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Introduction

“Inverse methods,” “inverse problems,” “inverse models” are amorphous overlapping labels for a wide variety of problems and
solutions in many different contexts, but ones that commonly arise with the use of observations. In oceanography, as in most
sciences, problems involving real observations are always “ill-posed” in one or more senses: Data are inevitably noisy, meaning that
at best, problem solutions are never unique. They may be too few to solve for some desired quantity, even were they perfect. Data
may also be contradictory, and may be all of these things at once: inadequate, and contradictory. But unless observations are just
irrelevant to the problem under consideration, inadequate and contradictory data can still contain a bounty of useful information.

In mathematical subjects, inverse problems are commonly defined as “inverse” to a conventional, well-posed, “forward” or
“direct” problem. A famous example was discussed by Ka�c (1966): “Can you hear the shape of a drum?” The forward problem is a
conventional one frommathematical physics: given a two-dimensional membrane with a known boundary and physical properties,
to calculate the normal mode frequencies. For nonpathological properties, the forward solution is uniquely defined with mathe-
matically desirable properties such as a continuous dependence on the physical parameters. It is “well-posed.” The inverse problem
is: given all the normal mode frequencies, to determine the shape of the drum. Years later, it was proven that the answer was not
unique, even with the infinite number of normal mode frequencies known perfectly (Gordon and Webb, 1996; Sabatier, 2000).

Problems such as that of Ka�c have generated a substantial mathematical literature. That literature often assumes an infinite
number of perfect “data” are available. A muchmore practical version of the same problem is: Given a finite number of approximately
known measured normal mode frequencies, and a governing equation with approximately known physical parameters, estimate the
shape of the boundary, determine also the reliability of the solution, and which of the frequencies are most important to the results.
A plausible first-guess at the boundary shape would usually be available, possibly with some understanding of how far it might
deviate from the correct one. Or perhaps the boundary is already approximately known, and the information is to be used instead to
find a better value for the physical parameters. (A closely analogous problem is that of determining Earth parameters from the
measured free oscillation frequencies.)

A very large mathematical literature exists concerning existence, continuity, uniqueness, etc. of the solutions to the mathema-
ticians’ inverse problems of various sorts. While very interesting (e.g., Lions, 1971 and several more recent books; and numerous
papers in the journal Inverse Problems and elsewhere), many of these results are irrelevant to what might be called “inverse problems
in practice.” Notice that Ka�c’s problem, and its solution, do not involve any form of statistical inference—whereas in practice,
inverse problems involving data inevitably do so. One might distinguish mathematical inverse problems from practical ones by
noticing that the latter are almost universally forms of statistical estimation problems.

An oceanographic definition of a practical inverse problem is one that involves making inferences from real data (finite in
number, inaccurate, possibly contradictory) in the context of one or more equations representing physics, chemistry, dynamics, or
biological processes etc., or all at once. Methodologies have been reinvented and relabeled in very diverse fields, and encompass
much of general statistical estimation theory in all its forms (frequentist, Bayesian) as well as the understanding and construction of
physical models of arbitrarily large dimension and complexity. Because of the reinvention and the possibly willful suppression of
common terminologies, competing jargons represent a serious communication problem. Most practical inverse problems are,
however, readily unified as subelements of control theory in both its engineering and purely mathematical manifestations.
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Inverse problems in geophysics and oceanography do have a very long history although the recent terminologies and methods
depend directly upon the availability of massive computer power. An outstanding early example is the well-known problem of
determining Earth’s interior mass distribution from measurements of the surface gravity field on both land and at sea. Also ancient
is the problem of determining the interior Earth magnetic field from surface data alone.

Although the origins of these problems lies deep in the history of physics and mathematics, to the time of Newton, Laplace,
Legendre, Gauss, etc., a convenient discussion starting point was the formulation by A. N. Kolmogorov and N. Wiener of
the prediction problem for linear systems (Kolmogorov, 1939; Wiener, 1942, 1949; see Robinson, 1959; Yaglom, 1962).
A distinction was made between the problem of predicting the behavior of a system (in Wiener’s case, aircraft dynamics—for
fire control of anti-aircraft guns), and the “smoothing” problem which corresponds to determining instead the physics of an
aircraft from observations of its movement and some knowledge of its dynamics. Statistical inference was combined with a
knowledge of dynamics. Wiener employed the covariance of noise and signal for statistically stationary systems in his formula-
tion of the prediction problem. Later, Kalman (1960) inserted a specific time-evolving model of the physics. But because a
stationary (In this context, the term “stationary” always means statistically steady and does not mean a nonmoving system.) linear
system is completely described by its covariance, a specification of the dynamical evolution was already contained in Wiener’s
theory.

