” in his Table 1, and as in the Nares Abyssal Plane mooring, as in many514

places, there is no sign of modal coupling. A very important added complication, not discussed515

here, is the expected presence of strong ageostrophic motions near the sea surface and for which516

there are almost no useful observations.517

5 Discussion518

A zero-order, but nonetheless only semi-quantitative, picture exists of the sources of energy519

sustaining the oceanic general circulation against dissipative losses (Fig. 1). Kinetic energy of520

the circulation system is strongly dominated by the geostrophic (balanced) motions whose spatial521

structure (wavenumber distribution) can be controlled by a number of competing processes522

including direct atmospheric forcing, up and down-scale turbulent energy cascades, topographic523

interactions, etc. Testing various ideas against data about the energy flow within the balanced524

motions is very difficult for a number of reasons: at high wavenumbers, altimetric data are525

very noisy and the temporal sampling is infrequent. Mooring data are inadequate to determine526

horizontal spatial scales, and theory says almost nothing about the structure of the readily527

observed frequency spectra.528

Geostrophic turbulence theories produce frequency spectra that are inconsistent with moor-529

ing observations–the frequency spectra generally being closer to an ω−2 power law at all depths,530

and thus flatter than predicted by turbulence theories. A linear theory of forced response, with531

no resonant modes, is more consistent with what is observed. An important implication is that532

high frequency (but subinertial) variability in the ocean is directly forced by winds. Turbulent533

eddy-eddy interactions instead appear to shape the wavenumber spectrum at small scales as seen534

in altimetric and sea surface temperature observations. It appears that mooring and altimetric535
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data are both necessary to fully describe the oceanic frequency-wavenumber spectrum, because536

they provide complementary views of ocean variability.537

Despite the overwhelming evidence that oceanic motions are turbulent, in the sense that538

nonlinear interactions rapidly redistribute energy across wavenumbers, classical theories of tur-539

bulence cannot account for many aspects of the observations. First, turbulence theories assume540

that eddies decorrelate on timescales shorter than a wave period, so that energy can spread away541

from the linear wave dispersion relationship ω = ω (κx, κy). However the spectra shown in Fig.542

2 show that the bulk of the mid-latitude ocean KE is confined to a narrow strip in κx, ω space543

suggesting that (non-linear) wave dynamics remains relevant despite any truly turbulent inter-544

actions. Second, turbulent theories assume that there is a wide range of scales where dynamics545

are controlled by internal interactions and not by external forcing. Observations suggest that546

wind forcing remains important on all scales.547

The presence of structures in the frequency-wavenumber spectra corresponding to wave-like548

motions in the presence of a broad-background energy characteristic of turbulence, means that549

direct measurements of such spectra over the entire range of scales are required to definitively550

understand the nature of the motions. Because of orbit restrictions, altimeters do not directly551

sample motions with periods shorter than about 20 days, so that internal wave motions are552

not separable from balanced motions in the data (recall the prominence of the internal tides553

near a 60-day period). Isolated moorings almost never have durations exceeding two years and554

most are far-shorter; upper-ocean sampling on moorings is very “thin”, and they provide no555

horizontal spatial structure, so that the observed frequency spectrum is some poorly determined556

summation over all wavenumbers and their physics. To advance beyond using untestable features557

of numerical models, some combination of altimetry with properly instrumented, multi-year558

mooring deployments will be required, probably usefully supplemented with such techniques as559

towed sensors, gliders, and possibly seismic oceanography from ships.560
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Appendix.567

Bretherton (1966) shows that the elliptic problem for ψ with non-homogeneous boundary568

conditions in (1 and (2) is equivalent to the elliptic problem with homogeneous boundary con-569

ditions,570

q − f0
N2

bsδ(z) = f0 + βy +∇2ψ + ∂

∂z

µ
f20
N2

∂ψ

∂z

¶
, ∇2 = ∂2

∂x2
+

∂2

∂y2
, (A1)