In the geophysical context, the papers beginning with Backus and Gilbert (1967, 1968), (and see particularly Parker, 1994), who
introduced the “inverse” problem terminology. Their focus was on geophysical problems including marine data, particularly seismic
wave ones, with the goal of determining the static Earth properties through which propagation took place. They used a formalism of
continuous space and time, rendering the problems part of the mathematics of functional analysis. They introduced the require-
ment that useful inverse methods should be able to cope with “inadequate, inaccurate, and contradictory” data (Backus, 1970), and
should produce estimates of which solution elements were determined (“resolving power”), which were accurately determined
(“variance”), and which of the data were most useful.

So many different estimation problems exist across the oceanographic sciences that lumping them into the “inverse” problem
basket is not obviously very helpful, except to note their mathematical commonality. Thus “data assimilation,” originating in
numerical weather forecasting, is an approximate form of the Wiener-Kalman prediction solution and is part of predictive control
theory; “state estimation” is the “smoothing” problem of control theory; “objective mapping” or “objective analysis” and “3dVAR”
are forms of weighted least-squares and rely upon the Gauss-Markov minimum variance estimators; “4dVAR” and the “adjoint
optimization” are the method of Lagrange multipliers. As with many problems in science, a focus on mathematical methods or
particularities of numerical algorithms can obscure the more fundamental issues: formulating the problems using all available
insights into the physics, chemistry, biology, or geophysics as well as the detailed knowledge of how, where, and with what accuracy
observations were obtained and what accuracy is required in the solution elements.
Specific Example

To define terms, consider a classical problem of elementary physics and calculus, that of a damped oscillator written as,

M
d2x tð Þ
dt2

� r
dx tð Þ
dt

þ kx tð Þ ¼ q tð Þ,

x 0ð Þ ¼ x0,
dx 0ð Þ
dt

¼ x
0
0ð Þ, t � 0:

(1)

HereM, r, k are all fixed numbers, and q(t) is a known function. With the initial conditions at t ¼ 0 as provided, this example is a
much studied well-posed forward problem: the solution is (1) unique, (2) continuous, (3) differentiable (Thinking of t as time is
useful, but in practice, it can be any independent variable or index that locates x.). Conventional mathematics and physics textbooks
instruct the reader that only such “well-posed” problems should be undertaken.

If the problem is stated in only slightly different ways however, the question of wellposedness has to be considered again. For
example,

(A) Suppose x(t) is known, but M and/or r, and/or k are to be determined.
(B) The initial condition, x0, is not perfectly known, but is described for example, as x0 � Dx0 where Dx0 is some indication of

uncertainty in the value of x0.
(C) None of the initial conditions are known, but instead x(t1), x(t2), x(t3), . . . are provided. Can one still determine x(t)? Suppose

these values are only imperfectly determined?
(D) x(t) is known for all times, t > 0. Can q(t) be found? Suppose x(t) is imperfectly known?
(E) . . ..

In general, all of these variant problems are ill-posed. For example, (B) renders the solution nonunique. (C), even with perfect
measurements, potentially has too much information unless the known values satisfy special constraints. In (D), if x(t) and all the
parameters are known, q(t) is fully-determined, unique, differentiable etc. If x(t) is imperfectly known, then q(t) is no longer unique
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and perhaps not continuous or differentiable. Problem (D) is plainly a control problem—finding which forces acting would have
produced the observed trajectory, x(t)?

In some of these cases, special “inverse methods” are required. In other cases, for example, (D) with perfectly known x(t), simple
differentiation suffices. In all cases (A–D), the Eq. (1) has become an “inverse model”. Sometimes the correct model is itself
unknown and the inverse model may differ, for example, by omission of the term rdx (t)/dt. Ideally, an inverse model is fully
consistent with or identical in structure to an underlying forward model (Some early papers, by authors hostile to the use of
oceanographic inverse methods, deliberately used incorrect models and leading them to the erroneous conclusion that the methods
failed. Sometimes model inadequacy is not obvious. The famous “abyssal recipes” calculation by Munk (1996) is an inverse
problem for oceanic mixing and advection velocities; but the inverse model (a 1-dimensional advection-diffusion equation) has
come, decades later, to be regarded as inapplicable (e.g., Ferrari et al., 2016). So-called robust control theory includes methods for
dealing with classes of models, rather than specific ones.).

In a time of fast, cheap, digital computers, almost all such problems are, in practice, solved numerically. So for example, Eq. (1)
can be discretized in a number of different ways. (As early as Levinson 1947a, b, it was clearly recognized that discretization of the
Wiener-Kolmogoroff theory rendered the mathematics simply a form of least-squares. That made it accessible to a wide application
community that had struggled with the continuous time theory.) The simplest is an ordinary backward difference at equal time
steps D t,

M

Dt2
x nþ 1ð ÞDtð Þ � 2x n;D; tð Þ þ x n� 1ð ÞDtð Þ½ � r

Dt
x n;D; tð Þ � x n� 1ð ÞDtð Þ½ � þ kx n;D; tð Þ ¼ q n;D; tð Þ, (2a)

n ¼ 0, 1, 2, . . . , x 0Dtð Þ ¼ x0, x Dtð Þ � x 0Dtð Þð Þ ¼ x’0 Dtð Þ; (2b)

and which is readily rearranged, in matrix-vector notation (this article assumes familiarity with basic matrix-vector notation. In
general, bold upper case letters are matrices, bold lower case letters are column vectors. Superscript T implies transposition so that
e.g., x(t)T is a row vector. Superscript �1 denotes an ordinary matrix inverse. Some elementary statistical notions are used, including
that of the bracket h.i to denote a true (hypothetical) average.), as,

Ax n;D; tð Þ ¼ q n;D; tð Þ, or
Axa ¼ qa,

(3)

xa ¼ x 0Dtð ÞT ; x 1Dtð ÞT ; . . .
h iT

,qa ¼ q 0Dtð ÞT ;q 1Dtð ÞT ; . . .
h iT

A ¼ 2� r

M
Dt � k

N
Dt2

r

Dt
� 1

1 0

8<
:

9=
;

(4)

where xa, qa represent a stacking into one column vector of the entirety of all of the time-dependent elements of the vectors x (t),
q (t). The stacked system, Eq. (3), is a collection of simultaneous equations whose solution is the unique solution to the classical
forward problem. An equation count shows an equal number of unknowns, N, and of equations, and thus the solution can be
written,

xa ¼ A�1qa: (5)

With the classical initial conditions in Eq. (2b), the N � Nmatrix inverse A�1 exists. On the other hand, solving the set through
multiplication by A�1 is a procedure unlikely to be adopted—because an even better approach is by time-stepping: solve the first
equation for x (D t), and use it to find x (2D t), etc. This method is fast and easy, and is probably the same solution is in Eq. (5). Note
however, that if for example, x0

0
(Dt) is missing, but x(tq),any tq 6¼ 0, is known instead, sufficient information still exists to solve the

resulting simultaneous equations uniquely and stably; but ordinary time-stepping no longer works because the starting conditions
are not fully known. Eq. (3) remains correct and useful, and its wholly generic form reinforces the possibility that t is an arbitrary
accounting index, neither necessarily time nor uniformly spaced.

A basic understanding of practical inverse problems and their solutions can generally be reduced to the recognition that they are
always equivalent to sets of simultaneous algebraic equations, both linear and nonlinear, with more than, fewer than, or equal
numbers of equations than unknowns. To avoid matrix inversions, advantage is often taken of the particular structure of the
simultaneous equations as in the time-stepping. But generally, any useful solution method will at least approximate that found by
Eq. (5) or its extensions to nonlinear systems.

Now suppose the problem is rendered a bit more realistic by assuming that the forcing q (t) came frommeasurements, and thus
includes “noise,” so that it is replaced by q(t) ¼ y(t) � n(t) where n(t) is a noise field, often with knownmean and statistical second
moments hn(t)n(t)Ti ¼ R(t). t remains a discrete independent variable, and which has the great advantage of side-stepping the
major complexities of the mathematics of continuous-time stochastic processes and partial-differential equations (e.g., Gardiner,
2004). For convenience, it will be assumed that the mean hn(t)i ¼ 0 and which can usually be arranged with adequate accuracy. The
minus sign introduced in front of n(t) is placed there only so that Eq. (3) is re-written conventionally as,

Axa þ na ¼ ya, (6)
Encyclopedia of Ocean Sciences, (2019) 
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all vectors being “stacked.” Supposing for the moment that A is unchanged from before—how to proceed? One approach is to
replace na by its average value of zero, writing

~xa ¼ A�1ya,

where the tilde has been used to distinguish this solution from that in Eq. (5) and noting that it is not necessarily the only solution.
Is this a useful solution? Note that,

~xa ¼ A�1ya ¼ A�1 qa � nð Þ,
and its difference from the hypothetical correct solution, xa, is

~xa � xa ¼ �A�1na,

whose mean (expected value) is zero, ~xa � xah i ¼ 0, so it is unbiassed. On the other hand, its second moments are,

~xa � xað Þ ~xa � xað ÞT
D E

¼ A�1 nan
T
a

� �
A�T ¼ A�1RA�T ,

and which, depending upon both the structure and magnitudes of A and R, may have diagonal values (the variances of the solution
elements about the correct value) that are acceptably sized, or unacceptably large or small. Notice that while a perhaps useful
solution has been found, no further information concerning n(t) has emerged and if the solution proves unacceptable, what to do
next?