∂zψ = 0, z = 0,−H,

where the delta function represents the effect of surface buoyancy. The modes Fj are a complete571

basis for this problem, because they satisfy the same boundary conditions. However, a complete572

basis is defined as one that can represent functions possibly with a finite number of disconti-573

nuities, but finite over the domain of interest. PV is not such a function because of the delta574

function contribution at the boundary. The functions ψ, u, v are instead such functions and can575

be expressed as a linear combination of Fj modes. This is not to say that surface trapped solu-576

tions do not contribute to the total streamfunction; both interior modes and surface solutions577

project onto the Fj basis, and the projection of the surface solution is578

1

H

Z 0

−H
FjEdz =

f20
HN2 (0)

Fj (0)

κ2 + λ2j
. (A2)

The projection of the surface solution on the barotropic mode is the special case with Fj(0) = 1579

and λj = 0.580

581
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Figure Captions738

1. A representation of the major energy reservoirs, their sources, and interchanges. An739

earlier version of this diagram appeared in the supplemental material of Ferrari and Wunsch740

(2009). See the text for discussion. Thin dashed arrows all imply Joule heating. Heavy dashed741

arrow indicates the reservoir whose structure is discussed in this paper.742

2. Frequency/ zonal-wavenumber spectrum from an altimeter near 27◦N in the Pacific Ocean743

(Wunsch, 2009). Left panel is linear in the energy, and the right is logarithmic. Solid lines are744

the barotropic and first baroclinic mode dispersion curves, and the dashed lines are the same745

curves, but for unit aspect ratio, with k = l. Dots are the “non-dispersive” line, s = βR2d,746

discussed by Wunsch (2009). Energy exists at all wavenumbers and frequencies. Note that this747

spectral density estimate is for surface pressure, not the kinetic energy, and thus has a strong748

barotropic component.749

3. Log10 of the zonal-wavenumber-frequency spectral density estimate at 55◦S, roughly the750

latitude of the Drake Passage, from 0◦ to 137◦E. The non-dispersive line has vanished, and751

much energy is clustered around apparent long wavelengths. Vanishing of the non-dispersive752

line occurs also at high northern latitudes (not shown). Note that there is some indication of753

an excess of eastward-going phase velocities.754

4. Positions of the Southern Ocean moorings analyzed here superimposed upon depth con-755

tours in meters. A, B, C denote the positions of three moorings discussed in the text.756

5. Temperature, salinity and buoyancy frequency, N(z), profiles (left to right) from the757

Gouretski and Koltermann (2004) climatology at the position of mooring A. The deep stratifi-758

cation is nearly uniform and weaker than in the strong near-surface thermocline, but distinctly759

non-zero. Baroclinic modes will be strongly amplified near surface by the increase in N (z) .760

6. Instrument depths superimposed upon the horizontal velocity/pressure modes, Fi, i =0,1,761

(left) and vertical displacement modes, Gi, i =0,1,2 for a flat-bottom, resting ocean, subject to762

a rigid lid surface boundary condition. The sharp increase in the amplitude of the F1 (z) mode763

near the surface, z = 0, is an important characteristic, but is poorly defined by the available764

instrumentation. The barotropic vertical displacement mode is plotted as zero amplitude.765

7. Kinetic energy profile at mooring A. Note the linear scales. Increase toward the bottom766

is assumed to be owing to the existence of a bottom trapped mode. The KE increase toward767

the surface is roughly consistent with the amplification there of F1 (z) .768

8. For a mooring near 60◦S in the Southern Ocean, spectra by mode number (0 to 3) for769

kinetic energy (left panel) and (1 to 3) for vertical displacement (right panel). Straight line770

segment is an s−2 power law (s = ω/2π).771
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9. Coherence (upper panel) of the coefficients of the barotropic and first baroclinic modes772

at mooring A in the u−component. Horizontal dashed line is an approximate level-of-no-773

significance at 95% confidence. Low frequency phases (lower panel) are in the sense of tending774

to magnify the surface velocity.775

10. (Upper panel). αu (0) (solid line) and αu(1) (dashed) showing the temporal variability776

of the coefficients of the zonal component of flow south of Tasmania. (Lower panel) The same777