Now add a bit of information in the form of measurements at a few times, tj, of the solution vector x (tj) or of the velocities,
[x(tj) � x(tj�1)]/Dt, or conceivably even accelerations or other combinations. Seeking realism, these all contain some form of
error, e (tj), again assumed to be of zero mean, and known second moments. Let all of these extra pieces of information be
written as another set of simultaneous equations,

Bxa þ ea ¼ p,

ea ¼ e t1ð ÞT ; e t2ð ÞT ; . . .
h iT

for all those times when an observation is available. Bmight be very sparse, with few rows, picking out only those elements for which
an observation is available. Suppose there are P values of such noisy observations. The rows of the usually sparse P � Nmatrix Bwill
consist of either a single element of 1 and all the rest zeros (if x(tj) is measured, or 1 and � 1 and all zeros, if x(tj) � x(tj � 1) is
measured, etc.).

This new set of simultaneous equations can be combined with the old set, Eq. (6), into the combined form,

Exa þ na ¼ ya,

where now E is M ¼ (N þ P) � N. Some of the equations come from observations, and some from relationships amongst
them (a “model”). Now there are N þ P equations in N unknowns xa and the equation set now appears to be over-determined.
Over-determined sets of algebraic equations are very familiar, and one learns in elementary calculus to find the solution ~xa that
makes the magnitude of na, measured as na

Tna, a minimum. A formal, and readily generalizable, result is through ordinary least
squares. Form an objective or cost function, J, such that

J1 ¼ ya � Exa
� �T

ya � Exa
� � ¼ X

i

n2
ai:

Taking the partial derivatives of J with respect to xa leads immediately to,

~xa ¼ ETE
� ��1

ETya:

Some inference now can be made about n as well:

~na ¼ ya � E~xa ¼ ya � E ETE
� ��1

ETya:

Notice that information about the second moments, R, has not been used. Also, the rationale for choosing the smallest
magnitude na solution is not obvious. Even so, N þ P solution elements appear to have been determined (N of them for x(t),
and P of them for n(t)) and the claim of “over-determination” looks fragile. Note too, that any change in the estimated noise, ~n tð Þ,
leads immediately to a change in ~x tð Þ. Unless the noise were actually known a priori, this solution can hardly be regarded as more
than a purely ad hoc one.

Employment of knowledge of R, and often of some knowledge of the second moment matrix of x(t), leads to generalizations of
the least-squares solution to account for that information. Again, a simple approach is through least squares, minimizing,

J2 ¼ ya � Exa
� �T

R�1 ya � Exa
� �þ xTaS

�1xa: (7)
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For these general methods the reader is referred to extended discussions in Lawson and Hanson (1995), Menke (1989), and
Wunsch (2006a, hereafter W06) and many other textbooks. Statistics enter immediately in tests of whether the resulting solution
from minimizing J2 is consistent with the prior estimates of the noise and solution covariances R, S.

In many cases, one of which is described below, the number of equations is less than the number of unknowns, xa, and always, of
the combined set xa, na. The message of inverse methods more generally is that whatever the number of equations, they carry
information about the solution, and the goal is to determine (A) what aspects of the solutions xa, na is implied by the equations that
do exist, and how well can they be determined? and (B) what are the elements of xa, na about which no information is available?
(C) Can the data be ranked in order of importance to the solution chosen?

Practical inverse problems and methods require a great deal of attention to be paid to the noise elements, their statistics, and
consistency with any prior hypotheses—leading to an essentially Bayesian approach and a heavy emphasis on knowledge of physics,
or chemistry or biology. Consider one example of an underdetermined problem,

Exa þ na ¼ ya (8)

where E is M � N, with M < N that is, it is formally underdetermined in xa—even should the noise vanish. Some of the equations
can again come from observations, and some from known relationships amongst them (amodel). A solution is, found by arbitrarily
minimizing the size of xa from

J3 ¼ xTa xa

which obviously has a minimum of zero and as a complete solution implies that the observations and model relationships are all
noise: na ¼ ya, and is of little interest. An easy way to insist that the minimum length solution also satisfy the equations is to write

J4 ¼ xTa xa � 2mT ya � Exa
� �

: (9)

(see, W06, P. 58þ). Here, m is a vector of “Lagrange multipliers” and which is treated as a new set of unknowns. Setting to zero the
partial derivatives of J4 with respect to both xa, m, produces.

~xa ¼ ET EET
� ��1

ya,

~m ¼ � EET
� ��1

, ~na ¼ 0

which is the classical underdetermined solution that minimizes the norm ~xTa ~xa and which might seem to be a sensible choice. On
the other hand, ~n ¼ 0 is an unacceptable solution if the ya (or E) contain errors and which thus must lead to rejection of this
solution. In Eq. (9), Exa ¼ ya appears as a “hard constraint”—that is the equations must be satisfied exactly (forcing ~na ¼ 0). The use
of hard constraints has led some authors to claim that they require the equations be satisfied exactly. Although that can be true, an
obvious and sensible generalization of J4 is to include an error term in the equations and include minimization of the noise as part
of the solution for example, as,

J5 ¼ xTa xa � 2mT ya � Exa � na

� �þ nT
ana, (10)

probably with corresponding covariance weights as in J2 (see Eq. 11 below).

A General Least-Squares/Gauss Markov Result

Depending upon investigator knowledge and insights, a great variety of information about the solution and which always includes
the noise field, can and should be used to formulate the inversion. A very general formalism invokes classical discrete least-squares.
Consider a cost or objective function

J ¼ ya � Exa
� �T

R�1 ya � Exa
� �T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
noise

þ xa �Mx0ð ÞTS�1 xa �Mx0ð Þ�
prior values of x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2mTLxa|fflfflfflffl{zfflfflfflffl}
model constraints

(11)

generalizing Eq. (10) where R and S are above, x0 is an a priori estimate of xa, and m are again Lagrange multipliers (sometimes
called the “adjoint solution”). E relates xa to ya, M picks out the values or combinations of values in xa for which there is prior
information, and L indicates various known relationships between elements of xa as might be true in a model, but including any
error terms.

To a large extent, many of these different appearing terms can be interchanged. (For example, x2 � x1 ¼ 1 þ e1 can be imposed
using a Lagrange multiplier and adding e1 to the state vector xa. Alternatively, it can be regarded as equivalent to an observation of
x2 � x1 with a noise element e1 included in na. A lot of flexibility is available for convenience purposes.) Additional terms involving
for example, internal parameters and their prior values are easily accommodated. As discussed in the textbooks, use of Eq. (11) is
equivalent to solving a weighted set of simultaneous equations, where the weights are derived from R, S etc. usually through a
Cholesky decomposition. Least-squares is very flexible, including classes of constraints involving inequalities (see W06, P. 164þ for
references).

Differentiating J with respect to xa, and m leads to a set of ordinary least-squares “normal equations.” For very general numerical
approaches to solutions of these equations (which are the same as finding the stationary values of J) (Here “stationary” is used in the
Encyclopedia of Ocean Sciences, (2019) 

 



Models | Inverse Problems, Inverse Methods, and Inverse Models 507

 
Author's personal copy
sense of the values of x, n, m where the derivatives vanish and should not be confused with “stationary statistics.”), the voluminous
literature on optimization includes Gill et al. (1986).
An Underdetermined Problem: The Level of No Horizontal Motion

Probably the first explicit application of an inverse method in physical oceanography was directed at the famous problem of
determining a “level-of-no-motion” in the oceanic circulation. As classically formulated, the absence of a “level-of-known-
horizontal-motion” in the ocean led physical oceanographers to assume that there existed a depth, z0 (x,y) where the large-scale
horizontal flow vanished. Consider a pair of ordinary hydrographic stations, where temperature, T (z, xi, yi), and salinity, S (z, xi, yi)
and hence the density difference, Dr, between them can be calculated as a function of depth. By using the thermal wind relations, at
nonequatorial latitudes, the flow normal to the pair can be computed numerically from,

rf
@u⇂ z; x; yð Þ

@z
¼ g

@r z; x; yð Þ
@r

, (12)

where u⇂ is the flow normal to the pair, and r is the distance between them and which by rendering discrete can be integrated in the
vertical so that,

u⇂ z; x; yð Þ ¼ g

rf

XDr z; x; yð Þ
Dr

þ u0i,

where u0 is an integration constant that arises from the vertical integration in Eq. (12) that starts at some depth z0 where u0iwould be
the flow. How to determine u0? The problem as initially formulated took a closed volume of ocean, surrounded by N-hydrographic
station pairs. By demanding that the total transport of fluid flowing in must equal (nearly—within error estimates) the flow
outward, one obtains a single equation (constraint) on theN unknown u0i. By writing similar near-conservation rules for mass, salt,
oxygen, etc. and for these and other properties in various density layers within the water column, a large number of constraints can
be constructed. At the end however, typically fewer equations than unknowns results, and an inverse method must be used to
describe the full family of solutions. See Figs. 1 and 2 and W06.