as in the upper panel except αv(0), αv(1).778

11. Same as Fig. 8 except for the mooring south of Tasmania.779

12. Kinetic energy (left) and vertical displacement spectra from the Nares Abyssal Plain in780

the southwest North Atlantic Ocean.781
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Figure 1: A representation of the major energy reservoirs, their sources, and interchanges. An earlier

version of this diagram appeared in the supplemental material of Ferrari and Wunsch (2009). See the text

for discussion. Thin dashed arrows all imply Joule heating. Heavy dashed arrow indicates the reservoir

whose structure is discussed in this paper.
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Figure 2: Frequency/ zonal-wavenumber spectrum from an altimeter near 27◦N in the Pacific Ocean

(Wunsch, 2009). Left panel is linear in the energy, and the right is logarithmic. Solid lines are the

barotropic and first baroclinic mode dispersion curves, and the dashed lines are the same curves, but for

unit aspect ratio, with k = l. Dots are the “non-dispersive” line, s = βR2d, discussed by Wunsch (2009).

Energy exists at all wavenumbers and frequencies. Note that this spectral density estimate is for surface

pressure, not the kinetic energy, and thus has a strong barotropic component.
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Figure 3: Log10 of the zonal-wavenumber-frequency spectral density estimate at 55◦S, roughly the
latitude of the Drake Passage, from 0◦ to 137◦E. The non-dispersive line has vanished, and much energy

is clustered around apparent long wavelengths, probably a direct wind-forcing response. Vanishing of the

non-dispersive line occurs also at high northern latitudes (not shown). Note that there is some indication

here of an excess of eastward-going phase velocities. In localized longitude bands at some latitudes,

well-defined eastward going phase velocities can be seen in the data (C. Wortham, private commuication,

2009).
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Figure 4: Positions of the Southern Ocean moorings analyzed here superimposed upon depth contours
in meters. A, B, C denote the positions of three moorings discussed in the text.
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Figure 5: Temperature, salinity and buoyancy frequency, N(z), profiles (left to right) from the Gouretski
and Koltermann (2004) climatology at the position of mooring A. The deep stratification is nearly uniform

and weaker than in the strong near-surface thermocline, but distinctly non-zero. Baroclinic modes will

be strongly amplified near surface by the increase in N (z) .
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Figure 6: Instrument depths superimposed upon the horizontal velocity/pressure modes, Fi, i =0,1,
(left) and vertical displacement modes, Gi, i =0,1,2 for a flat-bottom, resting ocean, subject to a rigid

lid surface boundary condition. The sharp increase in the amplitude of the F1 (z) mode near the surface,

z = 0, is an important characteristic, but is poorly defined by the available instrumentation. The

barotropic vertical displacement mode is plotted as zero amplitude.
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Figure 7: Kinetic energy profile at mooring A. Note the linear scales. Increase toward the bottom is

assumed to be owing to the existence of a bottom trapped mode. The KE increase toward the surface is

roughly consistent with the amplification there of F1 (z) .
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Figure 8: For a mooring near 60◦S in the Southern Ocean, spectra by mode number (0 to 3) for kinetic
energy (left panel) and (1 to 3) for vertical displacement (right panel). Straight line segment is an s−2

power law (s = ω/2π).

Figure 9: Coherence (upper panel) of the coefficients of the barotropic and first baroclinic modes at
mooring A in the u−component. Horizontal dashed line is an approximate level-of-no-significance at
95% confidence. Low frequency phases (lower panel) are in the sense of tending to magnify the surface

velocity.
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Figure 10: (Upper panel). αu (0) (solid line) and αu(1) (dashed) showing the temporal variability of the
coefficients of the zonal component of flow south of Tasmania. (Lower panel) The same as in the upper

panel except αv(0), αv(1).

Figure 11: Same as Fig. 8 except for the mooring south of Tasmania.
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Figure 12: Kinetic energy (left) and vertical displacement spectra from the Nares Abyssal Plane in the

southwest North Atlantic Ocean.
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