Estimates of uncertainty are one of the most important outcomes of a true inverse procedure.
Light gray line in upper left corner is a mean depth of the Scotia Arc east of Drake Passage.
A number of applications including oxygen and nutrients (e.g., Ganachaud and Wunsch, 2002) have also been published.
Time-Dependent Problems

The ocean is a time-dependent fluid flow, one containing time-dependent chemical and biological fields. That inescapable
observational reality leads to the formulation of time-dependent inverse problems. Note that already, Eq. (1) describes a time-
dependent state, but its solution was reduced to a set of simultaneous algebraic equations. That the indexing variable was timemade
no difference: that variable could be replaced by a space or any other bookkeeping index.
Fig. 1 Example of a static inversion (Lumpkin and Speer, 2007) showing the large-scale boxes used to write approximate (that is, noisy) balances for determining
the unknown reference levels.
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Fig. 2 Solution to underdetermined static flow inverse problem by Lumpkin and Speer (2007) showing the zonally integrated global stream function (Cf.
Ganachaud, 2003). Gray line indicates mean mid-ocean ridge crest height. Thick white line represents the zonal mean mixed layer depths.
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The major issue is that time-dependent problems in real fluids like the ocean generate enormous volumes of describing
numbers—via partial differential equations, and even though such problems can once again in principle be reduced to sets of
simultaneous equations, linear and nonlinear, the dimensionality requires various “tricks” to cope. Most of those tricks however,
can be regarded as clever ways of approximately solving the simultaneous equations without having to store them all at once in the
computer—even though the solutions are equivalent—if properly carried out.

Consider the equations of fluid- and thermo-dynamics, and of chemistry and biology as written on a computer. Again a “state
vector,” x(t), exists, often of enormous dimension (39 � 106 at one time, t in one example; such a model, time-stepped hourly for
20 years would generate an equivalent xa of dimension N ¼ 7 � 1012 elements; Forget et al., 2015). A computer model of x(t) is a
time-stepping rule,

x mDt þ Dtð Þ ¼ L x m;D; tð Þ;p;q tð Þð Þ, (13)

plus a set of initial conditions, x(0), x0(0), and boundary conditions, x(r,t) ¼ xB(rB,t). Typically, the elements in any x(mD t) are
three component velocities, (u, v, w), temperatures T, salinities S and a pressure, p, at every grid point or finite element of a computer
code. The time-stepping operator, L, is the computer code, comprised of hundreds of thousands or even millions of lines. q(t) can
contain external boundary conditions (e.g., momentum and thermodynamic exchanges with the atmosphere) as well as any kind of
interior forcing, sources and sinks (if e.g., the model contains decaying radiocarbon). p denotes any interior model parameters
including mixing coefficients, bottom topography, et al.

Construction of such forward computer model codes that lead to accurate, stable, solutions x(t) is a highly developed,
sophisticated, subject with roots extending back to about 1950. These models typically are time-stepped from their initial
conditions subject to spatial/�temporal boundary conditions and forcing. A good code will be in terms of algorithms producing
well-behaved solutions in terms of required accuracy, precision, etc. and might even display numerical convergence to the
underlying hydrodynamic/thermodynamic equations (although rarely demonstrated). Resulting equations are numerically well-
posed.

Eq. (13) in theory could again be written out as a set of stacked coupled, perhaps nonlinear equations, and solved in theory by
various computer algorithms that ignore the very special structure that permits a time-stepping solution. Notice that just as with the
simpler Eq. (1), the stacked problem can be rendered numerically ill-posed in the same large-number of ways: uncertainties in
initial conditions and boundary conditions, in the interior parameters, p, the provision of noisy observations, etc. When any or all
of these conditions is present, the system is ill-conditioned and is best treated as an inverse problem. The huge dimensions possible
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has led to an equally huge, sometimes highly technical, literature directed at the computer methods necessary to cope—without
directly solving the stacked system. One example is Utke et al. (2008).

Time-dependence too, brings a focus onto prediction capabilities. (Spatial extrapolation is a problem in exploration geophysics
for locating ore bodies, and are closely analogous. See Armstrong (1989) for the specialized methods used there.) In particular, the
problems of weather forecasting have led to an entire subject labeled “data assimilation” with a whole series of specialized methods
and terminologies specific to the prediction problem—an outgrowth of the Wiener-Kolmogoroff theories alluded to above.

Precisely the same objective function J as in Eq. (11) can be used. If prediction is the goal, a term, perhaps with a heavy relative
weight, corresponding to,

~x tfutureð Þ � x tfutureð Þð ÞTS�1
future ~x tfutureð Þ � x tfutureð Þð Þ,

can be added, where tfuture is the prediction time. The weight matrix, Sfuture
�1 , could be so large that all other terms in the objective

function J are negligible, giving priority to an accurate forecast instead of fitting data at earlier times. The specialized structure of
time-stepping models (Eq. 13) permits the use of clever schemes to minimize storage requirements, obtaining solutions by
iteration, etc. At the end of it all, however, these schemes produce a solution to the underlying sets of weighted simultaneous
equations. If the model, or the observations, are nonlinear in x(t), iterative solutions are required, but the goal is the same: solve the
simultaneous equations as accurately and efficiently as possible. Numerical difficulties can arise; see for example, Gebbie and Hsieh
(2017) and the references there.
Prediction Versus Smoothing

At least as far back as Wiener (1942), it was recognized that the problems of forecasting led to different methods than the problems
of estimation and understanding. Wiener’s theory was directed at the handling of stationary time series, that is ones whose signal
and noise statistics were independent of time (and/or space). Given (in theory), the infinite past of a scalar time series, x(t) (and
time was continuous in Wiener’s theory) until the present time tnow, the prediction problem consists of estimating the best
predictive value x(tfuture ¼ tnow þ t), t > 0, and its uncertainty. The “smoothing” problem is directed at t < 0 so that some formally
future values are available for making the estimate, and with that added information a smaller uncertainties are expected at all times
t < tnow. Because of its use of continuous time and frequency domain methods, Wiener’s prediction results involved spectral
factorization (a Wiener-Hopf problem) and proved mathematically inaccessible to many users. Levinson (1947a,b) produced a
solution to the discrete problem that was a form of least-squares and thus much more useful to a wider community. His solution
included extremely rapid recursion methods that were very important in the days of slow and small computers (see
Claerbout, 1976).

Kalman (1960) extended the discrete version of the Kolmogoroff-Wiener prediction theory to the nonstationary case, with
particular applicability to problems involving a dynamically constrained state. Transients such as those involved in missile launch
were accounted for, and prediction of impact points and time were the immediate focus. Unlike the Wiener prediction filter for
statistically stationary processes, the Kalman prediction filter necessarily involves calculating a time-evolving set of covariance
matrices, which, for nonstationary systems change under both the dynamical model and the incoming observational data stream.
With modern computers, covariance matrices of square dimension of N > 1000 are feasible. With geophysical fluids however,
having N > 106, computation of such matrices is not possible (they require running the model an extra N times at each time-step),
and they are held fixed. Thus despite claims to the contrary, published applications are of an extended discrete Wiener theory—the
extension being the insertion of a dynamical model to propagate the state vector, but without changing the covariance matrices.
When the dynamical model is a nonlinear one, and not linearizable, the statistical assumptions are often ad hoc and not readily
testable.
Extensions, Complications

In practice, most inverse problems, whether for prediction or smoothing, are solved as some form of approximate least-squares.
Least-squares methods have a strong connection to fields having Gaussian, or at least unimodal, probability distributions. Thus one
form of failure can be encountered when distributions of solutions or data errors are multimodal or highly nonGaussian in a variety
of ways. So-called robust methods exist, in a variety of forms including changes in the measure of misfit or size from weighted sums
of squares

P
aiqi

2 (2-norm) to different measures, such as the 1-norm,
P | aiqi |, or an infinity norm, max(|aiqi |) and these

approaches have much to recommend them. 1-norm methods are highly developed in the context of linear programming and
are widely used in business applications. Robust methods commonly involve these other norms (See, for example, Yedavalli, 2014).

For very large problems, such as those encountered in oceanic problems, the requirements of computational and storage
efficiency demand close attention to computer architectures and details such as input/output requirements. At present, the software
available for large-scale ocean problems is much more highly developed for the 2-norm methods than for any of the others.

Because application of time-evolving uncertainty estimates in the standard forms such as the Kalman filter for prediction, or
various smoothing methods (see Anderson and Moore, 1979) and sometimes the presence of strong nonlinearities remain compu-
tationally beyond reach, resort has been made to Monte Carlo/ensemble methods. Typically (see Evensen, 2009; Kalnay, 2003),
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for the weather prediction problem) ensembles of solutions are generated by randomly perturbing initial conditions according to
some hypothesized probability density of the errors. Sometimes the fastest growing disturbances can be identified as the generator of
major uncertainties in short-range forecasts.

These methods are essential and are likely to remain so for purposes of understanding the degree to which the models produce
accurate forecasts. In practice, however, and of particular concern for oceanic problems with their often enormous time scales, the
ensemble sizes remain a minute fraction of the number of statistical degrees of freedom in the state. Covariances calculated from the
ensemble members will be highly singular, with no representation of uncertainties in most elements of interest. True knowledge of
the probability densities of the stochastic elements of the system is another major problem that will need to be solved in the future.
Oceanographic Applications

Static Problems

Many different applications of these principals have been made in the wider oceanographic context. The apparent earliest use for
fluid flow was for the assumed static geostrophic box inverse problems described above, and summarized in W06. Amongst
numerous later examples are Roemmich et al. (2001), Macdonald (1998), Ganachaud (2003), and Lumpkin and Speer (2007).
Biological/chemical examples are Ganachaud and Wunsch (2002) and Macdonald et al. (2003). Extensions of the static problem
methods have been discussed at length by Killworth (1986) and Chu (2006), and others.

Marine geodetic and geomagnetic inverse problems have recently been discussed by Mitrovica and Forte (2004) and Korte and
Constable (2008), respectively although on the global scale, the distinction between “ocean” and “terrestrial” problems is mainly
one of data types and accuracies and not of the physics.
Time-Dependent Problems

Geomagnetic time-dependent problems involving marine data are very important. The secular variation of the geomagnetic field
has been of long-standing interest and a recent discussion is in Jackson et al. (2000).

In physical, chemical, and biogeochemical oceanography, as the picture of a static ocean assumption became untenable,
attention turned to time-dependent ocean problems. Because of the highly-evolved numerical weather forecast systems, attractively
labeled “data assimilation,” much oceanic activity simply adopted those methodologies (e.g., Carton and Giese, 2008). That
approach conveniently ignored the well-known and long-standing distinction between the goal of a best-prediction, and that of a
best-smoothed estimate.

Oceanic problems where prediction is indeed the goal are common, involving particularly forecast of balanced eddy fields (e.g.,
Hurlburt et al., 2009), military acoustic propagation, and in coupled problems such as El Niño prediction (Sarachik and Cane,
2010). For these problems, the meteorological prediction experience is highly useful.
“Reanalyses”

In an effort to produce useful estimates of the climate system over long periods of time, the meteorological community has used
weather models and forecast methods to produce what have come to be known as “reanalyses.” (They are reanalyses of the original
weather forecasts, but over much longer time spans.) What has been noted repeatedly however, is that for purposes of understand-
ing of the ocean, as opposed to its prediction, smoothing or “state estimation” methods are required to find estimates that obey
basic conservation rules for energy, momentum, enthalpy, fresh-water, etc. (see e.g., Fukumori, 2001; Wunsch and
Heimbach, 2013).

Useful forecasting is fundamentally an engineering problem and for operational purposes, be it ship routing or acoustic
forecasting, failure of a model to be for example, energy or water conserving, is of little or no concern. It only becomes a concern
when the results, as in meteorological “reanalyses,” are analyzed over climate time-scales for understanding of oceanic and global
heat budgets amongst other problems (see e.g., Bengtsson, et al. 2004; Wunsch and Heimbach, 2013).
State Estimation

With the advent of the World Ocean Circulation Experiment (WOCE) in the early 1990s, and the first availability of true nearly-
global data sets, oceanographic attention began to turn to the smoothing problem, as the only viable route to understanding of the
ocean in climate. Because ocean time-scales are long, even were large-scale ocean circulation forecasts to be attempted, many
decades would have to pass before a true test of forecast skill would be possible. In any event, an ultimate goal of ocean climate
prediction can only be approached with a better understanding of the physics of today and the recent past. The major example of the
smoothing activity is contained in the Estimating the Circulation and Climate of the Ocean (ECCO) program (see Fukumori et al.,
2017; Forget et al. 2015) and which solves the multidecadal smoothing problem iteratively, relying upon Lagrange multipliers to
both enforce model physics and as a numerical algorithm for minimizing a model-data misfit. Verdy and Mazloff (2017) extended
the physical models to biogeochemical ones.
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Tomographic problems, whether medical, biological, atmospheric, or oceanographic are by their very nature always inverse
problems; see Khil’ko et al. (1998); Munk et al. (1995). Applications of these methods, in various forms, to paleoclimate problems,
where the data are “proxies” for physical variables have been discussed by Amrhein et al. (2015), Gebbie et al. (2016), Kurahashi-
Nakamura et al. (2017), and Amrhein et al. (2018) amongst others.

The major present problem with all such estimates, as with the results from any climate scale model whether data are used
directly or not, is in determining the accuracies of various results. For modest sized problems (state vectors of dimensions, N, of a
few thousands at any time), the linearized standard methods of filters and smoothers as described in textbooks work well. But with
the very large state vectors of global ocean problems, the computational burden becomes overwhelming. (In particular, computa-
tion of the 2nd moments of the uncertainties requires running the model equations N times—once for each covariance column.)
The most popular approach to generating uncertainties thus far has been based upon the Monte Carlo methods of generating an
ensemble of disturbed solutions by perturbing initial and boundary conditions. Central difficulties lie with the choice of probability
densities fromwhich the ensemble members are generated (they are not known), and that unless the ensemble size exceeds the state
vector dimension, the covariances will be singular ones.
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